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In modular robotics modules can be reconfigured to change the morphology of the robot,
making it able to adapt to specific tasks. However, optimizing both the body and control of
such robots is a difficult challenge due to the intricate relationship between fine-tuning
control and morphological changes that can invalidate such optimizations. These
challenges can trap many optimization algorithms in local optima, halting progress
towards better solutions. To solve this challenge we compare three different
Evolutionary Algorithms on their capacity to optimize high performing and diverse
morphologies and controllers in modular robotics. We compare two objective-based
search algorithms, with and without a diversity promoting objective, with a Quality Diversity
algorithm—MAP-Elites. The results show that MAP-Elites is capable of evolving the highest
performing solutions in addition to generating the largest morphological diversity. Further,
MAP-Elites is superior at regaining performance when transferring the population to new
and more difficult environments. By analyzing genealogical ancestry we show that MAP-
Elites produces more diverse and higher performing stepping stones than the two other
objective-based search algorithms. The experiments transitioning the populations to new
environments show the utility of morphological diversity, while the analysis of stepping
stones show a strong correlation between diversity of ancestry and maximum
performance on the locomotion task. Together, these results demonstrate the
suitability of MAP-elites for the challenging task of morphology-control search for
modular robots, and shed light on the algorithm’s capability of generating stepping
stones for reaching high-performing solutions.

Keywords: evolutionary robotics, modular robotics, morphology evolution, stepping stones, diversity, multiple
environments, quality diversity, MAP-elites

1 INTRODUCTION

Contemporary research in robotics commonly investigates how to adapt the controllers of robots
when exposed to damage or changing environments. These studies usually consider robots with a
fixed morphology. In modular robotics, morphological adaptation is achieved through the
reconfiguration of modules (Yim et al., 2007). With this approach, different morphological
configurations can accommodate various tasks and environments (White et al., 2005). However,
the possible combinations of modules and control strategies are vast, giving rise to a nontrivial design
challenge.
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The field of Evolutionary Robotics (ER) approaches this
challenge by applying Evolutionary Algorithms (EAs) to
design and adapt both control and morphology of robots. EAs
have been successfully applied to modular robot design and
control (Hornby et al., 2003; Marbach and Ijspeert, 2004;
Faíña et al., 2013) although they are prone to premature
convergence (Cheney et al., 2016). Premature convergence is
the phenomenon of having most, or all, solutions in the
population converge to local optima, and the prospect of
escaping these are difficult without sufficient diversity in the
population (Hornby, 2006). This challenge is compounded when
evolving modular robots due to the connection between
controller optimization and morphology. In one relevant
study, Faíña et al. (2013) observe a high degree of
deceptiveness in the search landscape when evolving modular
robots, leading standard EAs to underperform. In addition, with
the available variation operators, such as adding a module, one
may easily invalidate the current control strategy (Cheney et al.,
2016).

Overcoming challenges in modular robotics require
optimization algorithms that can evolve high performing
solutions while retaining morphological diversity to avoid
premature convergence in the resulting deceptive fitness
landscapes. While little research exists so far on this challenge
in the context of modular robotics, proposed approaches include
a custom constructive approach (Faíña et al., 2013),
morphological protection mechanisms (Cheney et al., 2018),
or introducing a controller learning phase for new
morphologies (Jelisavcic et al., 2019). These techniques
essentially allow the morphology and control to change on
different time scales.

Recent advances in ER are based on promoting phenotypic
diversity in the search process. One simple but powerful way to
achieve this is by making phenotypic difference in the current
population an additional objective to maximize (Mouret and
Doncieux, 2009). This multi-objective approach utilizes
traditional Multi-Objective Evolutionary Algorithms (MOEAs)
where one objective is the traditional performance value and
another objective is added to represent the diversity of solutions
(Mouret, 2011). Quality Diversity (QD) is an emerging paradigm
within the field of EAs (Pugh et al., 2016). This class of algorithms
go beyond the singular focus on maximizing one or more
objectives and instead actively construct a repertoire of
phenotypically unique and high-performing solutions (Cully
and Demiris, 2017).

QD algorithms differentiate solutions based on phenotypic
properties, also called behavioral descriptors, which dictate the
inclusion into an archive. The most popular variants of QD
algorithms are Novelty Search with Local Competition (NSLC)
(Lehman and Stanley, 2011), which uses an unstructured archive,
andMulti-dimensional Archive of Phenotypic Elites (MAPElites)
(Mouret and Clune, 2015), which uses a structured archive: an
N-dimensional grid spanning the behavioral descriptor space.
Focusing on novelty instead of fitness alone has shown to find
solutions in deceptive fitness landscapes (Lehman and Stanley,
2008), and QD algorithms have successfully been applied to
evolve diversity of virtual creatures (Lehman and Stanley,

2011). In Miras et al. (2018a), a morphological novelty
measure was included in a composite fitness function when
evolving modular robots. However, the study focused on the
diversity of the resulting morphologies, and locomotion
performance was negatively affected compared to pure
performance-based fitness function. Consequently, the
application of a complete QD approach to tackle the above-
mentioned challenges of evolving morphology and control for
modular robots warrants exploration.

One potential reason for the efficacy of QD algorithms is the
notion that QD algorithms are better at promoting and exploiting
stepping stones (Mouret and Clune, 2015). In the context of EAs,
we can describe a stepping stone, in its most basic form, as an
intermediate step to a final solution (Mouret, 2020). In that way, a
stepping stone does not need to have any other quality apart from
being in the genealogical ancestry of the concluding solution.
However, literature suggests that stepping stones to a complex
and high-performing solution may consist of a range of very
different solutions, seemingly unrelated to the objective (Secretan
et al., 2011; Woolley and Stanley, 2011; Stanley and Lehman,
2015). In Mouret and Clune (2015) the authors propose that
MAP-Elites is better at finding high performing solutions because
the search algorithm is better at promoting diverse stepping
stones. Another comparison of QD algorithms and objective-
based search for the generation of stepping stones can be found in
Gaier et al. (2019). Here the authors argue that due to the ability
of MAP-Elites to protect poor, but ‘novel’ solutions, that can later
be built upon to become good solutions, it is able to overcome
premature convergence experienced with the objective-based
approach. This suggests that analysing the potential of QD
algorithms for generating stepping stones could be a way to
increase our knowledge about this class of search algorithms and
help explain the difference between QD algorithms and objective-
based search methods.

Building on our initial study in Nordmoen et al. (2020b), this
paper compares three EAs on their ability to evolve high
performing and morphologically diverse modular robots. We
utilize two objective-based search algorithms, one without a
diversity objective and one with a diversity objective, and the
QD algorithm MAP-Elites (Mouret and Clune, 2015) to
illuminate the difference between these two paradigms as
applied to the modular robotics domain. Our goal is to
understand how the morphological difference evolved with
these three search algorithms affect the task, when the
environment changes and different morphological needs arise.
Furthermore, to understand the algorithmic differences, we
present an analysis of the genealogical ancestry of the evolved
populations to shed light on the hypothesis that QD algorithms
perform better due to a difference in how stepping stones are
generated and utilized. To achieve the stated goals we created a
new modular robotics framework Robotics, Evolution and
Modularity (REM) which is used to simulate and evolve the
modular robots for this paper.

The contributions of our paper are three-fold: First we
demonstrate that MAP-Elites is well suited for the difficult
task of evolving both morphology and control in modular
robotics. By extending our previous results, we show that
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differing the selection pressure can have a large impact on
maximum fitness obtained for this QD algorithm. We expand
on the performance results by transitioning the populations of the
three search algorithms between two different environments
showing that as environmental complexity grows, the necessity
for morphological diversity increases. Secondly, we present a way
of analysing the genealogical ancestry of all three algorithmic
approaches to better understand how properties of the ancestry
can help explain the differences in maximum fitness. By looking
at the statistical properties of the ancestry we gain the ability to
generalize over all experimental runs which increases the
confidence in our results. Finally, in addition to the two
previous contributions, we release a new framework for
evolving modular robotics, the REM framework, which
leverages OpenAI Gym and PyBullet to achieve fast and easy
to extend simulations, opening modular robotics up to a wider
machine learning audience.

1.1 Related Work
1.1.1 Modular Robotics
Evolving body and control for artificial creatures have a long
history in the field of Artificial Life (Sims, 1994). Modular
robotics is distinguished from these virtual creatures by
comprising the morphology of re-usable homogeneous or
heterogeneous building blocks, called modules (Stoy et al.,
2010; Moubarak and Ben-Tzvi, 2012). This is in contrast to
virtual creatures where individual body parts can evolve to
have any shape and size. By using these building blocks,
modular robotics provide a way to effectively transition from
simulation to reality as modules can be fabricated individually
and then combined based on designs optimized in simulation
(Stoy, 2006). By designing modules in such a way as to make them
easy to build in the real world, modular robotics offers a great deal
of freedom for optimization in simulation since simulated robots
can easily be put together from pre-built parts and transitioned to
the real world for performance verification (Moreno et al., 2017).
Through reusing modules and recent advances for potentially
auto-assembling modular robots (Brodbeck et al., 2015; Moreno
et al., 2018; Hale et al., 2019), this approach can become more
feasible since the robot does not need to be constructed from the
ground up.

One challenge in modular robotics is the interconnected
relationship between control and morphology (Lipson and
Pollack, 2000; Cheney et al., 2016). To overcome this
challenge many different approaches such as generative
encodings (Hornby et al., 2003; Veenstra et al., 2017) and
different control architectures (Marbach and Ijspeert, 2005;
Haasdijk et al., 2010) have been applied.

1.1.2 Quality Diversity
QD algorithms emerged from the realization that optimization
through promoting phenotypic diversity can yield high
performing solutions and, more importantly, can be better
suited to exploring the whole problem space (Lehman and
Stanley, 2008). Through actively searching for phenotypic
diversity, QD algorithms traverse the search space without
constraining the search to only finding better-fit solutions

(Pugh et al., 2016). This separates QD algorithms from
traditional MOEAs since Pareto dominated solutions can be
kept as long as their phenotypic expression is sufficiently
different from other solutions in the population (Mouret and
Clune, 2015). An interesting property of QD algorithms is the
capability to produce a repertoire of different solutions for the
same problem (Cully and Demiris, 2017). The repertoire can be
exploited, either at design time (Gaier et al., 2017) or during
operation (Cully et al., 2015), to select different solutions
depending on the circumstances of the situation.

Although QD algorithms have been applied to the evolution of
artificial creatures (Lehman and Stanley, 2011) and
morphological descriptors have been used to evolve robots
(Samuelsen and Glette, 2014; Samuelsen and Glette, 2015) few
examples exist applying the QD paradigm to modular robotics. A
related area of inspiration is voxel-based soft robotics (Hiller and
Lipson, 2012). Several works have explored soft robot design with
QD algorithms such as Methenitis et al. (2015) which first applied
novelty search, Gravina et al. (2018) which combines novelty-
and surprise search and Gravina et al. (2019) which compares
different forms of diversity with MAP-Elites in the soft robotics
domain.

2 MATERIALS AND METHODS

2.1 Robotics, Evolution and Modularity
Framework
For our experiments we created a new simulation framework
based on PyBullet (Coumans and Bai, 2016) and OpenAI Gym
(Brockman et al., 2016), called Robotics, Evolution and
Modularity (REM).1 PyBullet is the Python interface to the
Bullet (Coumans, 2015) physics simulator and OpenAI Gym is
a framework to standardize simulations, initially within the
reinforcement learning domain, that prescribes a few necessary
functions that together create and run a simulation. OpenAI Gym
makes it easy to reproduce setups from different experiments
through exposing multiple environments through a common
interface. Through using OpenAI gym we thereby make our
framework more accessible, especially for those already familiar
with OpenAI gym. By building the framework on PyBullet the
orchestration code can be programmed in Python while Bullet
itself is written and optimized in ‘C’.

The modules supported by REM are based on the EMeRGE
(Moreno et al., 2017) modules and have real-world properties for
size, weight and joint forces. At the time of publication, the REM
framework supports two different module types, one movable
joint module which is based on Dynamixel AX-18—shown on the
right in Figure 1, and a non-movable module with the same
dimensions as the joint module. The connections between
modules are based on magnets which makes the real-world
modules easy to assemble and disassemble. Unfortunately,
Bullet does not support connections that can break at a
certain force threshold and so this is not supported yet.

1Source available at: https://github.com/nordmoen/gym-rem
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Simulation is default performed at 240 Hz, when graphical
interface is not enabled, to give a high degree of accuracy for
simulation.

To support different genome encodings the REM framework
utilizes a tree-based acyclic graph representation for phenotypes
which describes the morphology to instantiate. This allows for
both direct and indirect genome encodings as long as they unpack
into the graph expected by REM.

2.2 Encoding and Control System
The morphological encoding employed in the experiments is a
tree-based direct encoding similar to Faíña et al. (2013),
illustrated in Figure 1. The encoding allows for any directed
acyclic graph of modules to be represented, where each node in
the graph represents a module and each edge is a connection
between two modules. The encoding corresponds one-to-one
with the phenotype encoding in the REM framework. For the

experiments carried out in this article two different modules were
utilized, one non-movable rectangular module supporting five
child modules and one servo module capable of moving one side
back-and-forth and supporting three child modules (Moreno
et al., 2017). Each morphology starts with a single rectangular
module as its root. To randomly initialize the morphology, a
random size is selected between one and η. Modules are then
added to the tree at random locations until the size of the
morphology equals the selected size.

The morphological encoding supports mutation- and
crossover-operators. When mutating the morphology three
possibilities exist: 1) Add a random module. The tree is
traversed and each available connection point is added as a
possibility. A connection point is randomly selected along with
a randomly selected module type before being inserted into the
tree. 2) Remove a module. The tree is traversed adding all
modules, except the root, into a list of candidates to remove.
A module is randomly selected from the candidates before being
removed along with any existing children. 3) Rotate a module.
The two modules in use both support rotation around its
connection axis and mutation will randomly select a new
orientation in 90° increments. Note that only one of the three
possible changes can occur per morphological mutation. These
mutations cannot alter the type of a module.

For crossover, a branch exchange is implemented. For both
parent morphologies the tree is traversed adding all modules,
except the root, to a list of candidates. A random candidate is
selected from both morphologies before being exchanged. The
candidate module, including its children, from the first
morphology, is inserted into the place of the candidate from
the second morphology and vice versa.

Lastly, the morphology is limited to a maximum size, η � 20,
and a maximum depth δ � 4, so that additional modules are not
realized in the simulator. This limit ensures that morphologies do
not grow unbounded and are feasible to simulate.

The control systems of the joint modules are based on a
decentralized wave pattern generator (Veenstra et al., 2017). Each

FIGURE 1 | On the left the tree representation of the encoding is shown. The nodes in the graph represent modules and edges represent connections between
modules. Each module has a certain number of possible connections where the triple (X, Y, Z) denotes where the connection is, relative to the parent, in 3D. Note that
modules have additional properties, such as rotation, which is not shown in this illustration. In the middle the simulated modular robot corresponding to the encoding is
shown in the REM framework. In the center is the root node, illustrated as a blue box. The root node has two direct connections, the two servo modules: one
connected along its Y-axis and one connected along the X-axis. The servo module connected along the Y-axis has one rectangle module attached along its Z-axis. The
rectangular modules have five connection sites to which other modules can be connected, corresponding to the surfaces exposed on the root module, and one which it
can use to connect to others—which is the site underneath the root module. The joint modules have three connection sites which correspond to the exposed surfaces on
the green bracket. The bottom of the joint module is used as a connection to other modules. On the right the real-world joint module is shown.

TABLE 1 | Experiment parameters for the search algorithms.

Parameter Applied to Value

Evaluation time All 20
Warm-up before start 2 s
Repetitions 30
Number of evaluations 100,000
Batch size 200
Probability of crossover 0.2
Probability of controller mutation 1.0
Initial population size SOFO 200

MOFD
QDSA 1000

Selection SOFO Tournament on objective(s)
MOFD
QDSA Tournament on curiosity

Probability of morphological mutation SOFO 0.2
MOFD
QDSA 0.4

Controller mutation magnitude (σ) SOFO 0.01
MOFD
QDSA 0.005
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joint module is initialized with a controller that is updated on
each simulation tick to output desired angle of the joint, θi,
according to the following equation

θi � αi · sin(ωit + ϕ) + oi (1)

where αi is the amplitude, t is the time since the controller was
initialized, ωi is the frequency, ϕi is the phase offset and oi is the
amplitude offset. The output of the controller, i.e., the maximum
and minimum values of θi, is limited so it does not exceed the
ability of the real world module. The parameters and their
allowable ranges are defined in Appendix 1.

The controllers are mutated using Gaussian noise, N (p, σ),
where p is the individual parameter of the controller and σ is the
magnitude of the noise. The magnitude, σ, is scaled for each
parameter so that a global mutation rate can be used for the
controller, the scaling is defined by the range of each parameter
detailed in Appendix 1. To avoid mutating values outside their
defined bounds we utilize the bounce-back restriction function
(Nordmoen et al., 2020a), which restricts values to a boundary
condition by reflecting the value back inside the boundary by the
amount of over- or undershoot.

2.3 Evolutionary Algorithms
To better understand how QD algorithms are able to evolve both
high performance and diverse solutions we will compare three
different EAs on the task of evolving both control and
morphology in modular robotics. The comparison will initially
utilize a flat terrain environment before experimenting in more
complex simulated environments. The fitness objective of the EAs
is the straight-line distance traversed, between the initial starting
point and final position of the robot, during the evaluation.

For the diversity preserving EAs, morphological properties
will be used to distinguish solutions. Selecting which
morphological properties to utilize is a challenging problem,
and may have a significant impact on the properties of the
search space (Samuelsen and Glette, 2014; Miras et al., 2018b).
In this paper we define the number of non-movable and the
number of movable joint modules as morphological properties
that can be used as our diversity metric. These features are
relatively simple but combined they will relate to properties
like size and agility of the robot morphologies, and should
allow for a range of different morphological strategies, while
being easy to use in conjunction with the applied search
algorithms. By constraining our diversity metric to these two
simple features we try to limit any added complexity that comes
with adding more (and potentially more powerful) descriptors,
and rather focus on the algorithmic approaches in these
experiments.

The first EA is a single objective, (μ, λ) generational
replacement strategy, based on Eiben and Smith (2003). The
algorithm optimizes for fitness alone and is used as a baseline to
compare the two other diversity preserving algorithms. The
algorithm utilizes tournament selection between two solutions,
based on fitness, for selection and incorporates elitism, preserving
10 of the best solutions from the previous generation. For the rest
of this article we will refer to this algorithm as Single Objective

Fitness Only (SOFO). Experiment parameters for this algorithm
can be found in Table 1.

The first of the diversity preserving algorithms is the MOEA,
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) (Deb
et al., 2002). This EA also represents the objective optimization
perspective, however, since NSGA-II is capable of optimizing
multiple objectives the algorithm can be used to simultaneously
optimize for diversity. This approach of using diversity in
addition to the main objective is well-studied and has been
shown to be efficient in the domain of ER (Mouret and
Doncieux, 2012). In our study, the diversity metrics used are
based on morphological descriptors of the evolved robots and
comprise the number of non-movable modules and the number
of movable modules. For NSGA-II to optimize for diversity, the
average difference between morphologies is used as an objective
(Lehman and Stanley, 2011), according to the following
equations:

diversity(x) � 1

|Pn| ∑y∈Pn
distance(x, y) (2)

distance(x, y) � 1.0 − e

∣∣∣∣∣(mx ,jx)−(my ,jy)
∣∣∣∣∣ (3)

where Pn is the population, x and y are solutions in the population,
mi is the number of non-movable modules and ji is the number of
movable joint modules. Note that we treat each module type
separately, which means the output of both equations is given in
R2-which gives three objectives for NSGA-II to optimize: One
diversity objective for each module type and one fitness objective.
Note also that the distance equation is altered compared to some
previous works (Lehman and Stanley, 2011; Samuelsen and
Glette, 2014) to avoid convergence at the morphological
extremities. By changing the distance function (Eq. 3) to using
the natural exponential function all changes in morphology are
weighted equally, which prevents large changes in morphology
from dominating the diversity calculation during optimization. In
effect, adding one or ten modules is weighted as equally diverse.
For the rest of this article we will refer to this algorithm as Multi
Objective Fitness and Diversity (MOFD). Experiment parameters
for the algorithm can be found in Table 1.

The last EA used represents the QD paradigm and is theMAP-
Elites algorithm (Mouret and Clune, 2015). Central to the MAP-
Elites algorithm is the archive, or repertoire, which is utilized to
store and select solutions. The archive is structured with cells of
equal sizes that represent a specific combination of feature
descriptors (Cully and Demiris, 2017). As with MOFD, we
utilize morphological properties as feature descriptors. In
contrast to MOEAs, MAP-Elites does not utilize multiple
objectives, however, diversity is promoted through the archive
by allowing multiple solutions to be differentiated by their feature
descriptors. For the experiments carried out in this article, the
archive consists of two dimensions where one axis represents the
number of non-movable modules and the other axis represents
the number of movable joint modules. The dimensions are scaled
to the maximum size of a morphology and the cell at the origin
represents the root module. For selection we utilize tournament
selection based on the curiosity of solutions in the repertoire
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(Cully and Demiris, 2017). Curiosity is implemented by adding
1.0 to the curiosity score of a parent when a child is inserted into
the repertoire and subtract 0.5 when a child fails to be inserted
into the repertoire, which corresponds to the values suggested in
Cully and Demiris (2017). For consistency, we will refer to this
search algorithm as Quality Diversity with Structured Archive
(QDSA). Parameters used for experiments for this algorithm can
be found in Table 1.

To ensure a balanced comparison, the mutation parameters of
each algorithm were optimized in advance in a parameter sweep
(parameters detailed in Appendix 1). Each parameter was tested
twice for each EA and 100,000 evaluations were done for each set
of combined parameters. The simulation time for each evaluation
was limited to 20 s in these initial runs. In total 180 runs were
conducted to ascertain the best parameters for each search
algorithm. Based on these results, a linear model was
constructed to predict fitness based on the interaction of the
two parameters tested. The best parameter combination of each
algorithm was chosen to be used in the remaining experiments of
this paper. A summary of all the runs is shown in Figure 2, which
shows that QDSA is on average slightly better than the two other
search algorithms—regardless of parameter combination.

2.4 Objectives
The environment where the robots must move in shape the
search space of our experiments. With a flat terrain, an
evolutionary run might lead to a smooth progression due to

the absence of obstacles/deceptive traps. To see whether all the
approaches perform the same when changing the environment,
we use three different environments: A flat terrain, a raised
platform with a single wall, and a circular terrain where
circular walls ripple outwards (Figure 3).

3 RESULTS

3.1 Performance and Diversity
To begin analysing the performance of the three search
algorithms, we will start by looking at the best fitness obtained
by any single solution in the population. The best fitness is plotted
in Figure 4, where on the left the fitness is shown over the number
of performed evaluations, and on the right the single best
individual found after the last evaluation is shown. A Mann-
Whitney U test (Mann and Whitney, 1947) between the three
distributions in the right plot of Figure 4, corrected for multiple
comparison through Holm correction (Holm, 1979), shows that
there is a significant difference between QDSA and the two other
search algorithms. For locomotion, QDSA is able to find the best
performing solution of the three search algorithms.

Since it is not only the fitness, or quality, of the solutions that
we are interested in, it is informative to project the population of
solutions into a repertoire using the morphological descriptors as
axes. This projection gives an overview of the population as a
whole and it is possible to visualize where in the morphological

FIGURE 2 | Summary of parameter optimization. All 60 runs for each search algorithm are shown together with the result of a Mann-Whitney U test which show
statistically significant differences between QDSA and the two other search algorithms.

FIGURE 3 | The more complex environments used to test transferred solutions. On the left the robots start on a raised platform until a ditch is created with a single
wide wall. On the right the robots start on a flat terrain and several circular thin walls ripple outwards becoming taller and taller.
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space the best solutions are found. The projection also enables us
to visualize the quality-diversity trade-off, which shows that not
all solutions, or morphologies, can obtain the same fitness. For the
objective based search algorithms the projections are created by
inserting solutions after each generation, accumulating solutions
as the search progresses. In Figure 5 the top row shows the
maximum fitness for each morphological niche, while the middle
row shows the average fitness. The two figures illustrate the
difference in diversity between the different search algorithms
and shows how consistent the algorithms are at discovering
solutions.

Although the middle row of Figure 5 shows diversity of the
search algorithms, through the average fitness of morphologies, it
is not able to show how proficient each algorithm is at finding
diverse solutions, low performance may just indicate that the
morphological niche cannot perform better. To alleviate this, the
bottom row shows the number of experiments which found a
solution for each morphological niche. From the figure it can be
seen that QDSA and MOFD are more consistent in finding
diverse solutions while the single objective SOFO is centered
around a smaller cluster of morphologies. Although MOFD is
able to find more diverse solutions than SOFO, only QDSA
consistently finds solutions for all niches.

To summarize the projections in Figure 5 we can utilize
metrics suggested by Mouret and Clune (2015) and Pugh et al.
(2016). Figure 6 shows the coverage and QD-score of the three
search algorithms. Coverage counts the number of unique niches
found in the population and is normalized to the maximum
coverage found in any run of all algorithms. Coverage can be
viewed as a summation of the data shown in the bottom row of
Figure 5 and shows the evolved diversity of the search algorithms.
QD-score is the sum of fitness of each solution in the population
and is a good summation of the quality and diversity trade-off.
QD-score gives a more balanced view than either precision or
reliability since both of these metrics decrease as new low fitness
solutions are added due to the lower average performance, which
disadvantages search algorithms that generate diversity. AMann-
Whitney U test demonstrates that the differences between all

three search algorithms, after the last evaluations, for both plots in
Figure 6, are significant. The two graphs in Figure 6 show the
complexity of comparing algorithms on the trade-off between
quality and diversity, even though MOFD has a much higher
coverage compared to SOFO the difference in QD-score is much
lower due to SOFO having on average high fitness in the niches it
occupies.

To get an impression of the evolved morphologies, we selected
the three best runs from each search algorithm and extracted the
single best solution. The solutions are shown in Figure 7.

3.2 Transitioning to New Environments
To better understand the value of diversity in our modular
robotics scenario we created two new environments, with
different obstacle profiles as shown in Figure 3, to see if the
difference in evolved morphologies would lead to differing results
in more challenging environments. The hypothesis being that a
more diverse population should transition better into a different
environment since an already discovered morphology could
potentially lead to good performance in the new environment.
Said in another way, convergence to a few good solutions in one
environment could lead to slow evolution in another
environment if none of the converged solutions are able to
solve the new environment. We tested this hypothesis by
transitioning the final population in Figure 4 into two
different environments and ‘continue’ evolution from the
population evolved for the default environment. The results
are shown in the left column of Figure 8. From the left
column it can be seen that QDSA is able to obtain the best
fitness in both new environments. The difference between SOFO
and MOFD is not significantly different, however, it is interesting
to note that they seem to have changed relative position
compared to Figure 4, a change that could indicate that the
diversity of MOFD is aiding in transitioning into a new
environment. In addition to testing the result of each search
algorithm we also tested if the population evolved in the default
environment with QDSA could aid the other two algorithms. The
population of QDSA was transitioned from the default

FIGURE 4 | Fitness of the single best solution found in the population. On the left the mean is shown together with a 95% confidence interval over generational time.
On the right, the best fitness after the last evaluation for all repetitions is shown. Statistically significant differences are marked on the right using a Mann-Whitney U test
with Holm correction.
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environment into the two new environments, but instead of using
as mentioned in Cully and Demiris (2017) the two other search
algorithms were utilized to continue evolution. The results of
continuing from the population of QDSA in the two new
environments are shown in the right column of Figure 8.
Here it can be seen that there are no significant differences
between the three search algorithms.

To highlight the difference between the evolved populations
in the different environmental settings, we projected the best-

found solutions for the different morphological descriptions in
Figure 9. This figure shows that both SOFO andMOFD are able
to solve the more challenging environments when initialized
with the result of QDSA. However, when started from their
respective previous population from the flat environment they
are not able to regain the same fitness as MOFD. Note that the
figures show the cumulative best solution which accounts for
the large difference in number of filled cells for the †
environments.

FIGURE 5 | The figures show properties of the population for each search algorithm over all 30 runs. (A) shows maximum fitness of morphological niches, where
the color represents fitness. (B) shows the average fitness, where for each niche the color is the average fitness calculated over the 30 runs. (C) shows the number of
repetitions that found a solution for the given niche.
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3.3 Genealogical Analysis
Up until now the focus has been on the quality and diversity of the
evolved populations, however, the previous graphs have not been
able to show why the search algorithms evolve differently. We will
therefore analyze the genealogical history of solutions to better
understand how the solutions evolved and formed stepping
stones. Figure 10 shows an illustration of the genealogical
ancestry that we will analyze. The ancestry tree of a single
solution is shown, as well as the ancestry’s projection into the
morphological niches it occupies. The figures in this section are
created by taking each solution in a given generation, extracting
their genealogical ancestry—as shown in Figure 10—calculating
various statistics on the whole ancestry and then collating the
results of all the individual solutions in the considered generation.

Figure 11 shows the number of ancestors and the age of
solutions over generational time. The number of ancestors is simply

the size of the ancestry, for the example in Figure 10 the number of
ancestors would be 8, and gives an indication of how often solutions
are replaced. Another way to look at this replacement is to measure
the age of solutions. Age in all examples is measured as the number
of evaluations performed by the algorithm since a solution appeared
in the population. For QD this means that newly inserted solutions
in the archive will have an age of 0 that could have replaced older less
fit individuals in the same location of the archive. Figure 11
illustrates that the generational replacement EA creates a lot of
new solutions, making the average age in the population very low,
while the two other search algorithms tend to generate fewer new
solutions and thus have a higher age.

As shown in Figure 10, projecting the ancestry into a
repertoire of morphological niches can be a way to gain insight
into how a solution evolved over time. In other words, the projection
discards some information from the complete ancestry tree and

FIGURE 6 |QD-Metrics. On the left the normalized coverage (Mouret and Clune, 2015), number of discoveredmorphological niches, is shown. Coverage has been
normalized to the maximum number of niches found in any run for all three search algorithms. On the right the QD-score (Pugh et al., 2016), summation of fitness for all
solutions in the population, is shown. Both plots show the mean and a 95% confidence interval.

FIGURE 7 | The best solution found in the three best runs of evolution for each search algorithm. Videos of these morphologies can be found on the supplementary
material page.
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focuses on changes in features, as defined by the feature descriptors.
In our case, this corresponds to when morphological changes are
introduced. A projection covering a large portion of the feature space
could thus be interpreted as having a large amount of different
stepping stones. In Figure 12 the quality-diversity metrics coverage
and QD-score are applied to the ancestry of solutions in the
population. This summary is different from the data in Figure 6
as this utilizes the genealogical ancestor tree and projects that into a
unique repertoire for each individual solution in the population,
before applying the two metrics. The difference being that for the
genealogical ancestry each solution in the population is used to
generate a unique repertoire consisting of only ancestors of the
concluding solutions before QD metrics are applied to each of these
‘ancestor repertoires’.Figure 12 shows the coverage of ancestry (left),
and on the QD-score (right). From the figures it can be seen that the
solutions in QDSA have an ancestry which covers a larger fraction of
the morphological search space. This is contrasted with MOFD
which is able to obtain quite good coverage, as seen inFigure 6, while
the ancestry of solutions tends to have a much lower morphological
diversity. One way to interpret this is that solutions in QDSA tend to
share more ancestry with morphologically different solutions
compared to MOFD.

To illustrate these genealogical statistics we selected a random run
and plotted the ancestry of the best solution found during evolution.
Figure 13 shows the visualized ancestry which underscores the
above statistics. From the figure we can see that SOFO and QDSA

have the largest ancestry trees. However, when projected down into
the repertoire we can see that SOFO covers only a small area of the
morphological search space, while QDSA covers the largest area.

To investigate a possible connection between the QD
properties of the ancestry, as shown in Figure 12, and the
performance of the algorithms, we created a linear model as
an analysis tool. The linear model predicts maximum obtained
fitness based on logarithmic coverage and QD-score, both from
ancestry. The model fit the data with an R2 of 0.9084, which
indicates that the model fit the data quite well, coefficients can be
found in Appendix 1.2 To verify if the model fit with the
maximum fitness of Figure 4, we plotted the 95% confidence
interval of the fitness, as shown in Figure 4, overlaid with the
estimated fitness based on coverage and QD-score in Figure 14.
From the figure it can be seen that the model is challenged by the
larger difference in ancestry between the three search algorithms,
Figure 12, compared to the lower difference in maximum fitness,
Figure 4. The figure illustrates that the model, for a large part of the
data, matches the obtained maximum fitness and thus could be an
indication that these ancestry metrics are a good predictor of
maximum fitness.

FIGURE 8 | Fitness results after last evaluation for transitioning the population evolved in the default flat environment into two new environments. In the new
environment evolution is continued from the initial seed population for 50,000 evaluations. Names with † signify that both SOFO and MOFD was initialized with the result
of QDSA from the default flat environment.

2For the complete analysis see the Supplementary Material at: https://folk.
universitetetioslo.no/jorgehn/modular_journal/
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4 DISCUSSION

The results for the locomotion task, in the default flat terrain,
shows that QDSA produced the highest performing solutions for
this problem (Figure 4). For the experiments in this paper we
added a curiosity score that led to increased performance of
QDSAwithin our computational budget. Since our previous work
(Nordmoen et al., 2020b) showed no quantifiable difference
between the three search algorithms, the addition of a
curiosity score and selection on this score, corroborates the
previous findings mentioned in Cully and Demiris (2017) of
curiosity being a useful addition to MAP-Elites. From the
performance results, it can also be seen that QDSA produces
the most diverse populations going as far as filling out all the

morphological niches defined and is the most consistent at
finding high performing solutions (Figure 5).

With respect to morphological diversity we showed that
explicitly promoting diversity through either objective- or QD-
based search algorithms improved the assortment of
morphologies. However, QDSA produces more diversity
compared to MOFD, demonstrating the advantage of QD
algorithms for this task. Coupled together, it is likely that the
diversity produced in QDSA together with the selection pressure
to improve in promising areas of the search landscape led to
higher overall performance, underscoring the utility of diversity
in EAs. The effect of this could potentially explain the slower rise
in performance seen on in Figure 4 in contrast to the sharp
growth of coverage in Figure 6. A potential explanation is that

FIGURE 9 | Population projection in the different environment settings. The projections show the best solution for each morphological descriptor over all runs after
the last evaluation, where color represents fitness. Environment names with † signify that both SOFO and MOFD were initialized with the result of QDSA from the default
flat environment.
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the search initially increases diversity, likely because it is easy
to fill empty morphological niches, before being forced to
improve performance of existing solutions.

When transitioning to different environments we showed that
QDSA is able to gain significantly higher performance compared
to the two other approaches. However, all approaches achieved
equal fitness when seeded with the population of QDSA at the
time of transition. The seeding also led to all three search
algorithms finding good solutions in the same area of the
search space (Figure 9). This shows the advantage of
morphological diversity, as all three search algorithms are able
to recover a large portion of fitness when initialized from a
sufficiently diverse population. However, only the QDSA
approach had managed to build up this level of diversity

before the environmental change. The reason for the similar
performance when initialized from the QDSA population could
be due to a highly deceptive fitness landscape. This could mean
that e.g. the EA on its own would be struggling to find a suitable
morphology, whereas the seeded population of diverse
morphologies may already contain a body in a good location
of the search space, leaving time for controller optimization. The
results from transitioning environments highlight two important
aspects of diversity. Sufficient diversity is required to find
solutions for difficult environments, and when experimenting
with different environments in ER, it is difficult to a priori predict
if a search algorithm is capable of finding a solution. However,
search algorithms that produce and maintain diversity are more
likely to handle the challenge.

FIGURE 10 | Visualized ancestry of a solution. On the left the circles represent solutions that are ancestors of the bottom most circle. The color of the circle
represents the fitness of the solution. The number is the generation when the solution appeared in the population. Arrows indicate parenthood, where black arrows
indicate that there is no morphological difference and green arrows indicate a morphological difference between parent and child. The two arrows joining to one new
solution corresponds to a crossover operation while the other arrows correspond to mutation operations. On the right the tree is projected back into a repertoire
and shows that the whole tree developed in just two different morphological descriptions, the white arrow indicates a change from parent to child in morphology.

FIGURE 11 |Genealogical ancestry attributes. On the left the average number of ancestors for each solution in the population is shown. On the right the age of each
solution is shown, where age is number of evaluations since the solution first appeared in the population. The colored area represents the 95% confidence interval.
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The analysis of genealogical ancestry revealed several
interesting aspects about how the population of solutions
evolve for the three different search algorithms. Based on the
number of ancestors and the age of individuals in the population
(Figure 11), it can be seen that the generational replacement

aspect of SOFO leads to many young solutions compared to the
other approaches. This is to be expected and does not appear to
disadvantage SOFO compared to MOFD in regard to
performance. When looking at the difference between MOFD
and QDSA it can be seen that QDSA is producing more solutions

FIGURE 12 | Quality Diversity metrics applied to the genealogical ancestry of each solution in the final population, after the ancestry is projected into a unique
repertoire as illustrated in Figure 10. On the left, coverage is shown, which is the number of morphological niches occupied by the ancestry. On the right, the QD-score is
shown, which is a summation of the fitness of the ancestry after the ancestry has been projected into a repertoire. The figure shows the mean and a 95% confidence
interval.

FIGURE 13 | Visualized ancestry from a randomly selected seed. The top row shows the ancestry of the most fit solution for the algorithm and the bottom row
shows the same ancestry projected down into a MAP-Elites repertoire, note that for SOFO and MOFD the repertoire shows the accumulated population throughout
evolution. The color of the nodes in the top row corresponds to fitness while the color of the nodes in the bottom row shows the generation when the solution appeared in
the search.
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throughout evolution. One potential explanation for this is that
due to the complex Pareto dominance calculated for solutions in
MOFD solutions are rarely replaced based on fitness, and once
diversity is maximized, as illustrated on the left in Figure 6, the
search stagnates. This shows the complexities of introducing
diversity into a maximization regime and it is likely that the
two additional objectives are reducing the opportunity to improve
on fitness.

Based on the QDmetrics of the ancestry, shown in Figure 12,
it can be seen that ancestors of solutions in QDSA cover a large
area of the search space compared to the two other search
algorithms. One could expect that since SOFO has many orders
of magnitude more ancestors the solutions would cover a large
area of the search space, however, the QD metrics show that the
ancestors are not as morphological diverse as in QDSA. This
result corroborates on the notion that MAP-Elites is better at
generating diverse stepping stones, as proposed by Mouret and
Clune (2015). This is also underscored by the ancestry’s QD-
score (Figure 12), which shows that—in general, ancestors in
QDSA are both diverse and high performing. Lastly, by building
a linear model, predicting maximum fitness based only on
coverage and QD-score of ancestry, we showed that diverse
and high-performing ancestors could be a good predictor of
performance. By modelling the relationship between
genealogical ancestry and search performance, stepping
stones can be seen in the larger context of evolution and
gives an even stronger indication that MAP-Elites is able to
produce impressive results based on diverse and high-
performing intermediary solutions. By performing this
analysis across populations, over many runs, we are able to
gain statistical insight into the notion of stepping stones which
strengthens the overall conclusion.

We showed how QDSA is an effective method for evolving both
the morphology and control of modular robots for performance,
diversification, and transfer to new environments. While the
implementation of QDSA is promising for evolving both the
morphology and control of modular robots, there are additional
challenges related to how different selection methods could be

further improved in QDSA. The modular robotics approach
furthermore allows us to expand our module inventory to
incorporate various types of other structural, sensing and actuator
modules. This possible extension will convolute the search space
further and possibly benefit more from QDSA than other
algorithms. Experiments should also be conducted with different
modular robotics systems to verify the results reported here for
differentmodules, genotype-to-phenotypemappings, and tasks. One
challenge with our setup is that different robotic blueprints can map
to the same morphological features, which might be a problem as it
can constrain the type of solutions found to particular robot
morphologies. Therefore, additional morphological features could
be implemented to create a multi-dimensional map that could lead
to better and more unique solutions.

5 CONCLUSION

Optimizing both the morphology and controller for modular
robots is challenging due to the large and unknown search
space. As the amount of exploration vs. exploitation to be used
for optimization strategies is usually determined by the
complexity of the agent and the environment—the
ruggedness of the resulting fitness landscape—we compared
three evolutionary algorithms to determine how each performs
on this challenging search space. The results showed that the
QDSA approach based on MAP-Elites produced higher
performing and more morphologically diverse solutions
compared to the SOFO and MOFD approaches which were
based on an objective-only EA and a diversity-augmentedmulti-
objective EA, respectively. The importance of the diversity produced
by MAP-Elites is corroborated through the successful transferal of
evolved robots to two additional, andmore difficult, terrain types. The
genealogical ancestry produced by each algorithm furthermore
indicated that MAP-Elites found more diverse and high
performing stepping stones, shedding new light on how the
algorithm achieves high-performing final solutions. The added
pressure for diversification in the two morphological dimensions of

FIGURE 14 | Using Quality Diversity metrics of ancestry to predict maximum fitness of each search algorithm. The dotted area represents the 95% confidence
interval of maximum fitness, as shown in Figure 4, and the line represents the estimated fitness based on a linear model of Quality Diversity metrics of ancestry. The linear
model achieves an R2 of 0.9084.
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the MAP-Elites-based approach bolsters how useful it can be for
evolving both the morphology and control of modular robots.
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APPENDIX 1

Table A1 | Morphological parameters for the evolved modular robots.

Parameter Description Value

η Maximum module count 20
δ Maximum module depth from root 4

Table A2 | Parameters for the decentralized wave pattern controllers. The value ranges are based on the servo used in the real world modules.

Parameter Description Range

θ Set-point angle [−1.57, 1.57]
α Amplitude [−1.57, 1.57]
ω Frequency [0.2, 2]
ϕ Phase offset [−2π, 2π]
o Amplitude offset [−1.57, 1.57]

Table A3 | Values tested during meta-optimization of experiment parameters.

Parameter Values

Probability of morphological mutation [0.005, 0.01,0.05, 0.1, 0.2, 0.4]
Controller magnitude (σ) [0.005, 0.01,0.05, 0.1, 0.2]

Table A4 | Coefficients for the model predicting fitness based on ancestry. The model has a residual standard error of 0.5441 with 599538 degrees of freedom.

Coefficient Estimate Standard error t-value P( > |t|)

Coveragelog 0.3241577 0.0004636 699.3 < 2e−16

QD-Score 0.0714622 0.0005870 121.7 < 2e−16

Coveragelog: QD-Score −0.0127152 0.0001111 −114.4 < 2e−16
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