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Abstract

Metastability in the brain is thought to be a mechanism involved in the dynamic organization

of cognitive and behavioral functions across multiple spatiotemporal scales. However, it is

not clear how such organization is realized in underlying neural oscillations in a high-dimen-

sional state space. It was shown that macroscopic oscillations often form phase-phase cou-

pling (PPC) and phase-amplitude coupling (PAC), which result in synchronization and

amplitude modulation, respectively, even without external stimuli. These oscillations can

also make spontaneous transitions across synchronous states at rest. Using resting-state

electroencephalographic signals and the autism-spectrum quotient scores acquired from

healthy humans, we show experimental evidence that the PAC combined with PPC allows

amplitude modulation to be transient, and that the metastable dynamics with this transient

modulation is associated with autistic-like traits. In individuals with a longer attention span,

such dynamics tended to show fewer transitions between states by forming delta-alpha

PAC. We identified these states as two-dimensional metastable states that could share con-

sistent patterns across individuals. Our findings suggest that the human brain dynamically

organizes inter-individual differences in a hierarchy of macroscopic oscillations with multiple

timescales by utilizing metastability.

Author summary

The human brain organizes cognitive and behavioral functions dynamically. For decades,

the dynamic organization of underlying neural oscillations has been a fundamental topic

in neuroscience research. Even without external stimuli, macroscopic oscillations often

form phase-phase coupling and phase-amplitude coupling (PAC) that result in synchroni-

zation and amplitude modulation, respectively, and can make spontaneous transitions

across synchronous states at rest. Using resting-state electroencephalography signals

acquired from healthy humans, we show evidence that these two neural couplings enable

amplitude modulation to be transient, and that this transient modulation can be viewed as
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the transition among oscillatory states with different PAC strengths. We also demonstrate

that such transition dynamics are associated with the ability to maintain attention to detail

and to switch attention, as measured by autism-spectrum quotient scores. These individ-

ual dynamics were visualized as a trajectory among states with attracting tendencies, and

involved consistent brain states across individuals. Our findings have significant implica-

tions for unraveling the variability in the individual brains showing typical and atypical

development.

Introduction

The human brain can spontaneously yield transition dynamics across oscillatory states and

organize a variety of events in a hierarchy of oscillations. Such spontaneous dynamics, particu-

larly at rest, have been intensively observed and analyzed over many years, and attempts to

model them have been made using dynamical systems theory, to achieve a better prediction of

brain activity [1–5]. However, there is a lack of direct evidence that resting-state brain dynam-

ics can originate from the underlying nonlinear states, and little is known about the kind of

states that may have functional roles in the dynamic organization of spontaneous activity in a

way utilizing oscillatory hierarchy.

Electroencephalography (EEG) is a promising technique for the high temporal resolution

observation of the dynamics of neural activity over large-scale brain networks. The observed

macroscopic signals are oscillatory such that the corresponding power spectrum exhibits a rep-

resentative peak, and are classified into multiple bands according to its frequency in general

[6, 7]. The peak frequency of neural activity shows either a higher or lower value depending on

brain function [6] and cognitive and behavioral performance [7]; for example, alpha-band

activity can be enhanced or suppressed by attention, and its peak frequency can vary with age

[7].

Observed macroscopic neural oscillations reflect underlying nonlinear dynamics. Experi-

mental studies have presented evidence that phases detected from oscillations at a particular

frequency show the nonlinear brain phenomenon called phase synchronization by forming

phase-phase coupling (PPC) [8–10]. Furthermore, the phases have the ability to modulate the

amplitude of a faster oscillatory component by forming phase-amplitude coupling (PAC) [11–

15]; in recent years, PAC was observed not only locally but also between regions of the large-

scale network [16, 17]. The PPC has been suggested to play a role in making functional con-

nections among distant brain regions [8], while it is suggested that the PAC mediates compu-

tation between local and global networks [12], with both couplings having been observed in

function-specific and individual behavior-related oscillations at multiple spatiotemporal scales

[9, 14]. From a dynamical systems theory point of view, these two kinds of coupled oscillatory

dynamics can be interpreted as being generated from coupled oscillatory attractors composed

of the limit cycle [2] or its variant form, i.e., a torus in a high-dimensional state space [18, 19].

These suggestions have inspired phenomenological modeling of the dynamics underlying EEG

neural oscillations [20, 21], resulting in a variety of coupled nonlinear-oscillator systems as

represented by the Kuramoto model [20–23].

Oscillatory dynamics such as those mentioned above can make spontaneous transitions

among multiple network states, particularly at rest. Previous studies labeled EEG signals

observed during a resting condition as a small number of states called microstates [24–27].

These microstates have been suggested to be associated with cognition and perception [25], as

well as individual differences in brain function [27]. In recent years, resting-state EEG signals
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have been investigated from the point of view of functional connectivity of the large-scale net-

work, which is often characterized by the strength of the PPC [28–30]. Betzel et al. showed evi-

dence that resting-state EEG phases exhibit dynamic changes in PPC modulation so that a

repertoire of synchronized states appears [29]. Moreover, PAC modulation from EEG phases

to amplitudes at rest was recently studied [31, 32] because the PAC can also occur spontane-

ously [13]; inter-regional PAC during rest was also intensively analyzed [33]. These experi-

mental findings imply that resting-state EEG phase dynamics not only exhibit synchronization

but also result in amplitude modulation over the large-scale network at the same time via both

PPC and PAC. Therefore, we developed the following hypotheses for the resting brain: (i)

there is a repertoire of synchronous slow oscillations that interact via the PPC and interact

with fast oscillations via the PAC (Fig 1A); (ii) these synchrony-dependent slow and fast oscil-

lations result in a repertoire of PAC states characterized by slow and fast timescales (Fig 1B);

and (iii) transitions between metastable PAC states, i.e., dynamic and large-scale changes in

PAC strengths, occur spontaneously at rest according to transitions among a repertoire of

the synchronous slow oscillations, that is, according to the dynamic changes in PPC strengths

(Fig 1C).

In this study, we aimed to test the dynamic PPC-PAC hypotheses described above (Fig 1),

and to show experimental evidence of how the metastable human brain is associated with

autistic-like traits. In recent years, metastability in the brain has been proposed as a mecha-

nism for integration and segregation across multiple levels of brain functions [34]. To elucidate

aspects of the dynamics of the metastable human brain in this study, we first developed a

method to label observed metastable dynamics as the underlying states in a data-driven man-

ner based on the oscillatory hierarchy hypothesis [35]. The method was then applied to

63-channel high-density scalp-recorded EEG signals from 130 healthy humans in an eyes-

closed resting condition (n = 162 in total; 32 subjects participated in the experiment twice).

The obtained results were compared with the autism-spectrum quotient (AQ) subscales [36,

37] acquired from 88 of the subjects after the EEG recording, and were combined with the

model of a coupled oscillator system driven by spontaneous fluctuations to validate our

hypothesis (Fig 1).

Materials and methods

Ethics statement

The study was approved by the ethics committee of RIKEN (the approval number: Wako3 26-

24) and was conducted in accordance with the code of ethics of the Declaration of Helsinki.

Subjects participated in the study after giving written informed consent.

Data acquisition

In total, 130 healthy humans (Age: 24.0 ± 5.0 years, mean ± SD, 66 females) participated in the

EEG experiment. Thirty-two subjects participated in the experiment twice. The EEG signals

were recorded from an EEG amplifier (BrainAmp MR+, Brain Products GmbH, Gilching,

Germany) and a 63-channel EEG cap (Easycap, EASYCAP GmbH, Herrsching, Germany)

placed on the scalp in accordance with the International 10/10 system with a left earlobe refer-

ence and AFz as a ground electrode. The signals were recorded for 180 s with the subjects in

an eyes-closed resting condition. The following experimental configuration was used: sam-

pling frequency 1000 Hz, low-cut frequency 0.016 Hz, and high-cut frequency 250 Hz. The

recorded signals were offline re-referenced to the average potentials of the left and right ear-

lobes. The EEG data were also analyzed in our previous studies [38, 39], which had a different
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purpose. After the EEG experiment, 88 subjects were asked to answer the Japanese version of

the AQ questionnaire [37], which was originally constructed by Baron-Cohen et al. (2001)

[36]. The following five AQ subscales were scored from the obtained answers: social skills,

attention to detail, attention switching, communication, and imagination. All the analyses

shown below were conducted using in-house code custom written in MATLAB (Mathworks,

Fig 1. The dynamic PPC-PAC hypothesis. (A) A repertoire of synchronous slow oscillations that interact via the PPC and interact with

fast oscillations via the PAC. (B) The resulting PAC states. (C) Transitions between the metastable PAC states. The dynamic PPC-PAC

hypothesis states that for the resting brain, dynamic changes in PPC strengths (transitions between synchronous states) can cause

dynamic and large-scale changes in PAC strengths because of PPC-PAC connectivity (A), and thereby yield transitions between

oscillatory states with multiple peak frequencies (B and C). The oscillations of each state can realize the transition to another state by

spontaneous fluctuations in the brain; in other words, the underlying states can show metastability.

https://doi.org/10.1371/journal.pcbi.1008929.g001
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Natick, MA, USA) with the EEGLAB [40], FieldTrip [41], and CSD Toolboxes [42]. The code

[43–45] was also used after minor changes.

Metastable states clustering

Metastable states clustering was developed in a data-driven manner to label observed metasta-

ble dynamics as the underlying states. The method consisted of the following three analyses: (i)

multi-step envelope analysis, (ii) k-means clustering, and (iii) supervised dimensionality

reduction of state space by linear discriminant analysis (LDA) [46] (see Fig 2). Analysis (i) was

motivated by the Poincaré section in flows and sections in maps [47] with their application to

a modeled neural network [18]; these sections enabled to convert a d-dimensional torus in a

state space to the (d − 1)-dimensional torus recursively [47]. We incorporated this idea into

signal processing of resting-state EEG data, and aimed to transform the original transition

dynamics (Fig 2A) into a trajectory among zero-dimensional states (Fig 2D), to which the

potential energy can be applied. In this study, we realized this multi-step conversion by repeat-

edly computing envelopes from EEG signals (Fig 2B). A vast amount of studies used such an

envelope analysis so that the nested oscillations (with slow and fast timescales) changed to

amplitude oscillations (with a slow timescale) [13, 48].

The method was applied to the resting-state scalp EEG data with the dimension N = 63,

under the assumption that (I) the underlying system generates the dynamics of transitions

between states with d frequencies f1, f2, .., fd (changes in strengths of hierarchical coupling),

such that slow oscillations with fi hierarchically modulate fast ones with fi+1 for i = 1, 2, . . ., d
− 1 (see [35] for the oscillatory hierarchy hypothesis). Moreover, we assumed that (II) the

observation process is the linear sum of distinct oscillations. These assumptions allowed the

underlying states to be d-dimensional, and the N recorded EEG signals to reflect the common

neural oscillations with d peak frequencies. Hereafter, we denoted these N signals by X(t) =

(X1(t), X2(t), . . ., XN (t)) for t = 0 to 180 s (= T). As shown in the detailed signal processing

steps below, analyses (i) to (iii) tested whether the resulting states can be seen as zero-dimen-

sional states with attracting tendencies (which we called the weakly attracting states) after d-

time computations of envelopes. In other words, we tested whether the states of the original

transition dynamics can be d-dimensional metastable states. Fig 2 illustrates that the PAC

states (Fig 2A) are identified as the two-dimensional metastable states through transformation

into the zero-dimensional weakly attracting states (in Fig 2D), whose labels clearly reflect dif-

ferent strengths of amplitude modulation (in Fig 2E).

Analysis (i): First, the instantaneous amplitudes were repeatedly computed from signals

X(t) around frequencies fd, fd−1, . . ., f1, as follows (Fig 2B):

Ai;d� 1ðtÞ ¼ jðXi �Cd� 1ÞðtÞj; ð1Þ

Ai;d� 2ðtÞ ¼ jðAi;d� 1 �Cd� 2ÞðtÞj; ð2Þ

..

.

Ai;0ðtÞ ¼ jðAi;1 �C0ÞðtÞj; ð3Þ

for i = 1, 2, . . ., N, where Cd−1(t),Cd−2(t),. . .,C0(t) were the complex-valued Morlet wavelets

[49, 50] defined as

CjðtÞ ¼
ffiffiffiffiffiffi
fjþ1

q
exp ði2pfjþ1tÞ exp ð� t2=2s2

jþ1
Þ; ð4Þ

for j = 0, 1, . . ., d − 1. Operators (���) and |�| denote a convolution and conversion from the com-

plex value to its amplitude, respectively, and we defined Aj(t) = (A1, j(t), A2, j(t), . . ., AN, j(t)).
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Fig 2. The flow of signal processing in metastable states clustering. (A) A transition dynamics among three PAC states (d = 2) in the state space of

xi(t) = cos(2πf1 t + ψi) + 0.5[1 + bi(t) cos(2πf1 t + ψi)] sin(2πf2 t) + ξi(t), where the first, second, and last terms indicated the slow oscillations, amplitude-

modulated fast oscillations, and noise, respectively. (B) Observed signals, the first envelopes (instantaneous amplitudes) around f2, and the second

envelopes around f1. (C) The labeled sequences. (D) LDA projections of the state space. (E) The bandpass signal of x1(t) around peak frequency f2 and

corresponding labels. The frequencies f1 and f2 here were set to 1 Hz and 10 Hz, respectively; modulation index bi(t) dynamically changed among

strengths 0.15, 0.5, and 0.85; and noise ξi(t) followed a normal distribution of mean 0 and standard deviation 0.3. The colors in panel A correspond to

those in the right column of panels C to E.

https://doi.org/10.1371/journal.pcbi.1008929.g002
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To obtain the results at high temporal resolution, we set σj+1 to a value such that the number of

cycles nco of the wavelet Cj(t) was three, i.e., nco = 6 fiσj+1 = 3. The data Aj(t) for t = nco/2fj+1 to

(T − nco/2fj+1) were used to reduce the edge artifact of the wavelet Cj(t) with update T − nco/

fj+1! T, with respect to each j. The peak frequency fd and others fd−1, fd−2, . . ., f1 were esti-

mated from the power spectra of Xi(t) and of Ai,d−1(t), Ai,d−2(t), . . ., Ai,1(t), respectively, for

i = 1,2, . . .,N. We averaged each set of the spectra over i with respect to each frequency f,
obtained a single spectrum, and estimated its peak frequency over the interval 1� f< 45 for

X(t), otherwise in 0.1� f< fj+1 for Aj(t); for X(t) only, we first reduced the power-law effect on

the corresponding spectra Pi(f) across i = 1, 2, . . ., N which may follow f � b1 ; f � b2 ; . . . ; f � bN with

certain exponents [51], respectively, by subtracting the linear trend from logPi(f) vs. logf with

respect to each i.
Analysis (ii): Next, instantaneous amplitudes A0(t) were labeled as the K states of L(t)2{1, 2,

. . ., K} by k-means clustering (Fig 2C). The number of states K was estimated from the

Calinski-Harabasz index [52] in a condition of K 2 {2, 3, . . ., 10}. To obtain reproducible

results, we deterministically initialized the clustering algorithm using PCA partitioning [53].

Any kernel function was not applied to the present clustering analysis because the dynamics

A0(t) appeared here would play a role representing K states more discriminatorily in the N-

dimensional state space compared with original dynamics X(t) (see Fig 2A and 2D).

Analysis (iii): Finally, the labeled amplitudes (A0(t), L(t)) were projected to lower-dimen-

sional data Y(t) = (Y1(t),Y2(t), . . .,Ym(t)) with dimension m< N by LDA (Fig 2D). In this

study, (A0(t), L(t)) was projected onto a plane (m = 2) for the case of K> 2, otherwise in a one-

dimensional axis (m = 1) due to limitation of the LDA. We generated histograms with respect

to each labeled state k 2 {1, 2, . . ., K} using the same bin sizes, and calculated the maxima of

the counts of bins Ek for each k. The statistics {Ek} can indicate higher values as states {1, 2, . . .,

K} become stable (see Fig 2D), and were regarded as the indices for the attracting tendencies

that could be proportional to the potential energy of state space. The statistic E = mink Ek was

applied to the Fourier-transform (FT) surrogate data testing for multivariate time series [54]

under the null hypothesis H0, where A0(t) is linearly correlated Gaussian noise. We generated

surrogate data A0
0
ðtÞ by randomizing the initial phases of A0(t), applied k-means clustering

A0
0
ðtÞ7!L0ðtÞ, converted the labeled data ðA0

0
ðtÞ; L0ðtÞÞ to lower-dimensional ones Y0(t) by the

same projection as (A0(t), L(t)), and calculated the statistic E0 of the surrogate data. We per-

formed a one-sided test to verify whether E was significantly larger than E0 by generating 200

surrogate data sets and setting the significance level to 0.05.

In summary, X(t) was converted into Y(t) using the following composite analysis: (i) the

envelopes were repeatedly computed from 63-channel EEG signals d times (Fig 2B); (ii) the

final envelopes were labeled as K clusters in the 63-dimensional space (Fig 2C); and (iii) these

clusters were projected onto a two- or one-dimensional space in which we tested whether they

showed attracting tendencies (Fig 2D). These analyses were performed in the conditions of

d 2 {0, 1, 2, 3}, and we tested which d can indicate the dimension of underlying states. For the

case of d = 0 only, we first applied a band-pass filter to the raw EEG signals in a range between

1 and 45 Hz.

Dynamical systems modeling

We developed a model for individual transition dynamics, in which the dimension of underly-

ing states was identified as two. The model was described by a coupled oscillator system

driven by fluctuations, and was combined with the empirical results to validate the dynamic

PPC-PAC hypothesis (Fig 1). The large-scale network with PPC-PAC connectivity was mod-

eled in a space spanned by the 63 electrodes, and each node was represented by the phase of
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slow oscillations and the amplitude of fast oscillations (i.e., the PAC oscillator; S1 Fig). Inter-

individual differences in the model were then taken into account through the PPC connectivity

(see Fig 1A), which was estimated from the current source density (CSD) [42, 55] of the raw

EEG signals X(t). Finally, we applied an observation operator h from CSD to EEG dynamics.

The signals X(t) (represented as the column vector hereafter) were applied to two (N × N)-

matrices G and H and were transformed into CSD signals Im(t) as follows [42, 55, 56]:

ImðtÞ ¼ HcðtÞ; ð5Þ

cðtÞ ¼ ðGþ lIÞ� 1
ðX0ðtÞ � c0ðtÞÞ; ð6Þ

where

X0ðtÞ ¼ XðtÞ �
1

N

XN

i¼1

XiðtÞ; ð7Þ

and the following spherical interpolation was used [55]:

X0ðtÞ ¼ GcðtÞ þ c0ðtÞ: ð8Þ

In Eq (6), c(t) and c0(t) are the spline coefficients, λ denotes the smoothing constant which

was set to 10−5, and I denotes the identity matrix with size N. As seen in Eqs (5) to (8), Im(I)
can be mapped to X(t) through observation h as follows:

XðtÞ ¼ hðImðtÞÞ ¼ GH � 1ImðtÞ; ð9Þ

under the assumption that c0(t) and the average potential in Eq (7) are zero. As shown in the

Results, many of the individual transition dynamics were labeled as two-dimensional metasta-

ble states with delta-alpha PAC, and thus a coupled delta-alpha PAC oscillator system was

constructed.

The model. The delta-alpha PAC dynamics of Im(I) were modeled by a coupled oscillator

system driven by fluctuations (S1 Fig). The model comprised N PAC oscillators whose phases

and amplitudes corresponded to delta- (δ) and alpha-band (α) activity, respectively. We repre-

sented the ith oscillator at time t by delta-band phase ϕi (t) and alpha-band amplitude ri (t), its

frequency by ω, and the fluctuation to this oscillator by ηi (t). The phases ϕj (t) have connec-

tions to ϕi (t) (PPC) for j 6¼ i with coupling strengths Jdij and delay b
d

ij, and connections to

amplitude ri (t) for both j = i and j 6¼ i (local and inter-regional PAC) with coupling strengths

Jadij and delay b
ad

ij . The phase ϕi (t) has another connection from fluctuation ηi (t) with the level

D. Then, the system with these three kinds of interactions can be described as follows:

dri
dt
¼ rið1 � r2

i Þ þ k
ad
XN

j¼1

Jadij cos ð�j þ b
ad

ij Þ; ð10Þ

d�i
dt

¼ oþ kd
XN

j¼1

Jdij sin ð�j � �i þ b
d

ijÞ þ DZiðtÞ; ð11Þ

where kδ and kαδ denote the total coupling strength of the PPC and PAC, respectively. In Eq

(11), term kdJdii sin ðb
d

iiÞ (where j = i in summation) was assumed as a certain bias arising from

the estimation of PPC connectivity, shown below. It can be seen that a part of the system com-

posed only of delta-band phases (Eq (11)) is the Kuramoto model (or also called the Kura-

moto-Sakaguchi model) subject to noise [22]. Moreover, the present system (Eqs (10) and
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(11)) can reduce to the identical Stuart-Landau oscillators when kδ, kαδ, and D are all set to

zero [22]. In this model, we made a connection from fluctuation ηi (t) to phase ϕi (t) only

because our hypothesis (Fig 1) was that the dynamic changes in PAC strengths (transitions

between PAC states) can be attributed to changes in PPC strengths (transitions between syn-

chronous states). Accordingly, we set Jadij and b
ad

ij in Eq (10) to arbitrary values that could not

affect the transition dynamics.

As described below, synchronous states in the model were represented by phase patterns

with different relative phase relationships, and were thus characterized by a set of the phase

differences [57]. The model (Eqs (10) and (11)) without the fluctuation term Dηi (t) can

show multistability where each attractor generates oscillations with a distinct phase pattern,

and such oscillations in a state can realize the transition to another state by fluctuations

Dηi (t) (see the scenario of multistability in [58]). In the following, the delta-band phase pat-

terns were first estimated from the individual CSD signals Im (t). The delta-band PPC con-

nectivity fJdij; b
d

ijg and the level of fluctuations D were then estimated in turn. Finally, the

model Eqs (10) and (11) was numerically simulated with ω = 2πf1, kδ = kαδ = 0.1 and η(t) =

(η1(t), η2(t), . . .,ηN(t)) being generated from a multivariate normal distribution, using the

Euler-Maruyama method [59] with time step Dt ¼ 0:01 s. Hereafter, we represented the

PPC-PAC connectivity by complex-valued matrices Cδ and Cαδ, which were defined as

Cdij ¼ Jdij exp ðib
d

ijÞ and Cadij ¼ Jadij exp ðib
ad

ij Þ, respectively.

Estimation of phase patterns. Phase patterns of the delta-band oscillatory dynamics were

estimated from CSD signals Im(t) based on the label L(t) 2 {1, 2, . . ., K} of A0(t). First, delta-

band phases θ(t) = (θ1(t), θ2(t), . . .,θN(t)) were extracted from Im (t) using the complex-valued

Morlet waveletC0 (t) defined by Eq (4), as follows:

yiðtÞ ¼ arg ððImÞi �C0ÞðtÞ; ð12Þ

where arg(�) denotes the conversion from the complex value to its phase. The parameter σ1 of

C0 (t) in Eq (4) was set to a value, such that nco ¼ 3 as well as C0 (t) applied to A1(t). Next, the

time courses of the phase differences between each pair of θi (t) and θj (t) were calculated, and

were averaged over time with respect to each labeled state μ as follows:

1

jL� 1ðmÞj

X

t2L� 1ðmÞ

exp ðiðyiðtÞ � yjðtÞÞÞ ¼ Rmij exp ðic
m

ijÞ; ð13Þ

where |�| denotes the number of time instances at which the dynamics visited state μ. The abso-

lute and argument parts Rmij and c
m

ij in Eq (13) indicated the mean of the phase synchronization

index [49] and the mean of the phase difference between θi (t) and θj (t) in state μ, respectively.

Then, the phase pattern (the relative phases) y
m
¼ ðy

m

1
; y

m

2
; . . . ; y

m

NÞ was estimated from phase

differences fc
m

ijg according to the following algorithm composed of initialization steps

ði�; j�Þ  argmax
ði;jÞ2fði;jÞji>jg

Rij; ð14Þ

y
m

i�  0; ð15Þ

y
m

j�  � c
m

i� j� ; ð16Þ

Rii�  0 8i; ð17Þ
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and (N − 2)-time iterations of

Rij�  0 8i; ð18Þ

i�  j�; ð19Þ

j�  argmax
j2f1;2;...;Ng

Ri� j; ð20Þ

y
m

j�  y
m

i� � c
m

i� j� ; ð21Þ

for μ = 1, 2, . . ., K, where the following index has been defined:

Rij ¼
1

K

XK

m¼1

Rmij: ð22Þ

The index Rij was used to measure how reliably the phases θi(t) and θj(t) were phase-locked

over time and among states. As a whole, the phase pattern θμ was regarded as the synchronous

state μ in the model.

Estimation of PPC connectivity. The PPC connectivity Cδ was estimated from synchro-

nous states {θμ} as follows [57]:

Cd � PPy; ð23Þ

where

Pij ¼ exp ðiyjiÞ; ð24Þ

and P† denotes the Moore-Penrose inverse of P. The obtained connectivity Cδ can converge a

trajectory of the system Eq (11) into either of synchronous states {θμ} such that fy
m

i � y
m

j g are

preserved [57].

Estimation of the level of fluctuations. The fluctuation level D was estimated from sys-

tem Eq (10) with PPC connectivity Cδ. The fluctuations η(t) were generated from the multivar-

iate normal distribution of mean zeros and the covariance matrix, which was represented by a

nearest symmetric positive semidefinite matrix [60] of matrix S defined as

Sij ¼
1

K

XK

m¼1

exp i ymi � y
m

j

� �� �
�
�
�
�
�

�
�
�
�
�
: ð25Þ

The value Sij measures the similarity of ðy
m

i � y
m

j Þ among synchronous states {θμ}; as ðy
m

i �

y
m

j Þ differs, Sij approaches zero, and so the fluctuations ηi (t) and ηj (t) become independent of

each other. That is, we assumed that the delta-band phase difference (θi (t) − θj (t)) was likely

to fluctuate as it showed large changes among phase patterns {θμ}. The delta-band phase

dynamics ϕi (t) for i = 1, 2, . . .,N were then simulated with an increase of D from 0 to 1 and a

step size of 0.02, and the simulated phases were labeled as ~LðtÞ by referring to the overlap
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Mμ (t) [57], as follows:

~LðtÞ ¼ argmax
m2f1;2;...;Kg

MmðtÞ; ð26Þ

MmðtÞ ¼
1

N

XN

j¼1

exp ðið�jðtÞ � y
m

j ÞÞ

�
�
�
�
�

�
�
�
�
�
: ð27Þ

From transition ~LðtÞ, the following 3K statistics were extracted: the maximum ~Sm1ðDÞ,
median ~Sm2ðDÞ, and minimum ~Sm3ðDÞ of the dwell time for μ = 1, 2, . . .,K with respect to each D,

and a level D̂ was estimated such that the root-mean-square error (RMSE) of f~Sjig was mini-

mized as follows:

D̂ ¼ argmin
D2f0;0:02;...;1g

RMSE ðDÞ; ð28Þ

RMSE ðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3K

X3

i¼1

XK

j¼1

ð~SjiðDÞ � S
j
iÞ

2

v
u
u
t ; ð29Þ

where Sji denotes the actual statistic extracted from L (t). When estimating the fluctuation level

here, we set Δt = 0.2 s for the sake of computational efficiency.

Validation of the parameter estimation. Then, the aforementioned estimation of phase

patterns {θμ}, PPC connectivity Cδ, and the level of fluctuations D were validated by artificially

generated phase dynamics. First, as in the previous studies [61, 62], we constructed P corre-

lated patterns from a single reference pattern. From a phase pattern ð~y1;
~y2; . . . ; ~yNÞ where

each phase followed the uniform distribution between −π and π, we computed new pattern

~ym ¼ ð~y
m
1 ;

~y
m
2; . . . ; ~y

m
NÞ as follows:

~y
m
i ¼ ~y i þ sx

m

i ; ð30Þ

for μ = 1, 2, . . .,P. The variable x
m

i followed a normal distribution of mean 0 and standard devi-

ation 1, and thus as σ approaches zero, phase patterns f~ymg show a high correlation. The corre-

sponding PPC connectivity ~Cd was computed using Eqs (23) and (24), and the model (Eqs

(10) and (11)) combined with connectivity ~Cd and fluctuations η (t) was simulated. The

parameter estimation was then validated in the condition of σ = 0.5 and P = 3.

Validation of the dynamic PPC-PAC hypothesis. Finally, the dynamic PPC-PAC

hypothesis (Fig 1) was validated by individual models (Eqs (10) and (11)) with PPC connectiv-

ity Cδ and fluctuation level D̂, as estimated above. The delta-alpha PAC dynamics (ϕi (t), ri (t))
for i = 1, 2, . . .,N were simulated across the subjects, and the N simulated CSD amplitudes

(r1(t), r2(t), . . ., rN(t)) were mapped to the N simulated EEG amplitudes ~A1ðtÞ through obser-

vation h in Eq (9) as follows:

~A1ðtÞ ¼ h
�
½r1ðtÞ; r2ðtÞ; . . . ; rNðtÞ�

T
�
; ð31Þ

where T denotes the transposition. The simulated observations ~A1ðtÞ were converted to their

projection ~Y ðtÞ in a space with the same dimension as Y (t). Specifically, (i) the instantaneous

amplitudes ~A0ðtÞ were computed from ~A1ðtÞ around delta-band peak frequency f1, (ii) ~A0ðtÞ
were labeled as K states of ~LðtÞ, and (iii) the labeled amplitudes ð~A0ðtÞ; ~LðtÞÞ were projected to
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~Y ðtÞ by LDA. Finally, FT surrogate data testing was performed in the same manner as for the

experimental data.

Results

We started with the condition d = 2, and many of the recorded brain dynamics, consisting of

63-channel scalp EEG signals X(t), were labeled as two-dimensional metastable states with

peak frequencies f1 and f2 (n = 101). Notably, these states were characterized by the delta- and

alpha-band peak frequencies ranging from 0.1 to 4 Hz and 8 to 12 Hz, respectively (n = 95; Fig

3). The frequency of the fast oscillations (f2) was first estimated from the power spectrum of X
(t) (Fig 3A and 3E; S2 Fig), and was used to calculate the corresponding instantaneous ampli-

tudes A1(t) (Fig 3B). These amplitudes were converted further into corresponding instanta-

neous amplitudes A0(t) (Fig 3C) around the frequency of the slow oscillations (f1), which was

estimated from the power spectrum of A1(t) (Fig 3F). Then, k-means clustering with the

Calinski-Harabasz criterion [52] was applied to signals A0(t), and they were labeled as K states

of L(t) that reflected different strengths of amplitude modulation (Fig 3D). The resulting

labeled signals (A0(t), L(t)) in Fig 3C showed significant correlations with the time courses of

Fig 3. Dynamic changes in the delta-alpha PAC strength. (A) A representative raw EEG signal at the FC2 electrode. (B) The

corresponding first envelope (instantaneous amplitudes) around an alpha-band peak frequency. (C) The second envelope around a

delta-band peak frequency. (D) The alpha-band signals. (E) The mean power spectrum of the raw EEG signals as in panel A. (F) The

mean power spectrum of the first envelopes as in panel B. The alpha-band and delta-band peak frequencies were estimated from the

peaks of mean power spectra in panels E and F, respectively (see the dotted lines in panels E and F and refer to S3 Fig). In panel D, (i)

indicates the data corresponding to panel A, while (ii) indicates another signal of faster transition among more states obtained from

an individual with a lower AQ score (the signal at electrode POz). The colors in panels A to D indicate distinct states.

https://doi.org/10.1371/journal.pcbi.1008929.g003
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the modulation index [13], with the significance level of the two-sided tests being corrected for

multiple comparisons using the false-discovery rate (FDR) method [63] (FDR p< 0.05, in the

scalp sites, accounting for more than 50 electrodes; see S3 Fig), and were thus characterized by

different PAC strengths.

To demonstrate these PAC states (two-dimensional states with PAC from f1 to f2, labeled as

L(t)) as possible metastable states in the resting human brain, we projected the obtained

labeled signals (A0(t), L(t)) to trajectory Y(t) in a lower-dimensional state space (Fig 4). The

LDA was used to yield a space such that the projected trajectory can evolve into nearby points

Fig 4. Transition dynamics among delta-alpha PAC states in a lower-dimensional space. (A to E) Representative delta-alpha PAC dynamics for an

individual with higher attention-related AQ subscores (refer to Fig 3A to 3D(i)). (F to J) Representative dynamics for an individual with lower scores

(refer to Fig 3D(ii)). (A, F) The trajectory of labeled signals in a plane. (B, G) The corresponding bivariate histograms. (C, H) Surrogate data testing

under a condition of d = 2. (D, I) The resulting delta-alpha PAC states (represented by the mean PAC strengths). (E, J) Transitions between the

identified PAC states. Surrogate data testing was applied to the density of points indicated by the red circles in panels B and G and the red lines in

panels C and H, and the null hypothesisH0 in condition d = 2 was rejected (C and H). The delta-alpha PAC dynamics tended to stay in a state for a

longer time and to visit a lower number of states in individuals with higher AQ subscores for attention to detail and attention switching (compare E

with J). The colors in panels A, E, F, and J indicate distinct states, as depicted in D and I.

https://doi.org/10.1371/journal.pcbi.1008929.g004
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within each labeled state; this property is also consistent with the fixed point that can converge

a trajectory into one point. Specifically, the labeled signals were projected onto a plane in the

cases where the number of states was more than two (Fig 4A and 4F), and were converted into

a corresponding bivariate histogram (Fig 4B and 4G); otherwise, the histogram would be a

one-dimensional axis because of limitations of the LDA in this study. We calculated the max-

ima of the counts of bins with respect to each state, and regarded these statistics as the indices

for the attracting tendencies of states. We tested whether the representative of the obtained sta-

tistics (E; the minimum in this study) was statistically significant, using the FT surrogate for

multivariate time-series data [54] under the null hypothesis H0 where the labeled signals are

linearly correlated Gaussian noise (see Materials and methods). The surrogate data testing

rejected H0 for many individual datasets under the condition of d = 2 (FT test, one-sided

p< 0.05, n = 101; Fig 4C and 4H) so that the labeled dynamics (Fig 4A and 4F; Fig 3C) were

seen as a trajectory among the zero-dimensional weakly attracting states; in other words, the

states of the original transition dynamics (Fig 3A) were identified as the two-dimensional

metastable states. None of these datasets were rejected under condition d = 1, and many were

not rejected for d = 0 (FT test, one-sided p> 0.05, n = 162 for d = 1 and p> 0.05, n = 99 for

d = 0; see S4 Fig). The majority of the other datasets were rejected for d = 3 (FT test, one-sided

p< 0.05, n = 53). As a whole, the surrogate data testing provided experimental evidence that

macroscopic brain dynamics of the resting-state large-scale network can make spontaneous

transitions across two- or three-dimensional metastable states. In particular, the metastable

PAC states identified here were characterized by two peak frequencies in the delta and alpha

bands (n = 95). We represented each of these delta-alpha PAC states by a vector composed of

mean values of the labeled signals (i.e. the delta-band instantaneous amplitudes depicted in

Fig 3C) over time, namely, by a 63-dimensional vector of mean PAC strengths (Fig 4D and 4I;

S3 Fig).

Delta-alpha PAC states (Fig 4D and 4I) were categorized into four groups across individuals

(n = 95; Fig 5). First, we converted these states into modified Z-scores [64] to standardize them

robustly among individuals, with each dataset being subtracted by the median and divided by

the median absolute deviation instead of the mean and the SD, respectively, and all the data

were subsequently multiplied by 0.6745 [64]. The obtained Z-scores were concatenated across

states and individuals, and the resulting dataset was regarded as the data in a 63-dimensional

feature space. In this space, we conducted principal component analysis (PCA) and applied a

permutation test to 63 PCs by shuffling the dataset 200 times across the channel with respect

to each component. The first four PCs significantly explained variance (one-sided, Bonfer-

roni-corrected p< 1.58 × 10−4, total explained variance 81.6%; Fig 5A). Eigenvectors of these

four PCs were then mapped as the topographies and categorized according to the regional dis-

tribution of the amplitude modulation in the occipital lobe, parietal lobe, and lateral and bilat-

eral distributions in the occipital lobe (Fig 5B).

The dynamics of transitions between the delta-alpha PAC states (Fig 4E and 4J), as identi-

fied in this study, showed correlations with the two AQ subscores of ‘attention to detail’ and

‘attention switching’ (n = 52; Fig 6). From the transition dynamics, we calculated the intervals

between transitions (for which uncertain intervals at both edges were excluded) and obtained

the following candidate statistics: the maximum, median, and minimum of the dwell time.

These statistics, in addition to the number of states and the alpha- and delta-band peak fre-

quencies estimated above, were regarded as test statistics (x) and were paired with the follow-

ing five AQ subscores (y): social skills, attention to detail, attention switching, communication,

and imagination. For these 30 pairwise statistics, we used multiple comparison tests with Pear-

son’s correlation coefficients. The maximal dwell time showed a significant positive correlation

with the attention-to-detail score (r = 0.456, two-sided, Bonferroni-corrected p< 0.0013;
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Fig 6A, the effects of remaining variables in x on y were partially adjusted). Next, we conducted

a post-hoc test of the multiple correlation coefficient using a linear regression model in which

the attention-switching score was regarded as a dependent variable and was regressed against

two statistics: the number of states and the alpha-band peak frequency (Fig 6B), with these

being selected because of weak significant correlations with the attention-switching score (r =

−0.283, two-sided, uncorrected p< 0.06 for the number of states; and r = 0.321, two-sided,

uncorrected p< 0.03 for the alpha-band peak frequency; Fig 6C and 6D, the effects of the

remaining variables in x on y were partially adjusted). The resulting linear combination

showed significant correlation with the attention-switching score (F (2,49) = 4.91, r = 0.409,

p< 0.02), and factor loadings of this linear sum on the number of states and the alpha-band

peak frequency (i.e. the correlation coefficients) were −0.614 and 0.666, respectively (Fig 6B).

The results indicated that in individuals with the ability to maintain a stronger focus on atten-

tion to detail and less attention switching, the delta-alpha PAC dynamics tended to stay in a

particular state for a longer time, to visit a lower number of states, and to oscillate at a higher

alpha-band peak frequency, thereby providing evidence on how autistic-like traits may be

associated with the metastable human brain.

We modeled the metastable delta-alpha PAC dynamics (n = 95) to validate the dynamic

PPC-PAC hypothesis (Materials and methods; Fig 1). The model consisted of delta-alpha PAC

oscillators {ϕi(t), ri(t)}, PPC-PAC connectivity (Cδ, Cαδ), and fluctuations Dη(t). More specifi-

cally, we made connections among the delta-band phases (Cδ: PPC connectivity), from delta-

band phases to alpha-band amplitudes (Cαδ: PAC connectivity) and from fluctuations to delta-

Fig 5. The four groups of consistent delta-alpha PAC states across individuals. (A) PCs of across-individual states.

(B) Eigenvectors of the first four PCs. The variance explained by the first four PCs was significant, and accounted for

81.6% of total variance. The dataset used here was a set of the modified Z-scores of mean PAC strengths that were

concatenated across states and individuals.

https://doi.org/10.1371/journal.pcbi.1008929.g005
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band phases (D: fluctuation level), such that synchronization, amplitude modulation, and state

transition could occur via the PPC and PAC. The PPC connectivity (Cδ) and the level of fluctu-

ations (D) were estimated from the data for each individual (Fig 7); this parameter estimation

was validated by the artificially generated phase dynamics (S5 Fig). On the other hand, the

PAC connectivity (Cαδ) was set to arbitrary values, because our hypothesis was that state tran-

sition occurs according to dynamic changes in PPC strengths (Fig 1). Note that a part of the

present model was composed of only delta-band phases (Eq (11)), with the PPC being equiva-

lent to the Kuramoto model subjected to noise [23]. In this study, the metastable PAC dynam-

ics were modeled as the fluctuation-induced transitions between multistable attractors (for the

scenario of multistability, see [58]).

First, we computed the CSD [42, 55] from raw EEG signals to reduce the volume-conduc-

tion effect on the estimation of instantaneous phases, and then estimated the phase patterns

{θμ} from the 63-channel CSD signals Im(I) (Fig 7A and 7B). Specifically, we extracted the

instantaneous phases θ(t) from Im(I) around the delta-band peak frequency f1, and labeled θ(t)
as transition L(t) (refer to Fig 4E and 4J). We then computed the phase differences fc

m

ijg from

labeled phases (θ(t), L(t)) with respect to each state μ (Fig 7A), and estimated the phase pat-

terns {θμ}, which were regarded as the synchronous states in the model.

Fig 6. Correlations between delta-alpha PAC dynamics and attention-related AQ subscores. (A) Scatter plot of the

attention-to-detail score against maximal dwell time. (B) Scatter plot of the attention-switching score against the linear sum

of the number of states and the alpha-band peak frequency (i) with corresponding factor loadings (ii). (C, D) Scatter plots of

the attention-switching score against the number of states and the alpha-band peak frequency, respectively. In each panel, the

circles in magenta and green correspond to the representative individual delta-alpha PAC dynamics, as depicted in Fig 4A to

4E and 4F to 4J, respectively. The dotted line in each panel indicates the fitted regression line.

https://doi.org/10.1371/journal.pcbi.1008929.g006
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Next, we estimated the PPC connectivity Cδ and the level of fluctuations D (Fig 7C and 7D).

Synchronous states {θμ} obtained above were applied to the Kuramoto model (Eq (11)) com-

posed of delta-band phases {ϕi (t)}, and they were converted into PPC connectivity Cδ (Fig 7C)

[57]. We gradually increased the level (D) of fluctuations to phases, simulated the correspond-

ing models, and generated the transitions for each level. The resulting set of transitions was

quantified by the maximum, median, and minimum of the dwell time with respect to each

Fig 7. Estimation of PPC connectivity and the level of fluctuations from delta-band phase dynamics. (A) Mean

phase differences fc
m

ijg between every pair of delta-band CSD phases with respect to each delta-alpha PAC state μ. (B)

The corresponding phase patterns {θμ} (regarded as the synchronous states in the model). (C) The estimated PPC

connectivity Cδ as a complex-valued matrix with absolute part fJdijg (i) and argument part fb
d

ijg (ii). (D) The estimated

fluctuation level D̂. The synchronous states (B) combined with the Kuramoto model resulted in PPC connectivity (C),

and the Kuramoto model with PPC connectivity was used for estimation of the fluctuation level (D). The data used in

this Figure correspond to Figs 3A to 3D(i) and 4A to 4E.

https://doi.org/10.1371/journal.pcbi.1008929.g007
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fluctuation level, and from these statistics and those obtained from the data, we calculated the

RMSE. We repeated this calculation 100 times and chose the fluctuation level D̂ minimizing

the RMSE (Fig 7D).

Then, we simulated the individual delta-alpha PAC dynamics (n = 95) as modeled above

(Fig 8). By calculating the overlaps Mμ(t) (Eq (27)) every time step and with respect to each

state μ (Fig 8A and 8E), we observed from the model that the phase differences {ϕi(t) − ϕj(t)}
changed dynamically among synchronous states {θμ}, and that the alpha-band amplitudes

{ri(t)} were oscillatory at the delta-band frequency f1. These oscillatory amplitudes were applied

to observation h in Eq (31), so that the simulated EEG amplitudes ~A1ðtÞ were obtained. We

then computed corresponding instantaneous amplitudes ~A0ðtÞ around f1, labeled ~A0ðtÞ as

transition ~LðtÞ by referring to the overlaps (Eqs (26) and (27)), and projected the labeled sig-

nals ð~A0ðtÞ; ~LðtÞÞ to trajectory ~Y ðtÞ in a lower-dimensional space (Fig 8B and 8F). This space

was converted into a corresponding histogram (Fig 8C and 8G), which we used to conduct

surrogate data testing in the same manner as for the experimental data (A0(t),L(t)). For simu-

lated delta-alpha PAC dynamics, the surrogate data testing rejected H0 for a greater number of

individual models in d = 2 than in d = 1 (FT test, one-sided p< 0.05, n = 74 out of 95 for d = 2

and p< 0.05, n = 45 out of 95 for d = 1; Fig 8D and 8H, S6 Fig). A hypothesis test for the differ-

ence in two population proportions indicated that the proportion of the rejected individual

models was significantly higher in d = 2 than in d = 1 (z = 3.418, p< 0.001). Overall, these sim-

ulation results (Fig 8) were consistent with the empirical counterpart (Fig 4), providing evi-

dence for the dynamic PPC-PAC hypothesis.

Finally, we attempted to predict the delta-alpha PAC dynamics with a temporally decreas-

ing fluctuation level D(t) (Fig 9). By calculating the overlaps every time step in this simulation,

we observed that one of the delta-alpha PAC states was stabilized, so that the transition dynam-

ics qualitatively changed into the dynamics in a single state (Fig 9A) as the fluctuation level

decreased (Fig 9B). This appearance depended on the initial condition of the system. More-

over, such a qualitative change from multiple states to one state was viewed as a shrinking of

the trajectory in the state space (Fig 9C). We generated the trajectories of the system under dif-

ferent initial conditions in a space composed of the overlaps. The trajectories were projected

onto planes, from which we observed that the spaces filled by the transition dynamics can

include the three states as their subsets (Fig 9C).

Discussion

In this study, we developed a data-driven approach to label observed metastable dynamics as

the underlying d-dimensional states. The method was applied to 63-channel scalp EEG signals

recorded from 130 healthy humans in an eyes-closed resting condition (n = 162 in total). The

observed signals were labeled as metastable states with a dimension larger than one, such that

PAC could occur hierarchically, in particular with a dimension of two, corresponding with the

delta- and alpha-band peak frequencies (n = 95; Fig 3). Then, the dynamics of the transitions

between the delta-alpha PAC states (Fig 4), which were categorized into four groups across

individuals (Fig 5), showed correlations with the AQ subscales of attention to detail and atten-

tion switching (Fig 6). Finally, we qualitatively reproduced the obtained results in a coupled

oscillator system driven by spontaneous fluctuations (Figs 7 and 8) with prediction (Fig 9), to

validate the hypothesis that the dynamic changes in PAC strengths can be attributed to

changes in the strengths of PPC, that is, to dynamic functional connectivity in an electrophysi-

ological sense (Fig 1).

Many studies show that neural activity exhibits oscillations whose amplitudes change rhyth-

mically over time [6, 12, 13, 65, 66]. A possible mechanism for this amplitude modulation is
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Fig 8. Simulation of delta-alpha PAC dynamics by a coupled oscillator system driven by spontaneous fluctuations. (A to D) The

representative simulated delta-alpha PAC dynamics for an individual with higher attention-related AQ subscores (refer to Fig 4A to

4E). (E to H) Representative dynamics for an individual with lower scores (refer to Fig 4F to 4J). (A, E) Time courses of overlaps (i)

and the corresponding labels (ii) among delta-alpha PAC states. (B, F) The trajectory of labeled signals in a plane. (C, G) The

corresponding bivariate histograms. (D, H) Surrogate data testing under condition d = 2. Surrogate data testing was applied to the

density of points indicated by the red circles in panels C and G and the red lines in panels D and H, and the null hypothesisH0 in

condition d = 2 was rejected (D and H). The model showed consistent results with the data analysis, evidence of the dynamic

PPC-PAC hypothesis.

https://doi.org/10.1371/journal.pcbi.1008929.g008
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PAC, in which the phases of slow oscillations interact with the amplitudes of faster oscillations

such that local and global computations in the large-scale network can cooperate [12, 13]; the

PAC takes various forms depending on events such as visual and auditory tasks [65, 66]. In the

present work, we identified a possible link of the PAC for resting-state EEG dynamics to the

two-dimensional metastable states, which were also characterized by slow and fast timescales

(Figs 1 to 4). Some modeling studies have shown evidence for a torus-related PAC [18, 19],

such as the study of Sase et al., which analyzed a model composed of excitatory and inhibitory

networks with dynamic synapses and revealed that amplitude-modulated dynamics can

emerge from a trajectory into the torus or the closed curve, with these being mediated by bifur-

cation [18]. Hence, it is suggested that attractors in the resting brain play a functional role in

generating cooperative dynamics over the large-scale network and could be a torus, in which

spontaneous events are effectively processed by the utilization of multiple neural timescales.

A two- or three-dimensional state was identified as a possible metastable state underlying

the resting-state EEG signals of most individuals (refer to Figs 1 to 4). This result implies that

macroscopic dynamics in the human brain can follow the oscillatory hierarchy hypothesis stat-

ing that slower and faster oscillations interact hierarchically via the PAC [35, 67]. Lakatos et al.

showed experimental evidence of EEG hierarchical organization: delta-band phases modulated

amplitudes of fast oscillations, which further made a spontaneous PAC connection to another

Fig 9. Shrinking of the simulated delta-alpha PAC dynamics with a temporally decreasing fluctuation level in the

phase space: The qualitative change from the transition dynamics to the dynamics in a single state. (A) Time

courses of the overlaps with their labeled sequences under different initial conditions in cases where the dynamics can

converge into one of three states. (B) The time course of the fluctuation level. (C) The trajectories of overlaps in the

phase space with their projections. The contour plots on projections in panel C indicate that the spaces filled by

transition dynamics (black lines) can include the three states (red, green, and blue lines) as their subsets. The data used

in this Figure correspond to the individual with higher attention-related AQ subscores depicted in Figs 3A to 3D(i), 4A

to 4E, 7 and 8A to 8D.

https://doi.org/10.1371/journal.pcbi.1008929.g009
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faster oscillatory component [35]. We suggest that the resting human brain could utilize attrac-

tors with multiple timescales, so that a variety of events are spontaneously organized in a hier-

archy of macroscopic neural oscillations.

Not only were the amplitudes of resting-state EEG signals rhythmic, but the strengths of the

PAC (as obtained after two-time computations of instantaneous amplitudes) exhibited

dynamic changes such that transitions between two-dimensional states could occur (Fig 4).

Previous studies showed that the PAC strength changed dynamically over time, and transiently

in response to sensory and cognitive events [12, 68–71]. Such dynamic coupling was observed

during cognitive behavior in a T-maze task [68], learning [69], attentional allocation [70], and

motor preparation [71]. Using a spatial-cuing task, Szczepanski et al. found PAC modulation-

dependent attentional behavior in which the modulation strength was negatively correlated

with the reaction time on a trial-by-trial basis [70]. Moreover, Kajihara et al. showed evidence

that delta-alpha PAC dynamically occurs to mediate the global-to-local computation in motor

preparation, such that the delta-band synchrony makes a direct link with the alpha-band

amplitudes via the PAC [71]. These results may be supported by the conventional view of the

task-dependent PAC [65, 66]: Voytek et al. reported that fast oscillations were strongly coupled

with a slow oscillatory component via PAC during a visual task, and that this coupling weak-

ened during an auditory task so that PAC with another slow oscillatory component could

occur [66]. In recent years, it has been suggested that dynamic PAC plays a role in modulating

the dynamics of the large-scale network, doing so more effectively than coupling with static

modulation [12].

To the best of our knowledge, our finding of dynamic PAC, as realized by the transition

between the metastable states, is the first experimental report of this phenomenon. Crucially,

we identified the transitions between delta-alpha PAC states (Fig 4), which were further cate-

gorized into four groups across individuals (n = 95; Fig 5). Previous studies showed evidence

from resting-state functional magnetic resonance imaging (fMRI) signals that large-scale sub-

networks with different functional connectivity, termed ‘resting-state networks’, are consistent

across individuals [72, 73], and that these consist of the following components: the default

model network, the executive control network, the salience network, the dorsal attention net-

work, and networks related to auditory, sensorimotor, and visual functions [73]. In recent

years, it has been suggested that such networks are linked to the underlying electrophysiologi-

cal oscillations [74, 75]. With respect to each network, Mantini et al. showed correlations

between slow fluctuations in the blood-oxygen-level-dependent (BOLD) signal and EEG

power variations of different brain rhythms, including delta and alpha rhythms [74]. More-

over, Britz et al. identified four resting-state networks from BOLD signals combined with the

transition dynamics of EEG scalp potentials [75], referred to as EEG microstates [24–27], and

a previous study likewise showed four network modules that were highly consistent across sub-

jects [72]. These results inspired attempts to detect the large-scale functional network using

only EEG data [76]. Moreover, the regional specificity of PAC has also been reported [66, 70],

as well as the lateralization of PAC strengths [70]. Thus, macroscopic neural oscillations with

multiple timescales in the resting human brain, identified as the delta-alpha PAC states in this

study, could be the electrophysiological signatures of resting-state networks.

Our main finding is the AQ-related behavioral correlates of delta-alpha PAC dynamics,

namely, the correlation with the two AQ subscales of attention to detail and attention switch-

ing (Fig 6). In fact, slower neural oscillations are suggested to be dynamically entrained by

rhythmic input from external sensory events [12, 14, 77]. Lakatos et al. showed that delta-band

oscillations selectively entrained to the rhythm of attended visual and auditory stimuli, thereby

providing evidence of the neural entrainment to attention by which the brain encodes task-rel-

evant events into preferred delta-band phases [14]. On the other hand, alpha-band oscillations
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have been suggested to play an inhibitory role by effectively gating top-down processing [78].

Previous studies showed that the alpha-band power decreased in the hemisphere contralateral

to attended visual stimuli, whereas it exhibited an increase in the ipsilateral hemisphere (refer

to Fig 5) [78]; this is evidence for attention-induced alpha-band lateralization that gates the

flow of top-down information into task-irrelevant regions [78, 79]. Alpha-band activity are

dominantly observed in the resting brain, in particular in the occipital region [7], and the

alpha-band peak frequency depends on age and cognitive performance [7], which shows inter-

individual variability [80]. Moreover, a recent study reported atypical neural timescales for

individuals with autism spectrum disorder (ASD) [81], on the basis of the fact that the hetero-

geneity of timescales in the brain could be a basis for functional hierarchy [82]. Watanabe et al.

found shorter neural timescales in sensory/visual regions and a longer timescale in the right

caudate for individuals with a higher severity level of ASD [81]. Together, it is suggested that

attractors in the resting human brain generate individual delta-alpha PAC dynamics that selec-

tively encode spontaneous events by utilizing attention. Individual macroscopic dynamics in

the brain, as identified here, and which tend to stay in a state for a longer time, to visit a lower

number of states, and to oscillate at a higher alpha-band frequency in individuals with a stron-

ger preference for specific events (Fig 6), might be a neural signature of the autism spectrum,

covering both typical and atypical development.

Although we filtered out lower frequency components below 0.1 Hz offline, the delta-band

oscillations (0.1–4 Hz) reported here may still be affected by infra-slow fluctuations (0.01–0.1

Hz) during rest. Such spontaneous fluctuations have been observed by various neuroimaging

methods such as EEG and fMRI [83, 84], and a previous study reported that spontaneous

infra-slow scalp potential fluctuations are correlated with BOLD fluctuations of resting-state

networks [85]. In this study, the lower bound of the delta-band frequency was set to the lower

bound of the spectral frequency of the first envelopes, i.e., 0.1 Hz. Dependence of the results

on this parameter should be investigated in future work.

Recently, atypical transition dynamics of the resting large-scale network were identified as

ASD symptoms [86]. By applying energy-landscape analysis [87] to the fMRI signals of rest-

ing-state networks, Watanabe and Rees showed that neurotypical brain activity transited

between two major states via an intermediate state, and that the number of these transitions

was lower due to the unstabilization of the intermediate state for the individuals with a higher

severity level of ASD [86]. Such dynamics-behavior associations were linked to functional seg-

regation. In this study, we generated the energy-like landscape of resting-state EEG dynamics

by utilizing multi-step envelope analysis (Fig 2), so that the underlying oscillatory attractors

could transform into the fixed points (Fig 4), and found a similar dynamics-behavior associa-

tion between the dwell time of delta-alpha PAC state transitions and the attention-to-detail

AQ subscale (Fig 6A). Hence, the individual delta-alpha PAC dynamics could be the

electrophysiological signature of an atypical balance in functional organization.

What kind of mechanisms can underlie the dynamic PAC and enable transitions between

attractors? One possible mechanism is the metastability (or called criticality in a similar sense)

that is suggested to play a role in maintaining a dynamic balance of integration and segregation

of brain functions across multiple spatiotemporal scales [4, 34, 88]. Such dynamic organization

was fruitfully discussed from viewpoints of both models and experimental data by Tognoli and

Kelso [34]. By introducing an extended Haken-Kelso-Bunz model [88] and actual neurophysi-

ological and behavioral data [34], they illustrated that phase dynamics in the brain can utilize

both tendencies of dwells to be in synchrony and escapes into non-synchronous patterns, and

associated this fact with the abilities of the brain (integration and segregation) in the theory of

coordination dynamics [34, 88]. Similar dynamics were previously observed in the resting-

state neural signals of EEG [26, 28, 29], fMRI [89], and functional multineuron calcium
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imaging [90] aimed at generating a better mathematical model of individual brains [1–5, 18,

20, 21, 23, 84, 91]; there is ongoing debate whether spontaneous neural activity originates from

a deterministic dynamical system [88] that may yield chaotic itinerancy [92], or our present

standpoint, a random dynamical system driven by spontaneous stochastic fluctuations [93–95]

(see [58] for possible scenarios). Together, it is suggested that individual delta-alpha PAC

dynamics at rest (which could relate to previous studies reporting that delta-alpha PAC

occurred in preparation for a task [71] and during decision making [65]) utilize metastability

to organize spontaneous events in a hierarchy of macroscopic oscillations with multiple

timescales.

Here, on the basis of our dynamic PPC-PAC hypothesis validated by the empirical and

modeling counterparts (Fig 1; Figs 4 and 8), we posit that the dynamic changes in delta-alpha

PAC modulation are attributed to the dynamic functional connectivity in an electrophysiologi-

cal sense. Dynamic functional connectivity is referred to as the functional connectivity of the

large-scale network with dynamically changing temporal correlation [96], and has been regu-

larly observed in resting-state fMRI signals with behavioral and cognitive relevance [89, 97]. In

a similar sense, resting-state EEG experiments showed that the dynamics of the large-scale net-

work transited among a repertoire of synchronized states [8, 28, 29]. We applied this view to

the large-scale network of slow oscillations, taking into account its neuromodulatory influ-

ences on a faster oscillatory component, and validated the resulting dynamic PPC-PAC

hypothesis using an extended version of the Kuramoto model (see Figs 1, 7 and 8). By analyz-

ing a model of local networks with heterogeneity near the onset of synchrony, a relevant

modeling study demonstrated that transient synchrony of the large-scale network can organize

the routing of information flow [98]. In the present study, we detected the synchronous states

by referring to the transitions of delta-alpha PAC dynamics (Fig 4E and 4J) to support the

dynamic PPC-PAC hypothesis. However, the changes in PPC connectivity would be better

characterized by drifts of the delta frequency that might occur from transitions. Dynamic and

transient delta-alpha PAC, as identified in this study, may originate from the coupling between

delta-band phases, and the relationship of this transient PAC with transient synchrony

remains to be elucidated.

We should remark on the observation operator h in Eqs (9) and (31) that connected the

simulated CSD dynamics to the experimental EEG data. The method (Fig 2) was developed

such that the estimation of inter-regional properties between signals was not necessarily

required, and accordingly it was directly applied to the scalp EEG signals. While it might seem

natural to apply the CSD to the empirical counterpart as well, we wanted to avoid generating

possible artifacts due to the CSD estimation [56]. However, amplitude modulation of apparent

frequencies could affect the results when multiple uncoupled sources coexist in the brain. Lim-

itations of the metastable states clustering developed here should be clarified in future work.

Finally, we observed shrinking of the transient PAC dynamics with a temporally decreasing

fluctuation level from the model (Fig 9). This result could relate to the reduction in trial-to-

trial variability of cortical activity that can occur after the stimulus onset, such that the sponta-

neous and task-evoked brain activity interplay in a complex manner [99]. Such a phenomenon

was previously observed from the spikes of single neurons [100], and was recently demon-

strated by a model including local and global cortical networks at multiple spatiotemporal

scales [101]. Thus, the present model combined with the resting-state EEG data could have the

potential for predicting task-relevant events; for example, identifying a parameter that can

facilitate a dynamic balance in the typical and atypical neural activity of the large-scale net-

work, which might be helpful for mitigating the severity level of ASD, so that faster transition

dynamics among more states can appear during rest.
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Taken together, we reported the first experimental evidence that (i) metastable states in the

resting human brain can be two- or three-dimensional; (ii) that their dynamics can be metasta-

ble delta-alpha PAC dynamics; and (iii) their functional role is associated with autistic-like

traits. These empirical findings were then combined with the modeling counterpart, to provide

evidence that (iv) such dynamic and functional PAC may originate from dynamic functional

connectivity. We suggest that the metastable human brain organizes spontaneous events

dynamically and selectively in a hierarchy of macroscopic oscillations that interact in a cooper-

ative manner, and that such dynamic organization might encode a spectrum of individual

traits covering both typical and atypical development. Our findings on the metastable human

brain and its association with autistic-like traits may be further corroborated by the following

research: (i) the brain of ASD subjects during rest [86, 102, 103] to verify our present findings

from healthy subjects; (ii) the brain during transcranial magnetic stimulation [32, 104] and

closed-loop control by neurofeedback [79] to manipulate individual traits; and (iii) the brain

during a task to understand the relationship between spontaneous and task-evoked dynamics

from the viewpoint of the attractors that might underlie the human brain [99].

Supporting information

S1 Fig. The model of a coupled oscillator system of delta-alpha PAC driven by fluctua-

tions. The model comprised N PAC oscillators whose phases {ϕi(t)} and amplitudes {ri(t)}

corresponded to delta- and alpha-band activity, respectively. The phase ϕj(t) interacted

with ϕi(t) and ri(t) via the PPC connectivity Cdij ¼ Jdij exp ðib
d

ijÞ and the PAC connectivity

Cadij ¼ Jadij exp ðib
ad

ij Þ. The phase ϕi(t) was driven by fluctuation ηi(t) with the level D for

i = 1, 2, . . ., N.

(TIF)

S2 Fig. Estimation of the peak frequency of a fast oscillatory component. The power spectra

of EEG signals were detrended in the double-logarithmic scale with respect to each signal. The

detrended spectra were averaged, resulting in a single spectrum from which we estimated the

peak frequency (refer to Fig 3E).

(TIF)

S3 Fig. Correlations between the labeled signals and the time courses of the modulation

index (MI) [13]. The MI of the EEG signals was estimated successively over time by a sliding

time window with a length of the inverse of the delta-band peak frequency (i.e., one delta wave

period). Significant correlations were shown from the scalp sites of more than 50 electrodes.

(TIF)

S4 Fig. Trajectories of the experimental delta-alpha PAC dynamics in the d = 0 and d = 1

conditions. The surrogate data testing did not reject the null hypothesis H0 in condition d = 1

for all the experimental delta-alpha PAC dynamics identified in this study, and many of them

were not rejected in the condition of d = 0. This Figure corresponds to Fig 4A to 4E, and

depicts the case of K = 3 estimated from the condition d = 2 for comparison purposes.

(TIF)

S5 Fig. Validation of the model’s parameter estimation. Artificially generated phase patterns

f~ymg and the estimated phase patterns {θμ} showed high similarities 0.967, 0.881, and 0.962,

which were evaluated by ð1=NÞj
PN

j¼1
exp ðið~ymj � y

m

j ÞÞj for μ = 1, 2, 3, respectively. Accord-

ingly, simulated PPC connectivity ~Cd and its estimation Cδ showed high cosine similarity

(0.979 between the absolute parts and 0.636 between the argument parts). The estimated
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fluctuation level D̂ was 0.44, which was close to the true value of D = 0.5.

(TIF)

S6 Fig. Trajectories of the modeled delta-alpha PAC dynamics in the condition d = 1. The

surrogate data testing did not reject the null hypothesis H0 in condition d = 1 for all the mod-

eled delta-alpha PAC dynamics. This Figure corresponds to Fig 8A to 8D, and depicts the case

of K = 3 for comparison purposes.

(TIF)

Acknowledgments

We are grateful to Ms. Yoko Noguchi for help with acquisition of EEG signals and AQ scores,

and to Dr. Yuka O. Okazaki for helpful discussion. TS would like to thank International

Islamic University Malaysia (IIUM) for the support.

Author Contributions

Conceptualization: Takumi Sase, Keiichi Kitajo.

Data curation: Takumi Sase, Keiichi Kitajo.

Formal analysis: Takumi Sase, Keiichi Kitajo.

Funding acquisition: Keiichi Kitajo.

Investigation: Takumi Sase, Keiichi Kitajo.

Methodology: Takumi Sase, Keiichi Kitajo.

Project administration: Keiichi Kitajo.

Resources: Keiichi Kitajo.

Software: Takumi Sase.

Supervision: Keiichi Kitajo.

Validation: Takumi Sase, Keiichi Kitajo.

Visualization: Takumi Sase.

Writing – original draft: Takumi Sase.

Writing – review & editing: Takumi Sase, Keiichi Kitajo.

References
1. Deco G, Jirsa VK, Mclntosh AR. Emerging concepts for the dynamical organization of resting-state

activity in the brain. Nat Rev Neurosci. 2011; 12:43–56. https://doi.org/10.1038/nrn2961

2. Cabral J, Kringelbach ML, Deco G. Exploring the network dynamics underlying brain activity during

rest. Prog Neurobiol. 2014; 114(1):102–131. https://doi.org/10.1016/j.pneurobio.2013.12.005

3. Breakspear M. Dynamic models of large-scale brain activity. Nat Neurosci. 2017; 20(3):340–352.

https://doi.org/10.1038/nn.4497

4. Cocchi L, Gollo LL, Zalesky A, Breakspear M. Criticality in the brain: a synthesis of neurobiology, mod-

els and cognition. Progr Neurobiol. 2017; 158:132–152. https://doi.org/10.1016/j.pneurobio.2017.07.

002

5. Cabral J, Kringelbach ML, Deco G. Functional connectivity dynamically evolves on multiple time-

scales over a static structural connectome: models and mechanisms. NeuroImage. 2017; 160:84–96.

https://doi.org/10.1016/j.neuroimage.2017.03.045
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