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Abstract: A unique feature of bioactive food ingredients is their broad antioxidant function.
Antioxidants having a wide spectrum of chemical structure and activity beyond basic nutrition;
display different health benefits by the prevention and progression of chronic diseases. Functional
food components are capable of enhancing the natural antioxidant defense system by scavenging
reactive oxygen and nitrogen species, protecting and repairing DNA damage, as well as modulating
the signal transduction pathways and gene expression. Major pathways affected by bioactive food
ingredients include the pro-inflammatory pathways regulated by nuclear factor kappa B (NF-κB),
as well as those associated with cytokines and chemokines. The present review summarizes
the importance of plant bioactives and their roles in the regulation of inflammatory pathways.
Bioactives influence several physiological processes such as gene expression, cell cycle regulation,
cell proliferation, cell migration, etc., resulting in cancer prevention. Cancer initiation is associated
with changes in metabolic pathways such as glucose metabolism, and the effect of bioactives in
normalizing this process has been provided. Initiation and progression of inflammatory bowel
diseases (IBD) which increase the chances of developing of colorectal cancers can be downregulated
by plant bioactives. Several aspects of the potential roles of microRNAs and epigenetic modifications
in the development of cancers have also been presented.
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1. Introduction

According to World Health Organization, cancer is the second cause of death globally after
cardiovascular diseases. An estimated 8.2 million people die from cancer each year, representing 13% of
all deaths worldwide [1]. Cancer results from uncontrolled rapid division of malignant cells that grow
beyond their usual boundaries. Unlike normal cells, cancerous cells do not respond to the controlling
signals; consequently, they grow and divide in an uncontrolled manner, infecting normal tissues and
organs, and in some cases, ultimately spreading throughout the body. This feature is reflected in
several aspects of cell behavior that distinguish cancer cells from their normal counterparts [2].

There are over 100 different types of cancers [3]. The type of the cell that tumors originate from
classifies cancers. Carcinomas, cancers derived from epithelial cells of breast, prostate, lung, pancreas
and colon, cause ~90% of all human deaths from cancer; lymphomas are cancers of the immune organs
such as spleen, white blood cells and lymph glands; leukemias are cancers of blood forming bone
marrow; sarcomas are cancers of fibrous connective tissues of bone, cartilage, fat tissue, muscle and
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neurons; and germ cell tumors are derived from pluripotent stem cells presented in the testicles and
ovary [4].

Early detection and effective treatment help increase survival rates of cancer patients. Therefore,
comprehensive plans are needed to improve prevention and treatment of cancer. Evidence from
epidemiological and experimental studies proved that high intake of fruits and vegetables decreases
chronic degenerative diseases, and importance of consuming a balanced diet in relation to cancer
prevention has received particular interest. Fruits and vegetables are rich sources of different classes
of bioactive molecules. Dietary polyphenols, the most studied group, play important roles in
preventing and managing cancer due to their antioxidant and anti-inflammatory activities. Several
pieces of evidence have accumulated for cancer prevention by bioactives; especially, bioactives
such as phytoestrogens from soy and flaxseed oil, phenolics from olives and olive oil, resveratrol
from nuts and red wine, lycopene from tomatoes, organosulfur compounds from garlic and onion,
isothiocyanates in cruciferous vegetables, and monoterpenes in citrus fruits and herbs [5–7]. Many
bioactive phytochemicals isolated from garlic, turmeric and green tea [8,9] are being tested in human
cancer clinical trials.

Phytochemicals possess various types of activities. They can detoxify free radicals, alter the
expression of genes involved in metabolism, cell survival, proliferation and antioxidant defense;
protect and repair DNA damage, and cause cell cycle arrest and apoptosis [10–12]. Because of
their complex chemical structures, bioactives can act at multiple sites in the cancer development
resulting in prevention and progression of cancer [13–15]. Bioactive compounds that are involved
in cancer prevention act by regulating the expression and activity of transcription factors, growth
factors, inflammatory mediators, and cell cycle intermediates. Bioactive ingredients with therapeutic
properties show inhibition of cancer progression by suppressing cell survival, proliferation, cell
invasion, angiogenesis and metastasis. Epigenetic alterations accumulated over time can be involved
in the pathogenesis of cancer. Bioactive-dependent epigenetic variations induce the effects on genome
stability, mRNA and protein expression, and can cause multiple metabolic changes [16]. The overall
goal of the present review is to elaborate the major steps involved in defining the effects of functional
food ingredients on cancer, and discuss the main molecular mechanisms behind these processes.

2. Inflammation, Cancer, and Regulation by Dietary Intakes

Inflammation, a major link between risk factors and cancer, is being identified as the commencing
point for several forms of cancer [17]. Diet and life style are known risk factors, such as obesity,
environmental pollutants, alcohol, smoking, irradiation, high fat diet, etc. Acute inflammation induced
by pathogen attack persists for a short period, while chronic inflammation predisposes the body
to develop cancer. Activation of two major inflammatory pathways, NF-κB and Signal transducer
and activator of transcription 3 (STAT3), is associated with most cancers [18]. Hypoxia and acidosis
observed in solid tumors increase NF-κB. NF-κB and STAT3 regulate gene expression associated with
inflammation, cell survival, cell proliferation, invasion, angiogenesis, and metastasis. Suppression of
these two pathways results in the suppression of tumor growth, a clear criterion for chemo preventive
agents. Colonic mucosal biopsies from patients either suffering from ulcerative colitis or Crohn’s
disease have increased levels of inflammation marker compounds and decreased levels of anti-oxidant
enzymes, suggesting the role of increased oxidative stress and decreased antioxidant defenses as well
as NF-κB activation in the development of colorectal cancer [19,20].

Dietary components affect genomic and non-genomic processes that could both promote beneficial,
disease-preventing processes and inhibit overactive, cancer promoting processes. Multiple studies
using cell lines, animal models, and human clinical trials consistently showed the ability of bioactives
in causing cytotoxicity to cancer cells [21]. Research showed that grape and wine polyphenols exhibit
selective cytotoxicity to the breast cancer cells (MCF-7) by comparison to the normal mammary
epithelial cells (MCF-10A). Polyphenols triggered necrotic cell death of cancer cells without any
deleterious effect on noncancerous cells. In response to polyphenols the MCF-7 cells showed an
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increase in cytoplasmic calcium level and arrest at G1/S and G2/M phase of the cell cycle. In addition,
red grape polyphenols are able to inhibit the tumor growth in vivo when the triple negative breast
cancer cells MDA-MB-231 were implanted in the athymic nu/nu mice. These results demonstrated
that grape polyphenols act at multiple critical control points in the cancer cell biochemical pathways
such as the inflammatory pathways, exerting selective cytotoxicity. NF-κB related pathway is one of
the main pathways, which can be targeted by polyphenols in grapes and wine, through induction of
the phase II enzymes, which was supported by gene expression analysis including CK2, FAS, LEF1,
PRKCE and PTGS2 genes [22–25]. At present, it is not clear as to what makes the cancer cells more
susceptible to polyphenols. Understanding these aspects will help develop clear strategies for dietary
interventions using functional food products for cancer treatment and prevention.

3. Plant Bioactives and Targeting Antioxidant Pathways

Oxidative stress is tightly regulated by a balance between production and removal of free
radicals, which are formed naturally in the body with important roles in cell signaling. Free
radicals can be hazardous to the body and damage all major components of cells, including DNA,
proteins and cell membranes. In particular, DNA damage plays a critical role in the development of
cancer [26]. According to epidemiological data, some bioactive compounds inhibit different stages of
carcinogenesis, including initiation, promotion and cancer progression, by reducing reactive oxygen
species (ROS) levels (Figure 1). Fruits, vegetables and grains are rich sources of dietary antioxidants
such as vitamin E, vitamin C, polyphenols (flavonoids such as quercetin, catechin, naringenin and
anthocyanins that include sugar derivatives of cyanidin, pelargonidin, petunidin, peonidin and
malvidin), carotenoids and essential minerals such as Selenium and Zinc (that act as cofactors for
essential host pathway enzymes [27]. Consumption of diets high in vitamin E, vitamin C and β-carotene
has been shown to reduce cervical, stomach and lung cancers, respectively [28–30]. Anti-cancer effects
of strawberry flavonoids include scavenging of ROS, reducing DNA damage and decreasing cancer
cell proliferation [31].
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Figure 1. Prevention of oxidative stress by antioxidants. Antioxidants neutralize ROS related
pathways. ROS play important roles in cell signaling, cell proliferation, cell differentiation, adaptation
to stress and metabolic adaptation. Raised levels of the ROS could lead to cellular damage and
chronic disease development. Antioxidants modulate ROS levels and prevent cell damage through
various mechanisms.

The human body is increasingly absorbing xenobiotics including drugs, environmental pollutants,
food-derived preservatives and hormones. These components can be mutagenic and carcinogenic,



Int. J. Mol. Sci. 2017, 18, 2050 4 of 22

especially during the detoxification process, when they are made soluble. The phytochemicals are able
to prevent the initiation of carcinogenesis by inducing xenobiotic-detoxifying enzymes. Phase I and
II enzymes such as glutathione S-transferase (GST) and UDP-glucuronyl transferase (UDP-GT) are
responsible for metabolism of various endogenous or exogenous substrates to protect the cells from
cellular damage, arising from the activation of carcinogenic factors [32].

The main regulator of phase II enzymes is nuclear factor F-related factor 2 (Nrf2). Sulforaphane
activates Nrf2 localized in the cytoplasm and bound to Kelch-like ECH-associated protein 1 (Keap1),
which limits Nrf2 activity by retaining it in the cytoplasm and increasing its proteasomal degradation.
In response to oxidative stress, Nrf2 dissociates from Keap1, translocates to the nucleus, and binds
to the antioxidant responsive element (ARE) promoting expression of antioxidant enzymes [33].
Oral administration of sulforaphane activates Nrf2 pathway and significantly reduces tumor size
and increases apoptosis through activation of caspase 3 and cytochrome c release in bladder cancer
cells [34]. Sulforaphane also induces antioxidative and anti-proliferative effects on human bronchial
epithelial cells via ROS-mediated mechanism, and activation of PI3K and MEK/Erk1/2 signaling
pathways. This resulted in up-regulation of intracellular oxidants, Erk1/2 phosphorylation, and
nuclear accumulation of Nrf2, all of which increased in HO-1 expression and a decrease in cell
growth [35].

Polyphenols in the diet play their antioxidant role in multiple ways to scavenge cancer initiating
free radicals, activation of transcription of cytoprotective enzymes involved in detoxification of
xenobiotics, and modulation of signal transduction systems [36]. Antioxidants can induce the
Keap1/Nrf2/ARE (Kelch ECH associating protein 1/NF-E2-related factor 2/Antioxidant Response
Elements) pathway resulting in increased expression of phase 2 detoxification enzymes and antioxidant
enzymes [37,38]. Polyphenols including flavonoids, anthocyanins, etc. that contain ortho-dihydroxy
groups have been found to stimulate the transcription of genes encoding antioxidant enzymes through
the Keap1/Nrf2/ARE pathway and thereby enhance detoxification. Glucoraphanin in broccoli gets
metabolized to sulforaphane, which acts through the KEAP1-Nrf2 pathway. Epidemiological studies
have shown strong inverse associations between crucifer vegetable intake and the incidences of cancers
affecting lung, pancreas, bladder, prostate, thyroid, skin, stomach and colon [39]. Sulforaphane
caused cytotoxicity and G2/M arrest in HT-29 colon cancer cells and MCF-7 breast cancer cells [40].
The induction of apoptosis in cancer cells by sulforaphane involved the activation of Bcl2 proteins
Bax and Bak [41]. Sulforaphane causes inhibition of tubulin polymerization, activation of G2/M
kinases and histone deacetylation resulting in cell cycle arrest and apoptosis. These mechanisms may
enable sulforaphane to inhibit carcinogenesis even after initiation [42]. Selenium in broccoli has also
been found to have cancer-preventive effects through its function as an activator of antioxidant and
detoxification systems [43]. Expression levels of antioxidant enzymes are reduced in cancer cells [44].
In several human trials, fruit polyphenols have been found to down regulate pro-inflammatory
cytokines and chemokines [45–47]. Thus, dietary antioxidants are potent candidates for use as
bioactives to enhance the function of the antioxidant defense system during normal living conditions
thus preventing inflammation and decreasing the chance of developing cancer [48,49].

Chrysanthemum zawadskii and licorice Glycyrrhiza uralensis extracts are well known for their
therapeutic aspects of inflammatory diseases [50–52]. The extracts also have the potential to induce
Nrf2, which has an important role in defense against acute inflammation. Chemopreventive agents,
Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis and some isothiocyanate analogs
can inhibit NF-κB via the down-regulation of IKK, ERK1/2 and p38 phosphorylation, consequently
suppressing the pro-inflammatory mediators such as TNF-α, COX-2, IL-6, iNOS and IL-1β [53–56].

Among spices, curcumin and its analogs have attracted great attention as cancer-preventive agents
through their anti-cancer activities including inhibition of cell proliferation, anti-invasive activity, and
inhibition of angiogenesis [57–59]. These components were effective on three colorectal cell lines,
SW480, HT-29 and HCT116. The molecular targets of inhibition by curcumin include critical control
points in the signal transduction pathways such as NF-κB, COX-2, 5-LOX involved in prostaglandin
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biosynthesis pathway, receptors such as EGFR, HER2, apoptosis regulators such as Bcl-2 and Bcl-XL,
caspases, and kinases such as Akt, MAPK, as well as transcription activators and factors such as
AP-1 and STAT3. Curcumin, another natural Nrf2 activator, inhibits mouse liver lymphoma through
activating Nrf2 enzymes, promoting tumor suppressor p53 and reducing TGF-β and COX2 [60].
Curcumin, through a ROS-dependent mechanism, is also able to induce activation of caspase 8, 2 and
9, alteration of mitochondrial membrane potential, release of cytochrome c, activation of caspase-3 and
concomitant PARP cleavage, and apoptosis in HUT-78 lymphoma cells [61].

Indole 3-carbinol (I3C) is another bioactive component of crucifer vegetables, with actions similar
to that of sulforaphane. I3C is also enriched in broccoli. Several earlier studies have shown the
beneficial effects of I3C in breast cancer prevention. Hormone dependent cancers such as breast cancer
are promoted by hormone analogs with activity higher than that of natural estrogen. Estrogen is
normally metabolized and eliminated from the body through the phase 1/phase 2 detoxification
system. This process involves the hydroxylation of estrogen at 2 C or 16 C position on the ring. Thus a
higher ratio of 2-hydroxy estrone to 16-hydroxy estrone may determine the cancer preventive status.
Consumption of 300 mg of I3C per day caused an increase in the ratio of 2 α-hydroxy estrone to
16 α-hydroxy estrone in woman who are at a risk of developing breast cancer [62]. Metabolism of
estrogen favouring 2-hydroxy estrone is influenced by race, ethnicity, and dietary factors (increased
consumption of fiber, polyphenols, crucifer vegetables, fruits) [63]. Phosphorylation and activation
of estrogen receptor by estrogen was inhibited by I3C [64]. I3C has been found to inhibit prostate
cancer [65]. A reduction in respiratory papilloma was observed in response to I3C intake in 66% of the
patients [66].

4. Arrest of Cancer Cell Cycle by Bioactive Compounds

Berries induce apoptosis through cell-cycle arrest at G1 phase via induction of WAF1/p21
and inhibition of cdk4, cdk6, cyclin D1 and cyclin D3 [67]. They suppress tumor necrosis factor
α (TNF-α) induced COX-2 expression followed by down-regulation of activator protein-1 (Ap-1) and
NF-κB [67,68]. They are also able to inhibit Wnt signaling and angiogenesis [69].

Citrus flavonoids and limonoids arrest the cell cycle at S and G2/M phases [70]. Limonexic
acid and β-sitosterol glucoside block the cell cycle in G2/M phase, induce cytotoxicity and cause
apoptosis [71,72].

Genistein, quercetin, daidzein, luteolin, kaempferol, apigenin and epigallocatechin, all are capable
of blocking the cell cycle by modifying the activity of the cyclin-dependent kinases (CDKs) [32]. Minute
structural differences can alter the mode of action of bioactives. Quercetin, luteolin and daidzein are
able to block the cells at G1 phase by inhibiting the activity of CDK2, while kaempferol, apigenin and
genistein arrest the cell cycle at G2 phase by blocking CDK1 through inducing CDK inhibitors such
as p21 and p27 [73,74]. Certain flavonoids such as tangeretin inhibit hepatic cancer in initiation and
progression stages [75]. Luteolin and apigenin also prevent liver cancer development by inhibiting
CDKs [76,77].

Phenethyl isothiocyanate (PEITC) from cruciferous vegetables such as broccoli and cabbage causes
G2/M cell cycle arrest and apoptosis of myeloma cells [78]. PEITC induces apoptosis in metastatic lung
cancer cells via caspase-3 activation and cell cycle arrest at the G2/M phase by modulation of cyclin
B1 expression [79]. Curcumin, a component of turmeric, derived from the rhizomes of Curcuma longa
inhibits proliferation of human pancreatic cancer cells by activation of Ataxia telangiectasia mutated
(ATM)/checkpoint kinase 1 (ChK1)/Cdc25C, blocking cyclin B1/Cdk1 activity and arresting cells at
G2/M check point [80,81].

5. Inhibition of Cancer Cell Proliferation and Migration by Plant Bioactives

Combating cancer requires bioactive components with potential to target multiple signaling
pathways. Isoflavones can prevent carcinogenesis through inhibiting cell proliferation and inducing
apoptosis. Isoflavones can affect multiple cell signaling pathways important for cancer growth such
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as NF-κB, Akt, MAPK, Wnt, Notch, p53 and androgen receptor (AR) signaling pathways leading
to apoptosis [82–86]. Isoflavones can induce apoptotic cell death, either alone, or in a combination
with conventional therapies (chemotherapy and radiotherapy). Honokiol, a bioactive isoflavone
from Magnolia, inhibits lung cancer cell migration (A549, H1299, H460 and H226 NSCLC). Honokiol
suppresses PGE2-mediated migration of NSCLC lung cancer cells by induction of COX-2 and inhibition
of NF-κB. PGE2 regulates β-catenin signaling, which contributes to cancer cell migration. Treatments
of lung cancer cells with honokiol resulted in degradation of cytosolic β-catenin, reduced the nuclear
accumulation of β-catenin, and expression of matrix metalloproteinases (MMP-2 and MMP-9). MMPs
are down-stream targets of β-catenin and play a crucial role in metastasis. Honokiol enhanced the levels
of casein kinase-1a (CK1α), glycogen synthase kinase-3 β (SK3 β); and β-catenin phosphorylation
at critical residues Ser45, Ser33/37 and Thr41. These events are important for degradation and
inactivation of β-catenin [87,88]. The same mechanism was established for genistein, an important
soybean isoflavone, which induced cytotoxicity in prostate cancer cells. Genistein up-regulated the
expression of GSK-3β, which phosphorylates β-catenin leading to its degradation and the inactivation
of Wnt/β-catenin signaling, cell growth and migration [89–91].

6. Deregulation of Hypoxia and Glucose Metabolism in Cancer

One of the important features of cancer cells is elevated glucose consumption and its catabolism
by glycolysis, causing an accumulation of lactate. Lactate dehydrogenase A (LDH-A) is an enzyme
which uses lactate for energy production and NAD+ regeneration, which is a novel therapeutic target
for cancer [92]. LDH-A is over-expressed in various types of cancer including renal, breast, gastric and
nasopharyngeal cancer. Cancer glycolysis is regulated by hypoxia inducible factor (HIF) and LDH-A
is a known target of HIF-1a. HIF activation increases expression of the genes for glucose transport
and metabolism, as well as lactate formation and export from the cells. Furthermore, the activity of
pyruvate dehydrogenase complex (PDH), an important enzyme in glucose metabolism, is reduced by
HIF [93,94].

Chinese herbal medicine, Spatholobus suberectus is a compelling LDH-A inhibitor. It induces
cell cycle arrest and anti-LDH-A activity in breast cancer estrogen-dependent (MCF-7) cells and
estrogen-independent (MDA-MB-231) cells. Epigallocatechin also inhibited LDH-A activity and
caused cell apoptosis. LDH-A is regulated by HIF-1a and epigallocatechin caused dissociation of
Hsp90 from HIF-1a and subsequent HIF-1a degradation. Epigallocatechin also inhibited breast cancer
cell growth in vivo, HIF-1a- and LDH-A- expression and triggered apoptosis without significant toxic
side effects. Epigallocatechin can be considered as a pharmacologically effective compound to inhibit
HIF-1a and LDH-A in cancer cells [95].

Curcumin caused LDH-A release from mitochondria, by modifying mitochondrial membrane
potential, procaspase-3 and -9 cleavage, as well as apoptosis, in a dose- and time-dependent manner.
It resulted in cell cycle arrest in S phase, accompanied by the release of cytochrome c, a significant
increase of Bax and p53 levels, and a marked reduction of Bcl-2 and survivin in human colorectal
carcinoma cells [96,97].

7. Inflammatory Bowel Diseases and down Regulation of Immune System by Dietary Components

Inflammatory bowel diseases (IBD) are a group of immune-mediated intestinal inflammatory
diseases induced by environmental stimulation and genetic susceptibility [98,99]. IBD includes two
main types of diseases, Crohn’s disease (CD) and ulcerative colitis (UC). At present, the etiology and
mechanisms of IBD are not well defined. In humans, the potential pathogenic processes involved
in the development of IBD include persistent infections caused by environmental influences, enteric
commensal bacteria, or reaction to antigens from foods, initiating acute and chronic intestinal
inflammation. Consequently, this inflammation results in destruction of mucosal barriers as well
as a dysregulation of the mucosal immune system. Bernstein et al. have surveyed the incidences of
Crohn’s disease and ulcerative colitis in Canadian population [100]. The age group between 20 and
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29 appears to show the highest incidences, with British Columbia showing the lowest (160/100,000)
and Nova Scotia (318/100,000) showing the highest level of incidences. The disease affects children
under age 10 to subjects over 80 years old and the incidences are much higher than anywhere else in
the world. More than 200,000 people suffer from IBD in Canada, with an economic cost of >1.8 billion
in direct and indirect costs (www.cdhf.ca). There are no identified preventive strategies or effective
treatments for IBD, yet. The immunogenic mechanisms leading to IBD are complex, because the two
types of IBD, UC and CD, show different immune responses to intestinal infections. As well, there is
an increased risk for colon cancer development as a result of prolonged IBD.

The innate immune response at the gut mucosal interface is critical for human health, because it
is the first line of defense against pathogen invasion and infection. An abnormal intestinal mucosal
immune system can develop in patients who suffer from IBD and this can result in an inflammatory
autoimmune response. There is a complex interplay between genetic susceptibility, commensal
microbiota, intestinal epidermal cells, the immune system and the dietary and environmental factors
that result in the development of IBD defining it as a multifactorial disease. Genetic studies, especially
genome wide association studies have identified a number of risk-conferring loci that overlap both CD
and UC, that implicate the role of IL 23, T helper (Th) 17 cells, autophagy, etc. [98]. The importance
of dietary factors is highlighted by the observation that short chain fatty acids derived by microbial
fermentation of dietary fiber bind to G-protein coupled receptor 43 (GPR43) and down regulate
inflammation. This is again supported by studies involving Gpr43 knockout mice, which show
impaired inflammation protection [98]. Despite the fact that numerous novel therapeutic approaches
are currently being developed for IBD, these approaches are based upon suppressing the immune
responses by the use of drugs (steroids, non-steroidal anti-inflammatory drugs), or through using
specific antibodies to block pro-inflammatory cytokines. However, excessive immune suppression
may increase the risk of developing cancer [101]. Thus, immune suppression therapy may have a
detrimental effect on patient health in the long term. One approach that could be taken to limit the
damaging effects of many of the available drugs used in IBD treatment regimes is to combine these
drugs with dietary intervention and/or nutraceutical supplementation, to enhance the beneficial
effects of these drugs whilst reducing the amount of drugs required to provide a beneficial effect.
A combination of conventional and alternative therapies has been shown to be a viable option in the
treatment of IBD [102–104].

Nutritional and dietary interventions have recently become potential complimentary strategies
for down regulating various inflammatory diseases [105]. Furthermore, recent research has shown
that the patients with CD in Canada required micronutrient supplementation [106]. Polyphenols
and carotenoids are outstanding candidates for amelioration of inflammatory diseases because of
their potency as antioxidants and regulators of inflammatory immune responses. Dietary intake
of foods containing polyphenols resulted in the down regulation of several inflammation markers
in animal models and humans [107]. Consumption of fruit juices and products from grape and
pomegranate at moderate level resulted in increased antioxidant function and the reduction of lipid
peroxidation in the plasma [108,109]. The results from several studies show an inverse correlation
between fruit and vegetable consumption and the expression of inflammation markers in blood, such
as CRP (C-Reactive protein) and IL6 (interleukin 6) and several other inflammation markers. In a
study involving 285 adolescent boys in the age range of 13–17 years, consumption of a fruit- and
vegetable-rich diet was found to decrease the levels of inflammation markers such as CRP, IL-6, and
TNF-α [110]. In a group of 120 men and women between the ages of 40–74, intake of polyphenol-rich
blueberry extracts (300 mg/day for three weeks) caused a significant reduction in plasma levels of
pro-inflammatory cytokines and chemokines (IL-4, IL-13, IL-8 and IFN-α) of the NF-κB pathway [111].
Similarly, increased consumption of sweet bing cherries (280 g/day) resulted in lowered levels of
CRP and NO [112]. In a study involving elderly 70-year-old men, increased intake of food rich in
antioxidants resulted in lowered cyclooxygenase, cytokine-mediated inflammation and oxidative
stress [113]. Though several studies have been conducted on dietary polyphenol intervention using
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animal models [104], and a few studies in humans using curcumin intervention [114,115], there are no
detailed reports on the effects, or utility of polyphenols for the management of IBD in humans.

7.1. Inflammatory Bowel Diseases and Antioxidative Capacity of Carotenoids to Reduce Oxidative Stress
and Inflammation

Studies of colonic mucosal biopsies from patients either suffering from UC or CD have clearly
shown that epithelial cells possess increased levels of inflammation marker compounds and decreased
levels of anti-oxidant enzymes clearly suggesting the role of increased oxidative stress and decreased
antioxidant defenses in cases of IBD [116]. However, persistent endogenous oxidative stress, such
as that generated during chronic intestinal inflammation, often overwhelms the normal endogenous
antioxidants [117]. Thus, dietary antioxidants are compelling candidates for use as nutraceuticals
to enhance the function of the antioxidant defense system during inflammation [79,80,118]. It has
already been shown that carotenoids have an enhancing effect on the immune system in vivo [119].
Consequently, Kawakami et al. identified a significant correlation between the serum oxygen radical
scavenging capacity and β-carotene and retinol concentrations in UC patients [120]. In addition,
carotenoid supplementation appears to be a potential nutritional intervention for patients suffering
from IBD. Current research has validated that lycopene shows better chemopreventive activity
than β-carotene in mitigating oxidative damage in tissue under UV exposure, but both chemicals
contribute to reducing lipid peroxide levels [121]. Both β-carotene and lycopene have been identified
to protect low-density lipoprotein (LDL) from oxidization [122,123]. LDL can be oxidized in vivo by
myeloperoxidase (MPO), an intracellular enzyme secreted by macrophages and neutrophils, resulting
in aggravating inflammation [124]. The MPO can act as an indicator of neutrophil infiltration at sites
of damaged colon. Tran et al. detected an increasing activity of MPO in experimental IBD [125].
Even though a direct identification of oxidized-LDL (ox-LDL) in IBD has not been reported, CXCL16
(Chemokine (C-X-C motif)) ligand 16, a transmembrane protein functioning as a scavenger receptor
for ox-LDL has been recently identified in the blood of both CD and UC patients [126]. Carotenoid
intervention may thus reduce the levels of ox-LDL in IBD by influencing expression of CXCL16.

An increase in ROS has been identified in both UC and CD [19]. ROS contributes to redox
imbalance of inflammatory autoimmune disease and inducing the intestinal epithelial lesions.
As demonstrated in several studies, the dietary carotenoids can scavenge intracellular ROS at different
steps of the pathway [127,128]. However, degradation of β-carotene can lead to the production of
epoxides at the β-ionone ring and aldehydes with different chain lengths and these cleavage products
are highly reactive and potentially toxic to cells [129]. Thereby, carotenoids without the β-ionone
ring such as lycopene may be more promising as an exogenous antioxidant supplement. Moreover,
the capacity of lycopene to quench radicals is more extensive than β-carotene [118]. Thus, lycopene,
referred to as an optimal exogenous antioxidant, has a greater potential to ameliorate inflammatory
diseases [122,130–132].

7.2. IBD and Immune-Modulating Activity of Carotenoids

Even though CD and UC result from complex genetic and environmental etiological influences,
these diseases promote excessive immune responses and persistent inflammation in the intestinal
epithelia and gut-associated lymphoid tissue (GALT). The main goal of regulating inflammatory
immune responses in IBD is to restore the homeostasis in the mucosal immune system and the
phagocytosis mediated by leukocytes. In pathological conditions of IBD, the inflammatory responses
are mediated by a number of stress-associated kinase pathways including JNK/p38 MAPK and redox
sensitive transcription factors NF-κB. The dysregulated activation of NF-κB via toll-like receptors
(TLRs) may be a result of NOD2 ((Nucleotide-binding oligomerization domain-containing protein 2;
synonymous to CARD 15-Caspase recruitment domain-containing protein 15; or inflammatory bowel
disease protein 1 (IBD1)) gene mutation, which is highly correlated, with pathogenesis of IBD. NF-κB
is able to motivate the production of pro-inflammatory signals such as NO by the activation of iNOS,
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and prostaglandins synthesized through the cyclooxygenase (COX) pathways, resulting in enhancing
the severity of inflammation [101,133]. Generally, NF-κB plays a crucial role in regulating immune
responses to infection. NF-κB up-regulates the expression of genes related to pro-inflammatory
cytokines, enzymes and adhesion molecules as well as production of ROS in chronic inflammatory
disease such as IBD [134]. The pro-inflammatory cytokine TNF-α, and oxidative stress generated
during the inflammation phase, can in turn promote the activation of NF-κB. The activity of NF-κB
involved in chronic inflammation of IBD has been analyzed by several studies. Schreiber et al.
determined an increased level of NF-κB, p65, which is a subunit of the NF-κB complexes, in the lamina
propria (LP) biopsy specimen from CD patients [135]. LP is a vital part of the gut-associated lymphoid
tissue (GALT), which contains large members of T cells. Rogler et al. identified that the activation of
NF-κB was significantly increased in the inflamed mucosa [136]. In another study, an enhanced NF-κB
expression was found in inflamed mucosal biopsies of children suffering from CD [137]. Therefore,
the suppression and regulation of NF-κB activation are promising approaches to modulate the IBD
progression. The transcription factor NF-κB is very sensitive to oxidative stress (OS), ROS generated
under the oxidative stress conditions might play a key role in modulating the dysregulation of
immune responses in IBD. Carotenoids can quench ROS generated during the inflammation phase
and potentially modulate the perpetuating stimulation of NF-κB pathway in IBD. Mannick et al.
identified that β-carotene supplementation resulted in a significant reduction of iNOS in patients with
Helicobacter pylori infection [138]. Bai et al. comprehensively analyzed the effects of β-carotene on the
redox-based NF-κB activation in the lipopolysaccharide-stimulated macrophages. Their results showed
that β-carotene inhibited iNOS and COX-2 expression, reduced the productions of pro-inflammatory
cytokines TNF-γ and IL-1β, and suppressed NF-κB activation [139]. Thus, carotenoid intervention
can potentially regulate the redox status of NF-κB activation in the IBD progression. However, the
regulating effects of carotenoids on molecular mechanisms of NF-κB activation in IBD are not well
defined. Further studies are required to analyze the influence of carotenoids on inflammatory gene
expression during IBD progression.

8. Epigenetics and Cancer

Dietary compounds are the primary components that regulate gene expression by epigenetic
mechanisms such as DNA methylation and histone modification through histone acetyl transferases
(HATs) and histone deacetylases (HDACs). Long-term consumption of bioactive compounds may alter
the epigenome and significantly contribute to the development of nutritional programs to prevent
and treat metabolic diseases. Dietary bioactive compounds such as genistein, phenylisothiocyanate,
curcumin, resveratrol, indole-3-carbinol, and epigallocatechin-3-gallate, all regulate HDAC and
HAT activities, which may prevent cancer development [140,141]. Sulforaphane inhibits HDAC
activity in a dose-dependent manner in colon cancer cells (HCT116) [142]. Sulforaphane induces
acetylation of histones H3 and H4 in mouse tissues (ileum, colon, and prostate) and peripheral
mononuclear cells [143]. Resveratrol, a polyphenol in grapes, blueberries, mulberries, cranberries,
peanuts and red wine, is engaged in regulating signaling pathways involved in meiosis, cell growth,
apoptosis, angiogenesis and tumor metastasis. Resveratrol effects are mediated via regulation of
protein methylation and acetylation by targeting HDAC11, SIRT1, and HATp300 [144]. Curcumin
inhibits HATp300 activity, leading to induction of cancer cell apoptosis via p53 and caspase [144].

Isoflavones are bioactives, which have been shown to demonstrate health benefits including
cancer prevention. Soybean phytoestrogen genistein can induce post-translational changes in histones
and increase the expression of tumor suppressor genes p21 (WAF1/CIP1) and P16 by regulating
chromatin condensation via HAT expression in human prostate cancer cells. Genistein induced
demethylation and SIRT1 inhibition-mediated acetylation of histone H3-K9 associated with the PTEN,
CYCD, and FOXO3A promoters [145]. Polyphenols, including flavonoids, EGCG and green tea
catechin, reduce the activity of Class I HDACs in prostate cancer cells [146]. Quercetin, a polyphenol
found in apple, buckwheat and citrus, can activate SIRT1, and NAD-dependent deacetylase. Quercetin
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is able to inhibit the expression of TNF-induced IFN-γ- inducible protein 10 (IP-10) and macrophage
inflammatory protein 2 (MIP-2). Consequently, It blocks post-translational modifications (acetylation
and phosphorylation) of H3 histones through p300/CBP induction. As a result, the promoters of
pro-inflammatory genes associated with H3 histones get affected by inhibiting cofactor recruitment at
the chromatin [147]. Moreover, through inhibition of HDAC and DNMT1, quercetin inhibits the cell
cycle and induces apoptosis consequently, suppressing tumor growth and angiogenesis [148].

Glucosinolates such as glucobrassicin, in Brassica vegetables such as broccoli, brussels sprouts,
cabbage and kale, can produce diindolylmethane (DIM) and indol-3-carbinol (I3C). The exposure to
DIM has shown a significant reduction in the levels of Class I HDACs, associated with the increase
in histone acetylation of the promoters of cell cycle kinase inhibitors p21WAF1 and p27, which halt
the cell cycle and increase DNA damage in colon cancer cells [149]. Organosulfur compounds diallyl
disulfide (DADS) and its active metabolite S-allyl mercaptocysteine (SAMC) in allium vegetables
such as garlic, induced an increase in histone H3K14 acetylation associated with the activation of p21
promoter and inhibition of the proliferation of breast and colon cancer cells [150].

9. MicroRNA, Nutrition and Cancer

MicroRNA (miRNA) are small noncoding RNA molecules (about 22 nucleotides in
length) involved in RNA silencing and post-transcriptional regulation of gene expression [151].
They negatively regulate gene expression by pairing with 3’-untranslated regions of target mRNAs,
inducing deadenylation and translational repression in a cell-type specific manner. MicroRNAs genes
are transcribed from classical genomic intron and exon regions. Their primary transcripts process
by successive actions of a nuclear (Drosha) and a cytoplasmic (Dicer) RNAase III. miRNAs became
particularly attractive in oncology since they are simple, stable molecules easy to detect in tissues and
blood circulation. Increasing evidence suggests that miRNAs are involved in broad genomic processes
including the regulation of expression of oncogenic and tumor-suppressive genes [152–154]. Studies
have shown different miRNA profiles in tumor tissues compared to normal tissues [155]. Importantly,
specific miRNA profiles seem to be present in different types of cancer [156]. Phytochemicals that
regulate expression and action of miRNA during cancer development including apoptosis, cell
cycle regulation, differentiation, inflammation, angiogenesis and metastasis may have a potential to
consider as a candidate for cancer therapy [157]. However, specific targeting and bioavailability of
phytochemicals need to be better understood before developing them into pharmaceuticals.

miRNA acts as tumor suppressors or oncogenes [158]. They are capable to influence cancer in
multiple ways like sustaining proliferative signaling, regulating the genomic stability and metabolisms
of cancerous cells, mediating the immune responses in cancer, evading growth suppressors, resisting
cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and
metastasis [159,160].

Phytochemicals can regulate the expression of various miRNAs in different types of cancers [157].
EGCG treatment of HepG2 liver cancer cells caused a significant change in 13 miRNA including miR-16
up-regulation and 48 miRNA down-regulation. EGCG treatment raised the level of miR-16, leading
to a decrease in Bcl2 level and induction of apoptosis [161]. Curcumin has also shown the potential
to increase 11 and decrease 18 miRNA expression following 72 h of incubation in human pancreatic
cancer cell cultures. Curcumin up-regulated miR-22 by suppressing the expression of its targets, Sp1
and ERRα1 which are transcription factors [162]. Curcumin also enhanced the expression of miR-15a
and miR-16 in MCF-7 breast cancer cells, leading to apoptosis [163]. Curcumin also reduced miR-21
promoter activity and expression in primary colon cancer [164].

Resveratrol is able to decrease the expression of oncogenic miRNAs in human colon cancer
cells, such as miR-17, miR-21, miR-25, miR-92a-2, miR-103-1, and miR-103-2, and restore tumor
suppressor miR-663 [165]. In pancreatic cancer cells, resveratrol inhibited the oncogenic miR-21 [166],
and prevented cell growth and induction of apoptosis by increasing miR-34a in colon cancer cells [167].
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Table 1 summarizes some examples in terms of effects of phytochemicals on different types of
cancers miRNA.

Table 1. Effects of phytochemicals on different types of cancer miRNA.

Phytochemicals miRNA Cancer References

Curcumin miR-22, miR-15a, miR-16,
miR-21

Pancreatic cancer, Breast
cancer, Colon cancer [162–164]

Diindolylmethane (DIM) miR-200, let-7, miR-21 Pancreatic cancer, Breast
cancer [168,169]

EGCG miR-98-5p, miR-13, miR-48,
miR-16, miR-21

Lung cancer, HCC,
Prostate cancer,

Pancreatic cancer
[161,167,170,171]

Genistein miR-221, miR-222, miR-27a Prostate cancer, Ovarian
cancer [172,173]

Quercetin miR-27a, Let-7 Colorectal cancer,
Pancreatic cancer [174,175]

Resveratrol
miR-17, miR-21, miR-25,

miR-92a-2, miR-103-1 and
miR-103-2, miR-663, miR-34a

Colon cancer, Pancreatic
cancer [165–167]

10. Metabolic Stability of Plant Bioactives

Metabolic stability of anthocynins during their transit through gastrointestinal tract is another
interesting aspect that may influence the bioaccessibility, bioavailability and the beneficial effects of
bioactives such as polyphenols. Anthocyanins are unstable at alkaline pH, and undergo ring fission
during their transit in small intestine. Further, the components that escape the intestinal conditions
are subjected to colonic fermentation; generating a variety of simple components such as phenolic
acids. It is believed that, these phenolic acids have a beneficial role in providing health benefits,
probably through their antioxidant function, or through modulation of antioxidant systems. Structural
changes of anthocyanins during intestinal digestion and colonic fermentation by microbiome influence
their absorption. Accordingly, in vitro research on blueberry polyphenols showed that stability of the
anthocyanins depends on the nature and number of sugars attached to the benzopyran ring and the
variety of acidic components (e.g., acetoyl, malonoyl, caffeoyl, and coumaroyl groups) that are linked
to sugar moiety. Such changes in phenolic compounds may enhance their function by reducing the
risk of developing chronic diseases such as cancer through multiple mode of action [176,177].

11. Conclusions

As a result of new approaches, the concept of achieving ideal health is changing, and focusses
on the importance of a healthy lifestyle centered on diet and exercise. Diet plays a crucial role in the
regulation of metabolic pathways genetically and epigenetically. Many epidemiologic studies have
shown positive influences of fruit- and vegetable- enriched diets in preventing chronic diseases such
as cancer. Although numerous bioactive compounds appear to have beneficial effects in preventing
cancers, strong scientific evidence, based on clinical studies, needs to be gathered before offering
science-based dietary recommendations. By the help of modern genetics, chemistry and molecular
biology, nutrition research will increasingly be able to apply new discoveries to develop designer
functional foods by adding specific bioactive characteristics for preventing and reducing the risk of
cancer development. Herbal medicines have been used since ancient times. They are usually a mixture
of several compounds, which can affect cells, but whether it is an impact of a single compound or a
specific combination, is poorly understood. It is time to connect all these knowledge and experiences
gathered over thousands of years in several civilizations to technology. Thus, functional components
of food can be effectively applied in the treatment and prevention of cancer [178,179]. Figure 2 depicts
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how science, knowledge, experience and technology can be rationally applied in understanding the
regulation of signaling pathways such as those controlling pluripotency, LDH-A pathway, epigenetic
modifications, detoxification pathway and miRNA action to combat cancer.Int. J. Mol. Sci. 2017, 18, 2050  12 of 22 
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LDH-A Lactate dehydrogenase A LDH-A
HIF Hypoxia inducible factor
PDH Pyruvate dehydrogenase complex
GST Glutathione S-transferase
UDP-GT UDP-glucuronyl transferase
Nrf2 Nuclear factor F-related factor 2
Keap1 Kelch-like ECH-associated protein 1
ARE Antioxidant responsive element
Keap1/Nrf2/ARE Kelch ECH associating protein 1/NF-E2-related factor 2/Antioxidant Response Elements
I3C Indole 3-carbinol
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GPR43 G-protein coupled receptor 43
CRP C-Reactive protein
ILs Interleukins
LDL Low-density lipoprotein
MPO Myeloperoxidase
ox-LDL Oxidized-LDL
CXCL16 Chemokine (C-X-C motif) ligand 16-a
IFNs Interferons
GALT Gut-associated lymphoid tissue
TLRs Toll-like receptors
NOD2 Nucleotide-binding oligomerization domain-containing protein 2
COX Cyclooxygenase
LP Lamina propria
OS Oxidative stress
HATs Histone acetyl transferases
HDACs Histone deacetylases
IP-10 Inducible protein 10
MIP-2 Macrophage inflammatory protein 2
DIM Diindolylmethane
DADS Diallyl disulfide
SAMC S-allyl mercaptocysteine
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