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Driven by rapid ongoing advances in humanoid robot, increasing attention has been shifted into the issue of emotion intelligence of
AI robots to facilitate the communication betweenman-machines and human beings, especially for the vocal emotion in interactive
system of future humanoid robots.This paper explored the brain mechanism of vocal emotion by studying previous researches and
developed an experiment to observe the brain response by fMRI, to analyze vocal emotion of human beings. Findings in this paper
provided a new approach to design and evaluate the vocal emotion of humanoid robots based on brain mechanism of human
beings.

1. Introduction

People have long been dreaming of building brain-like
intelligentmachines. Ever since the first Artificial Intelligence
conference taking place in 1956, AI development has been
over half a century old. While the coming-ups of Kismet
[1] and Cog [2, 3] by MIT have served as hallmarks of AI
technology in the field of humanoid robot design, in China, a
project to design a robot with sophisticated interactive system
was granted by the government. Although previous papers
contribute significant efforts into humanoid robot design, the
majority of them focus on facial expression or recognition
[4].

With the increasingly strict demands of robots, it is
suggested that more attention should be shifted into the
issue of vocal emotion design of AI robots to facilitate the
communication between man-machines and human beings.
To upgrade the voice design of robots, it is necessary to
have a look at the mechanism for processing vocal emotions
of human beings and the acoustic features of vocal stimuli.
With this, it is expected that, apart from facial expression and
recognition, future designs for interactive robots are not only
emotionally rich in vocal expression but also able to perform
vocal emotion recognition.

2. The Mechanism of Vocal Emotion

2.1. Prosody Comprehension. The mechanism of prosody
comprehension is proposed to be mediated by a sequential
multistep process unfolded from basics stages of acoustic
voice analysis (bound to temporal brain areas) and proceed-
ing to higher-level stages of categorization and recognition
(associated with frontal aspects of the brain). Following the
processing of auditory information within the ear, brainstem,
thalamus, and primary acoustic cortex (A1), three successive
steps of prosody decoding can be identified:

Step 1: extraction of acoustic features of prosodic cues;
Step 2: identification of vocally expressed emotion by
means of multimodal integration;
Step 3: explicit evaluation and cognitive elaboration of
vocally expressed emotions.

Each of these steps, in turn, is differentially represented
in the human brain: whereas the extraction of acoustic
features has been linked to voice-sensitive structures of the
middle part of superior temporal cortex (m-STC), more
posterior aspects of the right STC have been recognized
for their contribution to the identification and integration
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of emotional signals into a common percept [5]. Beyond
anatomical characterizations, research has expanded its focus
to include the functional role of temporal voice areas in a
variety of voice cognition skills (i.e., abilities to extract, eval-
uate, and categorize nonlinguistic information available in
voices) [6]. Particularly the ability to decode vocal emotional
information, or more precisely the contribution of temporal
voice areas to the process of inferring emotions from vocal
cues, constitutes a field of research that has attracted attention
over the past years.

The ability to correctly interpret emotional signals from
others is crucial for successful social interaction. A wealth
of neuroimaging studies have indicated that voice sen-
sitive auditory areas [6–8] activate a broad spectrum of
vocally expressed emotions more than neural speech melody
(prosody). Previous fMRI studies relying on standard data
analyses have indicated that the middle part of the superior
temporal gyrus (STG) reacts more strongly to various vocal
emotions [9–12] than to neutral prosody. Recently, voice-
sensitive responses of the temporal lobe have become a sub-
ject of thorough scientific scrutiny, and findings suggesting
a unique role of the superior temporal cortex (STC) in
human voice perception have been replicated multiple times.
Research has established a contribution of brain structures
including the p-STC and m-STC and the DLPFC and OFC
as well as limbic regions such as the amygdale or aspects, of
the arMFC. Each of these brain structures, in turn, has been
suggested to be associated with distinct aspects of prosody
decoding from basic stages of acoustic analysis to higher-
order evaluative processes as Table 1 [5].

In this table, T-values and MNI coordinates (in square
brackets) of highest activated voxels within each region are
presented: SMA, supplementary motor cortex; ACC, anterior
cingulate cortex; DLFC, dorsolateral frontal cortex; OBFC,
orbitobasal frontal cortex; IPL, inferior parietalis lobulus;
STG, superior temporal gyrus; MTG,middle temporal gyrus.
Respective Brodmann Areas (BA) are printed in brackets; by
SPM99, random-effect analysis, 𝑛 = 10, P b 0.05 corrected, T
N 4.30, k N 38.

According to the neuroanatomical model proposed by
Ross [13], prosodic information is processed within distinct
right-sided perisylvian regions that are organized in com-
plete analogy to left-sided language areas. Furthermore, a
closer look at the current literature available on the topic,
however, underpins that the contribution of temporal voice
areas represents just one piece of the puzzle of how the
human brain recognizes and comprehends vocal emotional
information. In fact, the processing of vocal expressions of
emotions (e.g., speech prosody) appears to depend on a
network incorporating not only voice-sensitive areas, but also
posterior temporal, frontal, and subcortical brain structures.

Among previous research on vocal emotion, one has
delineated the cerebral network engaged in the percep-
tion of emotional tone, with functional magnetic resonance
imaging (fMRI) performed during recognition of prosodic
expressions of five different basic emotions (happy, sad,
angry, fearful, and disgusted). As compared to baseline at
rest, the results indicated widespread bilateral hemodynamic
responses within frontal, temporal, and parietal areas, the

thalamus, and the cerebellum.A comparison of the respective
activation maps, however, revealed comprehension of affec-
tive prosody to be bound to a distinct right-hemisphere pat-
tern of activation, encompassing posterior superior temporal
sulcus (Brodmann Area (BA) 22), dorsolateral (BA 44/45),
and orbitobasal (BA 47) frontal areas.These findings indicate
that part of distinct cerebral networks subserve processing
of intentional information during speech perception [14].
Taken together research results presented define prosody
comprehension as a complex function tied to several cortical
and subcortical brain structures.

Findings of research [14] suggested that the correct
responses of each valence varied. “Happy,” “Angry,” and “Sad,”
seemed to be recognized easily, while the valences “fearful”
and “disgusted” appeared to be more difficult for people
to recognize correctly. The reasons for these results still
require more empirical studies. Nevertheless, for a more
satisfactory recognition rate, while designing vocal emotion
interactive systems for future humanoid robots, the complic-
ity of individual emotion shall be taken into consideration.
The percentage of correct answers during identification of
emotional was intonation (mean: 75.2 F 7.9%). Recognition
rates for specific emotions ranged between 51% (fear) and
92% (happiness) [14].

2.2. Vocal Emotion by fMRI Studies. In recent years, there
has been an explosion of research into the neural mechanism
of human beings’ emotions. The brain regions regarding
to vocal emotions can be identified with the functional
neuroimaging techniques such as fMRI (functionalMagnetic
Resonance Imaging) that measure hemodynamic changes.
Previous fMRI studies relying on standard data analyses
have indicated that the middle part of the superior temporal
gyrus (STG) reacts more strongly to various vocal emotions
[9–12] than to neutral prosody. Recently, voice-sensitive
responses of the temporal lobe have become a subject of
thorough scientific scrutiny, and findings suggesting a unique
role of the superior temporal cortex (STC) in human voice
perception have been replicated multiple times. Research has
established a contribution of brain structures including the p-
STC and m-STC and the DLPFC and OFC as well as limbic
regions such as the amygdale or aspects, of the arMFC. Each
of these brain structures, in turn, has been suggested to be
associated with distinct aspects of prosody decoding from
basic stages of acoustic analysis to higher-order evaluative
processes [5].

According to the neuroanatomical model proposed by
Ross [13], prosodic information is processed within distinct
right-sided perisylvian regions that are organized in com-
plete analogy to left-sided language areas. Furthermore, a
closer look at the current literature available on the topic,
however, underpins that the contribution of temporal voice
areas represents just one piece of the puzzle of how the
human brain recognizes and comprehends vocal emotional
information. In fact, the processing of vocal expressions of
emotions (e.g., speech prosody) appears to depend on a
network incorporating not only voice-sensitive areas, but also
posterior temporal, frontal, and subcortical brain structures.
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Table 1: Hemodynamics activation during identification of emotions and vowels.

Emotions versus baseline Vowels versus baseline Emotions versus vowels Vowels versus emotions
SMA/ACC (BA 6, 24, 32) 9.28 [3, 9, 57] 11.97 [3, 9, 51] — —

DLFC (BA 9, 44–46) Left 9.52 [−48, 9, 30] 15, 14 [−54, 6, 30] — 7.18 [−54, 6, 33]
Right 16.89 [51, 33, 15] 12.42 [42, 0, 33] — —

OBFC (BA 47) Left 7.67 [−45, 30, −12] — — —
Right 7.33 [48, 36, −18] — 8.63 [48, 33, −15] —

Rolandic area (BA 3/4/6) Left 12.08 [−45, −9, 18] 10.11 [−57, 0, 21] — —
Right 13.29 [45, 3, 24] 10.16 [57, 3, 18] — 10.16 [−48, −39, 54]

IPL (BA 7, 40) Left — 14.15 [−21, −63, 48] — 10.57 [27, −66, 39]
Right 9.89 [39, −51, 48] 15.99 [27, −54, 57] — —

STG (BA 22, 41, 42) Left 8.96 [−60, −45, 9] 8.10 [−60, −30, 9] — —
Right 12.32 [48, −45, 6] 8.18 [51, −42, 6] 8.69 [48, −42, 3] —

MTG (BA 21) Left 11.18 [−36, −3, −15] 8.17 [−39, −9, −18] — —
Right 16.18 [45, 15, −30] 11.68 [54, 3, −15] — —

Thalamus Left 11.44 [−6, −27, −3] 12.13 [−6, −24, −3] — —
Right 15.75 [6, −21, 0] 12.89 [9, −21, 6] — —

Cerebellum
Left 13.56 [−30, −60, −27] 7.98 [−33, −54, −33] — —
Right 10.86 [42, −63, −33] 9.18 [48, −66, −33] — —
Vermis 14.73 [−6, −72, −30] 10.42 [−3, −72, −24] — —

Among previous research on vocal emotion, one has
delineated the cerebral network engaged in the perception of
emotional tone, with fMRI performed during recognition of
prosodic expressions of five different basic emotions (happy,
sad, angry, fearful, and disgusted). As compared to baseline
at r-test, the results indicated widespread bilateral hemo-
dynamic responses within frontal, temporal, and parietal
areas, the thalamus, and the cerebellum. A comparison of
the respective activation maps, however, revealed compre-
hension of affective prosody to be bound to a distinct right-
hemisphere pattern of activation, encompassing posterior
superior temporal sulcus (Brodmann Area (BA) 22), dor-
solateral (BA 44/45), and orbitobasal (BA 47) frontal areas.
These findings indicate that part of distinct cerebral networks
subserve processing of intentional information during speech
perception [14].

2.3. Acoustic Features of Vocal Stimuli. During speech pro-
duction, information about a speaker’s emotional state is
predominantly conveyed by the modulation of intonation
(affective prosody). At the perceptual level, emotional tone
is characterized by variations of pitch, syllable durations,
loudness, and voice quality across utterances (suprasegmen-
tal features) imposed upon segmental verbal information
encoded in phonetic/phonological units [15–19]. Among the
mounting acoustic features that have been studied, primarily
four parameters have emerged as prime candidates to sub-
serve the vocal signaling of emotions [6, 20, 21].

(1) Voice intensity corresponding to the perceived loud-
ness of a given vocal signal.

(2) Tempo and pausing corresponding to the rate of
vocalization (e.g., speech rate or laughter rate).

(3) Fundamental frequency of vocal fold vibration (F0)
defining the perceived pitch of a voice.

(4) Energy distribution in the frequency spectrum (i.e.,
relative amount of energy within predefined fre-
quency bands affecting voice quality) [22].

Rigorous analysis of acoustic cues measured from sam-
ples of emotional speech helped to define distinctive acoustic
profiles for a set of central emotions such as anger, joy, fear,
or sadness. The corresponding findings are described in the
literature as the following [6, 17, 20, 21, 23, 24]: as anger
generally has been described to be indexed by increasing
voice pitch accompanied with increases in loudness; sadness,
for instance, has been characterized to show decreases in
voice pitch, speech rate, and loudness of a speakers voice.
Fear, on the other hand, can be revealed by increases in
voice pitch combined with increases in speech rate, while joy
has been related to increases in voice pitch, loudness, and
speech rate. Similar results have been obtained for various
nonverbal vocalizations, which have been associated with
distinct acoustic profileswhich demonstrate the sophisticated
interplay of acoustic properties related to voice quality, pitch,
and intensity [25, 26].

In the design of vocal emotions of a humanoid robot,
there are two problems involved: (1) the expression of speech
emotion, this can be solved by choosing certain emotional
words and adopting proper speech synthesis technology;
there are a lot of research achievements in this field; (2) the
recognition of human beings’ emotions, this will help the
humanoid robot to make appropriate reactions in interactive
process; it needs to process the human beings’ speech signals
through emotional pattern recognition methods.

For a humanoid robot, the acoustic features of received
speech signals should be described by some extracted char-
acteristic parameters. On this respect, Linear Prediction
Cepstrum Coefficient (LPCC) and Mel Frequency Cepstrum
Coefficient (MFCC) have been widely used as parametrically
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Figure 1: One task block duration of each stimulus event.

representing speech signal for speech recognition [27]. LPCC
computing method is a recursion from LPC Parameter
to LPC cepstrum according to All-pole model. However,
The LPCC parameter cannot adequately reflect the human
auditory characteristics. It inherits defects of LPC, that is, all
frequencies based on composite coefficients tend to be linear
and including noise details at high frequencies segment. In
fact, the human auditory system is a special nonlinear system
so as to respond to the different frequency signals. MFCC is
based on the known variation of the human ear’s bandwidths,
it spaced linearly below 1000Hz frequencies and logarith-
mically above 1000Hz frequencies, and the mechanism of
input speech signal matched with auditory characteristics.
Experiences show that the performance of MFCC parameter
is better than that of LPCC parameter [27].

In order to identify vocal emotions of human beings, it
is necessary for us to adopt appropriate pattern recognition
methods on the processing of speech signals. The state-of-
the-art in pattern recognition techniques includes Dynamic
Time Warping (DTW), Hidden Markov Modeling (HMM),
and artificial neural networks (ANN). Dynamic Time Warp-
ing (DTW) is an early and classical algorithm which based
on the thought of dynamic optimization and can resolve the
matching problem of the difference of speech’s length. In the
isolated word speech recognition, the disadvantage of HMM
and ANN is limitation of heavy computations and training
templates that are required for higher accuracy, but the DTW
algorithm training hardly needs the additional calculations.
SoDTWapproach is usually used in the recognition of speech
signals due to ease of implement and flexibility [27]. In this
regard, the brain’s emotional mechanism has provided the
important basis for the design of pattern recognition.

3. Experiment Observations

3.1. Experiment Model. To have a better look at mechanism
for processing vocal emotions of human beings, we designed
an experiment to demonstrate appropriate picture and text
stimuli in use of f-MRI method. As seen from Figure 1,
multiple task blocks will be designed in certain cycle; each
task consists of one or more pairs of rest and stimulus state.
In the rest state, subjects will not accept any stimuli, and in
the stimulus condition, subjects will receive the same and
approximate continuous stimulus events. In this experiment,
3 kinds of stimuli blocks including text stimuli block, picture
materials block, and graphic text stimuli block were selected
(three runs).

Rest BlankSide sound AnswerQuestion
probe

Figure 2: Experiment steps designed by E-prime2.0.

In order to generate appropriate verbal stimuli, 16 lis-
tening questions (2 runs) adopted from Part 1 of China
Accreditation Test for Translators and Interpreters 2 (Catti 2)
with emotionally neutral content were selected; all were news
read by professional broadcasters. Materials were tested in a
pilot study by 52 college students in Fudan University, China,
to achieve appropriate level of difficulty. The subjects were
required to pass a test split from the stimuli test, to confirm
their ability to understand the question. Duration of each
verbal recording ranged from 35 s to 40 s.

Tape recordings of all 16 utterances were presented to 6
healthy subjects (2 males, 4 females, aged 22–28, all right-
handed) without history of neurological or psychiatric dis-
eases participated in the fMRI experiment and comparison
of brain conditions were recorded as they process the stimuli.

They lay supine in a 3-T whole body scanner (Siemens
Vision), their eyes opened and their heads supported by a
foam rubber within the head coil. Each session in the design
included the part of rest for 30 seconds, the duration of each
block lasted 120 s.

Subjects were instructed to listen to the contents and to
answer the following True/False questions. The results of the
answering were not calculated for the reason that part of
compulsory answering was suggested by previous research
as a method to help subjects to focus while listening to the
stimuli.They lay supine in a 3-Twhole body scanner (Siemens
Vision), their eyes closed and their heads supported by a foam
rubber within the head coil, button placed under their index
and middle fingers for them to choose the answers.

Each session in the design included the part of rest
for 24 seconds, stimuli for 35–40 seconds, blank for 2
seconds, question reading part for 10 seconds, and answering
2 seconds, two runs in total, lasting for 540 seconds, designed
by E-prime2.0 as Figure 2.

3.2. Experiment Findings. Findings of the present research
was in linewith the comparison revealed in previous research,
indicating that the right auditory cortex is more sensitive to
tonality, while the left auditory cortex has been shown to
be more sensitive to minute sequential differences in sound,
such as in speech. Comparing findings of the present study
and those of [14], we can notice that while the materials of
the former are highly speech-like, the left BA 41 was activated
significantly. On the contrary, the stimuli of the latter was
tended to be more tonal like (affective prosody), resulting
great activation in right BA 41. It is thus assumed that,
although STG are generally recognized to be related to audi-
tory function in human brain, lateralization of activation in
this area still depended on the categories of the input signals.
As in Figure 3 (SPM99, random-effect analysis, T N 4.30, k N
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Figure 3: Listening question identification.
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Figure 4: Plane graph of activity region inside brain.

38, P b 0.05, corrected), significant hemodynamic responses
during identification of sentence listening. The listening task
yielded specific activation within the left superior temporal
gyrus (STG, BA 41, 𝑍 = 5.5).

We notice that when some displeasure voice was heard,
the task yielded specific activation within the brain Inferior
Frontal Gyrus area (shown in Figure 4, center coordinates:
42, 24, and −9), indicating that the subjects were in the
high attention and caused a certain amount of dissatisfac-
tion affection. Based on the experimental results, we can
get typical human brain activation pattern and activation
level under different situational context of vocal information
stimulations, fromwhich to obtain statistical features and the
related empirical data of people’s emotion.

For future design of voice system for humanoid robot, it is
suggested that, depending on functions of individual robots,
the voice shall be adjusted, according not only to acoustic
features of voice (voice intensity, loudness, tempo, paus-
ing, corresponding to the rate of vocalization, fundamental
frequency of vocal fold vibration (F0), pitch, frequency
spectrum, etc.), but also to their tendency toward tonality or
speech. For example, home robots shall put more emphasis
on their prosody decoding system, since the context fit the
application tend to be soft and informal, while vocal system
design for robots in public areas (school, museums, tourist
attractions, etc.) shall be with emphasis on speech content
rather than vocal emotion. The former tends to be more
right-hemisphere oriented and the latter tends to be more
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left-hemisphere oriented. With this regard, the comparison
between the findings of the present research and those of [14]
may serve as a valuable reference.

We have already applied these findings to the infants’
speech recognition [27]. Infants are not able to use the
languages that adults can understand to express their physio-
logical and psychological states, so their expressions, gestures,
actions, and speeches have been not only the methods to
communicate with the outside world, but also the important
information sources of reflecting their emotions and needs,
which imply health status and mental development level.
As for the basic emotions and needs caused by human
physiological factors, whether infants or adults, their brain’s
response characteristics are consistent by fMRI observations.
This will help us better understand the infants’ emotion and
needs and therefore develop the effective method of pattern
recognition through their speech signals.

We selected 3 kinds of speech signals that reflect normal
emotions and needs of infants such as happy, hungry, and
sleepywhich are very typical as well as easy for evaluation and
acquisition in infants’ daily life.The daily activity information
of infants (such as the time for drinking, excreting, etc.) and
the environment information (such as the temperature, voice,
etc.) were also recorded to assist the recognition; test results
showed that the average recognition rate may be achieved
more than 80%.This technology can be applied to the design
of baby care humanoid robot with emotional intelligence.

4. Conclusions

While contemporary technology of humanoid robot design
have contributed greatly to the topic of emotion recognition
as well as AI, only marginal attention has been paid to the
vocal domain. Exploring the previous fMRI research on vocal
emotion recognition has deepened our understanding about
how the mechanism of vocal emotion processing works in
the human brain, such as the contribution of right-sided
temporal and frontal regions to the processing of emotional
prosody independent of specific emotional categories. It will
provide the inspiration to the design of humanoid robot with
emotional intelligence, which has wide potential application
such as emotion analysis in emergency events [28] and all
kinds of smart services [29].
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