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Multiple sensor systems are used to monitor physiological parameters, activities of daily living and behaviour. Digital biomarkers can be
extracted and used as indicators for health and disease. Signal acquisition is either by object sensors, wearable sensors, or contact-free
sensors including cameras, pressure sensors, non-contact capacitively coupled electrocardiogram (cECG), radar, and passive infrared mo-
tion sensors. This review summarizes contemporary knowledge of the use of contact-free sensors for patients with cardiovascular disease
and healthy subjects following the PRISMA declaration. Chances and challenges are discussed. Thirty-six publications were rated to be of
medium (31) or high (5) relevance. Results are best for monitoring of heart rate and heart rate variability using cardiac vibration, facial
camera, or cECG; for respiration using cardiac vibration, cECG, or camera; and for sleep using ballistocardiography. Early results from
radar sensors to monitor vital signs are promising. Contact-free sensors are little invasive, well accepted and suitable for long-term moni-
toring in particular in patient’s homes. A major problem are motion artefacts. Results from long-term use in larger patient cohorts are still
lacking, but the technology is about to emerge the market and we can expect to see more clinical results in the near future.
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Introduction

Sensor-based symptom assessment can be used in the hospital and in
the homes of patients at risk for cardiovascular diseases to monitor
physiological parameters (e.g. heartbeat, respiratory rate) and cur-
rent activities of daily living (e.g. eating, sleeping). Based on the sen-
sor’s reading, digital biomarkers for common cardiovascular diseases
can be extracted. Digital biomarkers are defined as an ‘objective,
quantifiable physiological and behavioural data that are collected and
measured by means of digital devices'1 to get real-time information
about the patient’s state. Digital biomarkers can be used to drive
patient-specific interventions, as endpoints for clinical studies, or as
information for formal and informal caregivers to help them to opti-
mize patient care. As it is shown in Figure 1, there are mainly three
types of sensors to be used in patient’s home or in the hospital.

Object sensors (also called object-attached sensors) are connected
to objects of daily living and are measuring the interaction between
patient and object. For example, by measuring the movement of a
computer-mouse during daily computer usage, information about
the patient’s fine-motor skills and cognitive abilities can be extracted.?
Another example is a medicine box with a sensor that allows measur-
ing the time of medicine intake.’

Wearable sensors are the most prevalent sensor type which is typic-
ally worn at the wrist of the non-dominant arm. Commercially avail-
able wearable sensors are often integrated into a smart watch. As
outlined by Seshadri et al,* wearable sensors find their applications
to monitor specific medical conditions, such as atrial fibrillation>® or
cystic fibrosis.”® In a recent systematic review on wearable devices
for ambulatory cardiac monitoring Sana et al’ conclude that wear-
able devices are very helpful for long-term continuous monitoring in
the patient’s home. Besides their advantages, wearable sensors are
difficult to use in some patient populations because cooperation of
the patient is needed. Patients mostly need to wear the sensor during
the day and often also during the night (i.e. if sleep monitoring is
desired), and they need to recharge the wearable sensor. This is feas-
ible in patient with good cognitive abilities,'®"" but very difficult in
patients with cognitive impairment (e.g. Alzheimer’s disease) where
the acceptance and feasibility for the use of wearable sensors is in
general very low."?

Contact-free sensors have a great advantage in that they do not
need any action by the patients to work. Contact-free sensors (also
called ambient sensors) are positioned in the environment of the pa-
tient and measure activities by using behaviour recognition algorithms
and physiological parameters. Early work from Urwyler et al usesa
number of passive infrared (PIR) sensors to measure changes in infra-
red radiation to detect movement in the proximity of the sensor.
Using machine learning algorithms to detect specific activity patterns,
activities of daily living can be recognized with a sensitivity and a speci-
ficity of >90%. Since these sensors do not require patients inter-
action, acceptance is generally very high. Furthermore, this type of
sensor is easy to use for studies in humans including patients with
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cognitive impairment (see Piau et al.’ for review). Recent advance-
ments in sensor and data processing technology allow not only activ-
ity measurements but also contact-fee measurement of physiological
parameters (e.g. breathing, heartbeat). Piezo-electric force sensor
arrays under the bed-mattress can be used for contact-free ballisto-
cardiography to measure heartbeat and respiration rate.'* These and
other contact-free sensor principles (e.g. radar measurement) are
analysed and discussed in this article. More specifically, we discuss the
use of contact-free sensors as digital biomarkers for common cardio-
vascular diseases.

Methods

Search strategy
For this systematic review, we followed the PRISMA declaration
(Preferred Reporting Items for Systematic Reviews and Meta-Analysis).
We have searched PubMed, Cochrane, Scopus, and the database of the
Institute of Electrical and Electronics Engineers (IEEE). Only original re-
search in English language, published after 2010 up to 28 August 2020
were included.

For the search term, the advanced search with the following combin-
ation of terms was used:

("cardi*"[Title/Abstract] OR "Heart'[Title/Abstract])
AND ("Contactless"[All Fields] OR "Smart Home*"
[All Fields] OR "Contactfree"[All Fields] OR "Contact
free"[All Fields] OR "Contact-free"[All Fields] OR
"Contact-less"[All Fields] OR "Contactless"[All Fields]
OR “Unobtrus*[All Fields]) OR "Nearable"[All Fields]

The search term has been updated after the initial search results have
been reviewed. By scanning reference lists, additional references were
acquired. The flow chart of the search and elimination procedures is
shown in Figure 2.

The grading of the manuscripts was performed by two independent
reviewers: one reviewer had a technical and the other reviewer a medical
background. The relevance was rated as low =1, medium =2, or
high = 3, depending on the study quality, the sample size, and study
population. Studies rated as low were excluded from the final table.

The main exclusion criteria for less relevant manuscripts were either a
restriction to a proof of concept or very low numbers of study partici-
pants. Another exclusion criteria was if the manuscript was focusing on
the comparison of different algorithms in feature extraction.

Sensor technology principles

The following chapter briefly describes the main sensor technologies
which are actually used for monitoring of physiological parameters,
activities of daily living and behaviour. At the end of each subchapter,
the number of reviewed articles is listed. Manuscripts describing only
technical aspects of the sensors or sensor technology without clinical
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Figure 1 Working principle for telemonitoring of patients at risk for cardiovascular diseases. A combination of contact-free, wearable and objec-
tattached sensors can be used to monitor behaviour and physiological parameters. From that information, digital biomarkers can be extracted to de-

liver care-relevant information to drive patient-specific interventions..

application have been excluded from the review. Two papers
describing several technologies have been counted multiple times.

Camera based technologies

These technologies use cameras for contactless monitoring of a var-
iety of parameters which are relevant for cardiovascular health.
Camera types can be separated into two main categories: the first
category includes multichannel cameras recording in the visible spec-
trum and the second category includes cameras which are monitor-
ing in the infrared spectrum.’ In some cases, depth is added as an
additional dimension.'® Sensor placement can be arbitrary and
depends on the use case, but usually, the cameras are placed in a dis-
tance of 1-2 m from the subject.”® For cardiovascular diseases,
image-based technologies have shown to allow relatively reliable
recordings of heartbeats by detecting vascular pulsatile motion lead-
ing to signals which are similar in nature to signals which are acquired
using photoplethysmography.'>"” Breathing rate is measurable with
acceptable accuracy by monitoring chest movements—and theoret-
ically by filtering the heartbeat signal.'®'® There have been attempts
to demonstrate the possibility of analysing SpO, and blood pressure
by using camera technology. As of today, this appears still as technic-
ally challenging with limited accuracy." Infrared cameras have also
been used to monitor skin temperal‘cure.19 In addition, cameras can
also be used to infer factors such as in-home physical activity or gait
|::a1rameters.2°'21 Furthermore, cameras are used to track frequency
of toilet visits or to monitor larger movements in bed.??

Chances

Cameras represent a widespread, established and relatively cheap
technology allowing to measure a wide variety of health-relevant
parameters.

Challenges

Similar to contact-based sensors, motion artefacts are a major prob-
lem also for contact-free sensor systems when measuring vital signs.
Therefore, cameras are mostly useful to measure signals from sub-
jects at rest. In addition, physical obstructions like bed sheets or light-
ing conditions can pose additional challenges for signal acquisition by
cameras.’®> However, the most obvious disadvantages of camera-
based sensor technologies are privacy concerns and obtrusiveness.
This concern can be tackled to a certain degree by using additional
technologies such as automatic blurring (in particular faces), by
extracting only silhouettes or by using edge computing—thus proc-
essing the images locally and only forwarding a predefined set of
extracted parameters. However, the stigma of obtrusiveness associ-
ated with the use of cameras will likely remain a limiting factor for a
widespread adoption of this technology for continuous remote mon-
itoring applications.

Number of reviewed articles: 15

Pressure sensor-based technologies
These sensor technologies are based on the measurement of mech-
anical forces which are exerted by the human body to detect subtle

signals like heart beats, breathing cycles or larger movements.2> 2
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Figure 2 Flow chart of the search and elimination process.

The underlying technology is often based on piezoelectric-like sen-
sors that convert mechanical pressure into electrical charges.?” This
requires the sensors to be placed close to the human body such as
below the bed mattress or on the backside of chairs, but not in direct
contact with the body.27

There is substantial evidence for the potential of this technology
to measure heartbeats (usually referred to as ballistocardiography)
and breathing.27 More recent research even indicates the possibility
of using this technology for blood pressure measurement.”®

Chances

Pressure sensor-based technologies are relatively cheap and readily
available. In addition, they can be completely unobtrusive and hidden
inside or beneath objects. Privacy aspects are also less of a concern
as the acquired data does not easily allow to identify a sensor user.

—
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Challenges
Similar to other technologies, pressure sensors are susceptible to
movements.?’ In addition, any obstacle between the sensor and the
heart leads to signal dampening or distortions. Therefore, a main dis-
advantage of this technology is that it requires the sensor to be in
relatively close proximity of the upper body and the heart.

Number of reviewed articles: 16

Electromagnetic field-based technologies
The idea of non-contact capacitively coupled electrocardiogram
(cECG) signal acquisition”” is to use capacitive electrodes that are
placed near the human body but with a potential gap (air, furniture,
sheets, cloths, etc.) inbetween, thus allowing for contact-free electro-
cardiogram (ECG) measurements.* > In theory, this technology
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allows the acquisition of the same signals as with regular electrode-
based ECGs, including full PQRS complexes.

In addition, respiration signals can be acquired with magnetic in-
duction (MI) based on local changes in impedance by respiration or
by cardiac activity.

Chances

The big advantage of cECG and Ml is the fact that it allows to actually
capture electrophysiological parameters instead of just mechanical
movements of the heart and the chest. The electromagnetic field
technology is also relatively unobtrusive in that it can be hidden be-
neath everyday objects like furniture or bed.

Challenges

Compared to electrode-based ECG measurements, cECG is likely to
be more prone to generate artefacts.>* In addition, due to the gap be-
tween the human body and the electrodes, the system has to deal
with very high input impedance.

Similar as in cECG, the signal strength obtained from MI decreases
exponentially with distance, and the sensor has to be placed very
close to the subjects body. The major disadvantage of this technology
is that it is still experimental and does not appear to be ready for rou-
tine clinical use. Furthermore, the technology suffers from the same
location restrictions as pressure sensors in that electrodes need to
be placed in closed proximity to the human body.

Number of reviewed articles: 2

Radar sensors

Radar technology is becoming more mature and a large body of lit-
erature shows evidence that this technology is ready to be used in
commercial devices and beyond research test beds. Radar tech-
nology is mostly based on continuous wave, frequency modulated
continuous wave or ultra wideband.** Most commonly, the
(micro) Doppler effect is used to quantify human body move-
ments and even subtle signals such as signals from the beating
heart.3¥3* As a result, radar technology allows to measure heart
beats and respiration beside larger movements to monitor pos-
ition and physical activity.>*3*

Chances

Radar-based technology’s biggest advantage is its capability to meas-
ure a wide variety of body movements, including heart and breathing.
It also is less restricted to specific locations and may allow monitoring
through smaller obstacles and even thin walls. Compared to camera
technologies, radar is quite unobtrusive.

Challenges

Similar as for the other technologies, radar suffers from movement
artefacts when it comes to quantify small body movements and to
monitor persons at rest.

Availability of radars systems is still limited and prices are relatively
high, but this is already changing, and we expect decreasing prices
and better availability in the near future. Although radar is less obtru-
sive than cameras, it can still acquire a large amount of information
from a monitored person’s life and actions without being limited to
very specific locations and modalities. This raises concern in regard

to privacy. In addition, there might be a certain stigma associated to
radar-based systems as some people tend to fear wireless signals.
Number of reviewed articles: 4

Other sensors: passive infrared motion

sensors, audio recordings
PIR sensors have been around for a long time and have been used in
a variety of home-monitoring scenarios.>® The technology allows to
detect the broader motion of a person based on changes in infrared
radiation when a person moves.>’ This relatively simple technology
allows to primarily monitor certain risks factors like in-home physical
activity, the number of toilet visits or gait speed.1 1123638

Audio recordings represent although a simple technology and are
very easy to obtain. The most important parameters to measure
using audio technology are breathing pattern and snoring.z’gJ11

Chances
Both, PIR and audio recordings represent simple sensor technologies
that are widely available, relatively unobtrusive and inexpensive. PIR
sensors have the additional advantage of having little privacy
concerns.

Challenges

Due to their simplicity, these types of sensors can only give limited in-
formation. When it comes to parameters being relevant for cardio-
vascular diseases, additional audio recordings of snoring can be of
added value.

Only very broad grained basic information can be obtained
through regular PIR sensors, most of which is rather behaviour based
and not necessarily relevant to cardiovascular conditions. However,
results may give some background information that facilitates the in-
terpretation of other sensor data.

Number of reviewed articles: 2

Summary of the systematic
review

Cardiac measurements
There are several studies which are of medium and high relevance
for contactless measurement of heart-related parameters such as
heart rate, heart rate variability, arrhythmias, or electrical activity
(Table 1). In particular for measurements of heart rate and heart rate
variability using technologies based on pressure, camera or radar, a
rapid increase of accuracy and robustness of the systems can be ob-
serve over the last few years. Results from the use of these technolo-
gies are mostly accurate, unobtrusive, with good functionality and
with high usability. However, most studies have been performed with
healthy participants and not with patients. Therefore, more studies
are required to show accuracy and usability for daily clinical practice.
While heart rate is relatively easy to assess, several studies indicate
also a high accuracy for heart rate variability measurements. While
motion of the heart and the pulse wave can be traced relatively easy
by radar or pressure-based technologies, experimental studies show
also promising results for capacitive ECG technologies which have
the advantage to allow to measure electrophysiological parameters.
However, technologies have still to be considered as experimental
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and are rarely seen in clinical use. Artefacts are still a problem and
rhythm disturbances are difficult to be recognized and classified with
high accuracy. Another interesting but still experimental technology
is contactless measurement of blood pressure, which is on the hori-
zon but still far from clinical reality.

Respiration

Respiration seems to be one of the easiest vital sign to be recorded
unobtrusively. Many studies are using contact-free sensors to meas-
ure respiration in patients and even commercial products are avail-
able for this purpose. As breathing rate is not the main focus of this
review, only a few studies were included. Important indications for
monitoring of respiration rate are pulmonary diseases, pulmonary
embolism, cardiac disease with pulmonary congestion such as heart
failure, and screening for obstructive sleep apnoea. Combined meas-
urements of heart rate and respiration rate and thus the potential to
detect an increase of both parameters over time may help to identify
or exclude diseases such as COVID-19 infection in early stages.

Vital signs

Respiration rate and heart rate are characterized mainly by different
frequencies in movement patterns and are therefore usually assessed
simultaneously, in particular by using radar- or pressure-based tech-
nologies. Available research results show high accuracy of those
parameters when compared to clinical standards.

Sleep

For the assessment of sleep parameters, sensors are usually com-
pared to polysomnography. Several studies are looking at heart and
respiration rate during the night, but only a few studies estimate the
sleep stages from contactless sensors. Sensor systems which can be
placed under the mattress and are based on unobtrusively measured
ballistocardiography are increasingly used and show promising results
for heart and respiration rate, sleep parameters, and motion in bed.
Even though newer machine learning approaches show promising
results for correct classification of sleep stages, the unchallenged gold
standard for the assessment of sleep parameters is still the
electroencephalogram.

Potential for clinical usability in
cardiovascular patients

There is a great potential for the clinical application of contact-free
sensors signals as digital biomarkers in particular for cardiovascular
patients:

(1) Heart rate, heart rhythm, heart rate variability, and respiration for a
broad range of clinical conditions and diseases (e.g. atrial
fibrillation).

(2) Combination of heart rate and respiration rate with polyuria/bed
exits at night and restlessness in bed for advanced stages of heart
failure.

(3) Combination of heart rate/rhythm and respiration rate with blood
oxygen saturation for specific forms of congenital heart disease.

(4) Combination of heart rate and respiration rate with temperature
for infectious endocarditis.

(5) Combination of heart rate and respiration rate for unobstrusive
monitoring of intensive care unit patients/hospitalized patients.

Conclusion and future directions

In this article, we have reviewed the literature for studies with
contact-free sensor technology for the unobtrusive measurement of
blood pressure, cardiac signals, respiration and other vital signs. Most
of the studies (16) used cardiac vibration recordings and evaluated
the system with healthy test persons and a relatively small number of
patients. Another 12 studies used a camera for signal recording in
both healthy test persons and patients. A common finding is that
movement artefacts are the main contributor to signal lost and signal
distortion. While it is possible to detect movement and ignore the
distorted signal recoding, it will not be possible to guarantee continu-
ous recording of cardiac signal with contact-free sensors. In other
words, while wrong measurements can be recognized, movement of
the patient will result in an interrupted measurement. That is why
these types of sensors are not well suited for time-critical recordings
of the heartbeat as it is for example required for real-time monitoring
in an intensive or intermediate care facility.

On the other hand, thanks to the small invasiveness of the sensors
and the good to excellent patient-acceptance, these sensors are spe-
cifically well suited for long-term measurements in the patient’s
homes. Especially in situations with little movement (e.g. during sleep,
when sitting) good signal quality can be achieved with contact-free
measurement of heart rate, heart rhythm, heart rate variability and
respiration. While the feasibility has been proven, larger clinical stud-
ies should aim at investigating the potential benefit of long-term
recordings for the prevention, early diagnosis and better treatment
of cardiovascular diseases.

An interesting, relatively novel avenue is the use of radar sensors
to measure cardiovascular signals. Recent work from Malesevic
et al*® and Kang et al®® has shown this contact-free technology
shows high accuracy of heart and respiration rate. Also here, the limi-
tations of movement artefacts apply, but movement can be measured
and affected measurements can be disregarded. The technology is
about to emerge the market and we can expect to see more clinical
results in the near future.
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