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Abstract

The wide availability of whole-genome sequencing (WGS) and an abundance of open-source software have made detection
of single-nucleotide polymorphisms (SNPs) in bacterial genomes an increasingly accessible and effective tool for
comparative analyses. Thus, ensuring that real nucleotide differences between genomes (i.e., true SNPs) are detected at high
rates and that the influences of errors (such as false positive SNPs, ambiguously called sites, and gaps) are mitigated is of
utmost importance. The choices researchers make regarding the generation and analysis of WGS data can greatly influence
the accuracy of short-read sequence alignments and, therefore, the efficacy of such experiments. We studied the effects of
some of these choices, including: i) depth of sequencing coverage, ii) choice of reference-guided short-read sequence
assembler, iii) choice of reference genome, and iv) whether to perform read-quality filtering and trimming, on our ability to
detect true SNPs and on the frequencies of errors. We performed benchmarking experiments, during which we assembled
simulated and real Listeria monocytogenes strain 08-5578 short-read sequence datasets of varying quality with four
commonly used assemblers (BWA, MOSAIK, Novoalign, and SMALT), using reference genomes of varying genetic distances,
and with or without read pre-processing (i.e., quality filtering and trimming). We found that assemblies of at least 50-fold
coverage provided the most accurate results. In addition, MOSAIK yielded the fewest errors when reads were aligned to a
nearly identical reference genome, while using SMALT to align reads against a reference sequence that is ,0.82% distant
from 08-5578 at the nucleotide level resulted in the detection of the greatest numbers of true SNPs and the fewest errors.
Finally, we show that whether read pre-processing improves SNP detection depends upon the choice of reference sequence
and assembler. In total, this study demonstrates that researchers should test a variety of conditions to achieve optimal
results.
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Introduction

Comprehensive sequencing and analysis of bacterial genomes

are increasingly valuable tools in fields such as epidemiology [1–3],

population genetics [4,5], and experimental evolution [6].

Advances in DNA sequencing technologies and reduced costs

have made high-quality whole-genome sequence (WGS) data

readily available [7], while an abundance of open-source software

has made it possible for whole-genome analyses to be performed in

individual laboratories [8]. In particular, single-nucleotide poly-

morphism (SNP) discovery is useful for distinguishing bacterial

lineages [9] and SNPs may serve as markers for phenotypic

characteristics such as antibiotic resistance [10]. Putative SNPs are

most commonly identified by using a fully sequenced (closed)

reference genome as a guide to assemble large numbers of short

sequence reads (reference-guided assembly) and searching for

nucleotide differences between reference and draft genome

sequences [11]. SNP analyses can be performed with de-novo
assemblies. However, increased computational requirements and

slow processing times relative to reference-guided assemblies may

make them impractical [12]. In addition, assemblies performed

against references often yield more data than de-novo assemblies,

especially when sequence coverage is low [13]. Although

inaccuracies in reference-guided short-read sequence alignments

may arise due to inherent errors associated with a given

sequencing technology or the quality of DNA extractions and
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library preparations, such events are more likely to arise from

misassembled reads [14], especially if appropriate pre- and post-

processing of reads have been performed such as read-quality

trimming and filtering and local realignments around indels

[11,15,16]. Furthermore, the genetic distances between reference

and subject sequences are likely to effect SNP detection as more

distant references may provide additional challenges for reference-

guided assemblers [12].

Far from there being a standard method for assembling WGS

data, there is currently a wealth of software available that make

different assumptions that are likely to influence the final

assemblies and, therefore, the accurate identification of SNPs.

Reference-guided sequence assembly software builds alignments of

short sequence reads, assessing the placement of each read by

calculating the probability of its match with the reference, while

SNP identification (SNP calling) is performed by programs that use

a combination of coverage statistics and estimated error rates of

the sequencing platforms used [17,18]. Reads that have been

misaligned by the assembler may confound the SNP calling

software, manifesting as misidentified SNPs (i.e., false positive

calls), an inability of the software to make calls at all (i.e.,
ambiguous sites), or the inappropriate introduction of gaps into

consensus sequences. In addition to causing problems with

correlation analyses or bacterial typing assays that are based upon

WGS data (such as in silico multi-locus sequence typing), errors

may result in distortion of estimates of the genetic distances

between sequences and may influence phylogenetic analyses.

Therefore, decisions such as the selection of a reference-guided

assembler, selection of an appropriate reference sequence, and

depth of sequence coverage should be carefully considered when

designing any experiment involving SNP identification or the use

of consensus sequences for downstream analyses.

Using the well studied pathogenic bacterium Listeria monocy-
togenes [19] as an example, we present a set of benchmarking

experiments performed on simulated Illumina short-read sequence

data and, because simulated reads may not always accurately

represent errors that appear in actual datasets, we assembled reads

obtained from sequencing runs of varying qualities performed on

an Illumina MiSeq benchtop sequencer. We measured the

numbers of true SNP differences, false positive SNPs, ambiguous

sites, and gaps introduced into draft chromosome sequences under

a variety of conditions, including: i) a range of sequencing

coverage; ii) the use of four reference-guided sequence assemblers

(Burrows-Wheeler Aligner [20], Novoalign, MOSAIK, and

SMALT), selected due to their popularity, accessibility and use

of different algorithms (Burrows-Wheeler transform [21], global

Needleman-Wunsch [22], banded Smith-Waterman and a com-

bination of short-word hashing and Smith-Waterman [23,24],

respectively); iii) the use of reference sequences of different genetic

distances, and iv) quality filtering and trimming of reads prior to

assembly. Analyses were performed with two highly clonal strains

of L. monocytogenes (08-5578 [2,3] and EGD-e [25]). The

chromosome sequences of L. monocytogenes strains 08-5578 and

EGD-e are approximately 3.11 and 2.94 Mb in length, respec-

tively. Both chromosomes have an average GC content of 38%

and experience few chromosomal rearrangements [26,27].

Materials and Methods

DNA extraction, library construction, and DNA
sequencing

A Listeria monocytogenes strain 08-5578 isolate frozen in

glycerol was streaked on pre-warmed Tryptose Agar plates and

incubated at 37uC over-night. A single colony was picked and used

to inoculate 5 ml pre-warmed Brain Heart Infusion (BHI) broth

and incubated over-night at 37uC with shaking (200 rpm). Then,

200 ml of the culture was transferred to 50 ml pre-warmed BHI

and incubated at 37uC with shaking for 6 hours to achieve the

mid-logarithmic growth phase [29,30]. Approximately 25 ml of

culture was decanted into a 50 ml falcon tube and centrifuged at

3800 RCF for 5 minutes. The pellet was completely dissolved in

500 ml Tris-ethylenediaminetetraacetic acid by vortexing. We

added 500 ml phenol-chloroform (1:1), 30 ml sodium acetate (3M,

pH 5.2), and 30 ml sodium dodecyl sulfate and mixed vigorously

by shaking. The entire mixture was then pipetted into a 2 ml

screw-cap tube filled with approximately 0.5 ml glass beads

(0.1 mm). The tube was shaken in a Mini-Beadbeater machine

(BioSpec products, Bartlesville, Oklahoma) for 45 seconds using

the ‘‘Homogenizer’’ setting and placed on ice for 45 seconds.

Shaking was repeated an additional four times. Approximately

300 ml of the mixture was then added to a Maxwell 16 Cell DNA

Purification Kit cartridge and the sample was run using the

standard DNA Blood/Cells protocol on a Maxwell 16 machine

(Promega, Madison, Wisconsin) with elution in 300 ml nuclease-

free water. RNA contamination was removed by adding 2 ml

RNase A (Qiagen Sciences, Maryland) and incubating the sample

for 10 minutes at 37uC. A single phenol-chloroform-isoamyl

alcohol (25:24:1) extraction followed by two ethanol precipitations

was done. The sample was split into four subsamples. Each

subsample was indexed with Nextera XT DNA Sample Prepara-

tion Kits (Illumina, San Diego, California) according to the

standard protocol and sequenced (26250 bp reads) on a MiSeq

benchtop sequencer (Illumina) three separate times for a total of

twelve sets of short-read sequences. These data have been

deposited to the National Center for Biotechnology Information

(NCBI) Sequence Read Archive (SRA) under accession numbers

SRR1342176, SRR1342220, SRR1373524, SRR1373525,

SRR1373527, SRR1373529, SRR1373530, SRR1373531,

SRR1373534, SRR1373535, SRR1507228, and SRR1508282.

Assembly of short-read sequence data
An automated bioinformatic pipeline was written using the Perl

programming language to execute applications for the quality

assessment, pre-processing, assembly, and analysis of all sequenc-

ing reads. In order to ensure that only the highest quality data was

used for assembly, reads were trimmed and filtered with

PoPoolation [31] set to a minimum length of 50 bp and a quality

score threshold of 20. Global mapping of reads was then

performed with each of four reference-guided short-read sequence

assemblers: Burrows-Wheeler aligner v0.6.1-r104 [20], MOSAIK

v2.1 (code.google.com/p/mosaik-aligner/), Novoalign v3.00.03

(novocraft.com/main/index.php), and SMALT v0.7.4 (sanger.

ac.uk/resources/software/smalt/). We used the Genome Analysis

Toolkit [32] to perform local realignments around indels

according to GATK Best Practices recommendations [16]. The

calls used for each assembler and the GATK software are included

in Table S1. We then used the SAMtools/BCFtools package [33]

to identify SNPs and calculate consensus sequences. All analyses

were performed with an AMD Phenom II X6 1090T processor

and 16 GB of DDR3 RAM.

Construction of simulated reads
Ten sets of simulated 150 bp Illumina paired-end reads were

generated with ART v1.5.0 [28] to 50-fold coverage using a

Listeria monocytogenes strain 08-5578 chromosome sequence

obtained from NCBI (NC_013766.1) as a reference. Simulated

nucleotide substitutions (101–105) were introduced in silico at

random positions in the 08-5578 chromosome sequence to
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generate five ‘‘mutated’’ reference genomes with a Perl script

(SNP_insert.pl) available at http://sourceforge.net/projects/

snpinsert/files/. The ten sets of reads were then assembled as

described above to each of the five modified reference sequences

with BWA, MOSAIK, Novoalign, and SMALT.

Phylogenetic analysis and measurement of genetic
distances

We assembled short-read sequence data from the best of twelve

runs of Listeria monocytogenes strain 08-5578 genomic DNA on an

Illumina MiSeq benchtop sequencer with BWA, MOSAIK,

Novoalign, and SMALT using both NCBI strains 08-5578 and

Figure 1. Comparison of consensus sequences calculated from assemblies of simulated Illumina short-read data aligned to
references of different genetic distances with four reference-guided assemblers. Ten sets of simulated sequencing reads were generated
using a Listeria monocytogenes strain 08-5578 chromosome sequence obtained from the National Center for Biotechnology Information archive as a
reference. Nucleotide variants were randomly introduced (101–105) in silico to the 08-5578 chromosome sequence to simulate the presence of SNPs
in five reference sequences. The performance of four reference-guided short-read sequence assemblers (BWA, MOSAIK, Novoalign, and SMALT) was
assessed by averaging the percentages of true SNPs detected (a) and the numbers of gaps present (b) in the consensus sequences generated from
alignments of the ten sets of reads. In addition, average assembly processing times are provided (c).
doi:10.1371/journal.pone.0104579.g001
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EGD-e chromosome sequences as references and we calculated

consensus sequences as described above. We then aligned the

consensus sequences with progressiveMauve v2.3.1 [34]. The

alignment was curated with Gblocks v0.91b [35,36] using the

default settings. Phylogenetic trees were calculated with the

Randomized Axelerated Maximum Likelihood tool [37]; using

the GTRGAMMAI model and 25 gamma categories to generate

and select the most likely of 100 bootstrap replicates. Pairwise

nucleotide distances were calculated with the same alignment

using PHYLIP v3.6 to apply the Jukes-Cantor method with

gamma-distributed weights across sites.

Results and Discussion

We assessed the efficacy of four commonly used reference-

guided short-read sequence assemblers (BWA, MOSAIK, Novoa-

lign, and SMALT) to generate alignments suitable for accurate

detection of single-nucleotide polymorphisms (SNPs) using both

simulated reads and actual reads obtained from sequencing runs of

Listeria monocytogenes strain 08-5578 genomic DNA on an

Illumina MiSeq benchtop machine. Performance was measured

by comparing consensus sequences calculated from each of the

resulting assemblies with completely sequenced references and

counting the numbers of known nucleotide differences between the

subjects and references (true positive SNPs), incorrectly called

nucleotides (false positive SNPs), ambiguously called sites, and

gaps. Here, ambiguously called sites were considered to be

artefacts of genome sequencing and assembly, rather than

indicators of heterogeneity, as L. monocytogenes genomes are

highly conserved [38] with low evolutionary rates [39]. In total,

ten sets of simulated reads were generated at 50-fold coverage

using the 08-5578 chromosomal DNA sequence (NC_013766.1)

available from the National Center for Biotechnology Information

(NCBI) archive as a template. In order to mimic the use of

reference sequences of varying genetic distances, the NCBI 08-

5578 chromosome sequence was altered by randomly introducing

101–105 variants in silico, generating five reference sequences that

are approximately 0.00032–3.2% distant at the nucleotide level

from the unaltered 08-5578 chromosome sequence. All ten sets of

simulated reads were then aligned with each assembler using each

of the five altered chromosome sequences as references.

Comparison of the resulting consensus sequences with the

reference sequences revealed that, when only ten nucleotide

variants were present, all SNPs were detected in every sequence

regardless of which assembler was used (Figure 1a and Table S2).

All four assemblers also produced comparable results (approxi-

mately 98–99% detection) when 102, 103, or 104 variants were

introduced. However, with the introduction of 105 variants,

simulating the use of a reference that is 3.2% distant, the

frequencies of SNPs detected dropped to approximately 94–95%,

illustrating the inverse relationship between SNP detection and the

genetic distances of subject to reference chromosome sequences. In

addition, while gaps were introduced into almost every consensus

sequence, BWA and SMALT generated assemblies that resulted in

fewer such events than either MOSAIK or Novoalign (Figure 1b

and Table S2). Also, although the numbers of gaps increased

considerably when BWA, MOSAIK, or Novoalign were used to

assemble the data against the 3.2% distant reference (averaging

39.20, 624.00, and 2,024.60 gaps, respectively), the increases

observed when SMALT was used were far less severe (averaging

1.90 gaps). Similarly, BWA, MOSAIK, and Novoalign required

more processing time than SMALT and the amount of time

necessary to assemble the short-read sequencing data increased

precipitously with the presence of 105 variants (Figure 1c and

Table S2).

These results indicate that, with the introduction of only 10

nucleotide variants, all of the reference-guided assemblers here

were equally capable of assembling the short-read sequence data,

producing alignments that resulted in the detection of all SNPs

and the introduction of very few (if any) gaps within consensus

sequences. With the introduction of 100,000 variants, we observed

significant declines in the percentages of true SNPs detected for all

assemblers, increases in the numbers of gaps (especially when using

MOSAIK or Novoalign), and increased processing times for all

assemblers but most notably for MOSAIK and Novoalign.

Interestingly, alignments of the simulated data yielded consensus

sequences with only between 0 and 3 false positive SNPs and no

ambiguous sites regardless of which assembler was used (data not

shown). We thus hypothesized that the absence of these types of

errors was most likely due to the random distribution of the in
silico SNPs and that increases in the numbers of false positive

SNPs and ambiguous sites would be observed when short-read

sequence data from real sequencing runs was assembled.

In order to assess the numbers of errors introduced into

consensus sequences when real short-read sequence data was

assembled, we extracted the genomic DNA of the Listeriosis

Reference Service for Canada’s (LRS) subculture of L. monocy-
togenes strain 08-5578. We then split the DNA sample into four

subsamples and performed three sequencing runs of varying

quality on a MiSeq benchtop sequencer (as indicated by cluster

densities, total output, numbers of reads generated, and the

numbers of reads passing filter), yielding a total of twelve sets of

short-read sequence data (Table S3). We then used the chromo-

some sequences of both NCBI strains 08-5578 and EGD-e

(NC_003210.1) as references. During the course of this experi-

ment, we discovered that the NCBI strain 08-5578 chromosome

sequence submission is different from the LRS strain 08-5578

chromosome sequence at three nucleotide positions (1,329,720;

2,870,261; and 2,870,308), making them ,0.000096% distant.

These differences were verified with Sanger sequencing (data not

shown). The strain EGD-e chromosome sequence has 25,347

nucleotide differences compared to the LRS 08-5578 chromosome

sequence (,0.82% distant). So, we were able to test the abilities of

the short-read reference-guided sequence assemblers to generate

alignments that resulted in consensus sequences that included all

true positive sites and we were able to assess the rates of error by

counting any false positive sites, ambiguous sites, or gaps.

We detected between 0 and 22 false positive sites in consensus

sequences calculated from alignments using the NCBI strain 08-

5578 chromosome sequence as a reference and their presence

seems to be correlated with decreasing coverage (Figure 2a and

Table S4). The average numbers of false positive SNPs resulting

from use of the different reference-guided sequence assemblers

varied from 3.33 (Novoalign) to 3.75 (BWA), representing

approximately 0.00011 to 0.00012% error in the consensus

sequences. Among runs with at least 50-fold coverage, the

numbers of false positive sites range from 0 (MOSAIK, Novoalign,

and SMALT) to 1 (BWA) and represent a maximum of

0.000032% error. The numbers of true SNPs detected range

from 1 to 3 for all assemblers with averages of 1.92 (Novoalign) to

2.33 (BWA, MOSAIK, and SMALT), representing 64 to 78%

accuracy (Figure 2b and Table S4). Of runs with at least 50-fold

coverage, Novoalign generated alignments that resulted in the

detection of 2 of the 3 SNPs, while using BWA, MOSAIK, and

SMALT resulted in the detection of all 3 SNPs. The majority of

incorrectly called bases manifested as ambiguous sites (Figure 2c

and Table S4). The average numbers of ambiguously called bases
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range from 90.75 to 192.25 (0.0029–0.0062% error) and from

13.00 to 19.33 (0.00042–0.00062% error) for runs of at least 50-

fold coverage (MOSAIK and SMALT, respectively, in both cases).

The average numbers of gaps introduced into consensus sequences

range from 81.08 (BWA) to 122.25 (Novoalign) for all runs,

indicating between 0.0026 and 0.0039% error in the consensus

sequences, and 3.67 (SMALT) to 16.67 (Novoalign) for runs of at

least 50-fold coverage, indicating between 0.00012 and 0.00054%

error (Figure 2d and Table S4). Hence, errors present in consensus

sequences appear to be due predominantly to low sequence

coverage. However, among runs with at least 50-fold coverage,

choice of assembler does influence the numbers of errors present in

consensus sequences when the subject and reference are nearly

identical and, in this context, assemblies calculated with MOSAIK

yielded consensus sequences with the fewest errors (0.00055%

total) and all 3 true nucleotide differences.

To further assess the effect of reference genome selection on

frequencies of errors in consensus sequences calculated from

reference-guided assemblies, we aligned all twelve sets of real

short-read sequence data again using the NCBI strain EGD-e

chromosome sequence as a reference. The numbers of false

positive sites present in these consensus sequences were substan-

tially greater than consensus sequences calculated from assemblies

performed with the nearly identical reference. Assemblies gener-

ated with Novoalign resulted in an average of 218.83 false positive

sites and assemblies generated with BWA yielded an average of

1,477.17 such sites, indicating between 0.0070 and 0.047% error

(Figure 3a and Table S5). Among alignments of at least 50-fold

coverage, averages of 220.00 (Novoalign) to 871.50 (BWA) false

positive sites were detected, representing approximately 0.0071 to

0.028% error. The numbers of true SNPs detected varied widely

with the use of different assemblers, Novoalign yielded alignments

that resulted in the detection of 65% of SNPs and SMALT yielded

alignments that allowed for the detection of 94% of SNPs

(Figure 3b and Table S5). When runs of at least 50-fold coverage

are considered, between 78 and 95% of true SNPs were detected

(Novoalign and SMALT, respectively). Ambiguously called sites

also appeared far more frequently within these consensus

sequences, averaging from 268.00 with MOSAIK to 1,186.75

with SMALT, representing between 0.0086 and 0.038% error

(Figure 3c and Table S5). Among runs of at least 50-fold coverage

the numbers of ambiguous sites averaged from 129.00 (Novoalign)

to 817.33 (SMALT), indicating between 0.0041 and 0.026% error.

The most common form of error, however, was the introduction of

gaps into consensus sequences. Assemblies calculated with

SMALT resulted in an average of 534.25 gaps and use of

Novoalign resulted in an average of 8,549.20 gaps (0.017–0.27%

error), while alignments of at least 50-fold coverage yielded

averages of 245.33 (SMALT) and 5,058.00 (Novoalign), repre-

senting between 0.0079 and 0.16% error (Figure 3d and Table

S5). In total, these data indicate that when using a reference that is

,0.82% distant at the nucleotide level, although sequence

coverage was important, choice of assembler contributed most

significantly to the detection of true SNPs and the presence of

errors. In addition, SMALT assemblies of at least 50-fold coverage

generated the best consensus sequences, including an average of

95% of true SNPs and overall error rates of approximately

0.088%.

In order to determine the importance of pre-assembly

processing of short-read sequence data, we counted the total

numbers of SNPs and errors detected in consensus sequences

calculated from assemblies of reads before and after read-quality

trimming and filtering. For the real datasets aligned with the NCBI

strain 08-5578 chromosome sequence, pre-processing of reads

resulted in assemblies that yielded consensus sequences with fewer

false positive sites than consensus sequences calculated from

assemblies of unprocessed reads when BWA, MOSAIK, or

SMALT were used (Figure S1a and Table S6). Alignment of

pre-processed reads with Novoalign resulted in the detection of

one additional false positive site. Interestingly, pre-processing of

reads also resulted in a reduction in the numbers of true positive

sites detected when BWA, MOSAIK, and SMALT were used,

while Novoalign alignments yielded consensus sequences with the

same numbers of true positive sites with and without pre-

processing (Figure S1b and Table S6). The total numbers of

ambiguous sites and gaps were reduced with pre-processing of

reads no matter which assembler was used (Figure S1c and d and

Table S6). When using the strain EGD-e chromosome sequence as

a reference, quality trimming and filtering of reads increased the

numbers of true SNPs detected and decreased the numbers of false

positive sites, ambiguous sites, and gaps introduced into consensus

sequences when BWA, MOSAIK, or SMALT were used, while

quality pre-processing of reads had the opposite effect in every

category when Novoalign was used (Figure S2a–d and Table S7).

In total, these data indicate that whether pre-processing of reads is

beneficial depends upon both the choice of reference sequence and

assembler. These results are consistent with findings that read

filtering and trimming do not improve the quality of assemblies or

the accuracy of SNP calls [15], while others report benefits from

read pre-processing [12].

Finally, in order to assess the importance of reference sequence

and assembler selection to downstream applications we aligned the

best of the twelve sequencing runs (according to the numbers of

reads passing filter) with all four reference-guided assemblers and

using chromosome sequences of both NCBI strains 08-5578 and

EGD-e as references. We also phylogenetically analysed these

consensus sequences (Figure S3) and measured their genetic

distances (Table S8). Phylogenetic analysis reveals that there are

no branches distinguishing the consensus sequences calculated

from the alignments using the NCBI strain 08-5578 chromosome

as a reference. Furthermore, the calculated distances between

these consensus sequences are all 0.00. However, branches of

various lengths separate the consensus sequences generated when

the strain EGD-e chromosome sequence was used as a reference.

This, of course, resulted in the grouping of sequences in the

phylogenetic tree by reference and not by assembler or a random

distribution of sequences. In addition, we calculated distances of

0.000078 to 0.000353 between these consensus sequences,

indicating that 229 to 1,037 nucleotide differences exist. The

variations in branch-lengths in the phylogenetic analysis and the

Figure 2. Comparison of consensus sequences calculated from alignments of Illumina MiSeq short-read data to a nearly identical
reference with four reference-guided assemblers. Genomic DNA from the Listeriosis Reference Service for Canada’s (LRS) Listeria
monocytogenes strain 08-5578 subculture was indexed and sequenced twelve times. The resulting reads were aligned with four reference-guided
assemblers (BWA, MOSAIK, Novoalign, and SMALT) using an L. monocytogenes strain 08-5578 chromosome sequence obtained from the National
Center for Biotechnology Information (NCBI) archive as a reference. The NCBI strain 08-5578 chromosome sequence differs from the LRS strain 08-
5578 chromosome sequence at three nucleotide positions. The numbers of false positive sites (a), true positive sites (b), ambiguous sites (c), and gaps
(d) present in the resulting consensus sequences relative to the calculated coverage of each assembly are shown. Lines were calculated with power
regression and smoothed using a Catmull-Rom Spline.
doi:10.1371/journal.pone.0104579.g002
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measurements of genetic distances observed between these

sequences incorrectly report that some sequences are more closely

related than others. For example, the phylogenetic analysis

indicates that the sequences in the EGD-e clade calculated from

MOSAIK and Novoalign alignments share a more recent

common ancestor than either shares with the sequences calculated

from BWA or SMALT alignments. This result runs counter to the

correct relationships illustrated by the 08-5578 clade, which show

that all four sequences are equally related.

Conclusions

Increased accessibility of whole-genome sequence data, an

abundance of open-source short-read sequence assembly software,

and the proven utility of SNP detection in a number of fields

requires that factors that can influence the quality of assemblies

and, therefore, confidence in SNP calling be carefully considered.

Different types of errors, such as failures to identify true SNPs,

false positive SNPs, ambiguous sites, and the introduction of gaps

into consensus sequences, may arise from the sequencing process

itself or may be due to the choices made on how short-read

sequence data are generated and assembled. Such choices include

the amount of coverage necessary to get an accurate assembly,

which reference-guided short-read sequence assembler to use,

which sequence to use as a reference, and whether to perform

quality filtering and trimming of reads before alignment, to name

just a few.

Here, we used four reference-guided sequence assemblers

(BWA, MOSAIK, Novoalign, and SMALT) to align both

simulated and real Listeria monocytogenes strain 08-5578 short-

read sequence datasets. In addition, we used reference sequences

that are between 0.00032 and 3.2% distant from the subjects in

the case of the simulated reads and, in the case of real sequence

data, we used both a reference that is different by only 3

nucleotides (strain 08-5578; ,0.000096% distant) and a reference

that differs at 25,347 nucleotide positions (strain EGD-e; ,0.82%

distant). We found that low coverage is one of the most important

sources of error and that assemblies with coverage of at least 50-

fold provided the best results. We found, also, that both choice of

assembly software and the genetic distances of the subject

sequences to the reference sequences had significant effects on

SNP detection and the presence of errors in consensus sequences.

Assemblers that utilize the Smith-Waterman pairwise alignment

algorithm at some point during their calculations (i.e., MOSAIK

and SMALT) generated assemblies that yielded consensus

sequences with the fewest errors and greatest numbers of true

SNPs; MOSAIK performed best when the subject and reference

sequences were nearly identical and SMALT performed best when

the subject and reference sequences were more distant. We

showed that whether pre-processing of reads influences SNP

detection or the numbers of errors discovered depends upon both

the assembler and reference sequence chosen. Finally, we showed

that choice of reference sequence and assembler can influence

downstream analyses such as measuring genetic distances and

calculating phylogenetic trees.

This study demonstrates that, when planning an experiment

involving reference-guided sequence assemblies, one must deter-

mine whether an appropriate reference exists. It may be a

requirement for many projects that reference sequences necessary

for proper reference-guided sequence assembly be closed before

accurate SNP detection can occur. Also, it may be important to

assess the abilities of different assemblers to align datasets and to

determine whether quality filtering and trimming of reads

improves the quality of draft genomes.

Supporting Information

Figure S1 Comparison of consensus sequences calcu-
lated from alignments of Illumina MiSeq reads to a
nearly identical reference with four reference-guided
sequence assemblers both before and after read-quality
filtering and trimming. Listeria monocytogenes strain 08-5578

genomic DNA was sequenced twelve times with an Illumina

MiSeq benchtop sequencer and the resulting reads were assembled

before and after read-quality filtering and trimming with four

reference-guided assemblers (BWA, MOSAIK, Novoalign, and

SMALT). An L. monocytogenes strain 08-5578 chromosome

sequence obtained from the National Center for Biotechnology

Information archive that differs at three nucleotide positions was

used as a reference. The total numbers of false positive sites (a),

true positive sites (b), ambiguous sites (c), and gaps (d) present in all

consensus sequences were counted. Error bars were calculated as

the square root of the standard deviation of each dataset.

(PDF)

Figure S2 Comparison of consensus sequences calcu-
lated from alignments of Illumina MiSeq reads to a non-
identical reference with four reference-guided sequence
assemblers both before and after read-quality filtering
and trimming. Listeria monocytogenes strain 08-5578 genomic

DNA was sequenced twelve times with an Illumina MiSeq

benchtop sequencer and the resulting reads were assembled

before and after quality filtering and trimming with four reference-

guided assemblers (BWA, MOSAIK, Novoalign, and SMALT).

An L. monocytogenes strain EGD-e chromosome sequence

obtained from the National Center for Biotechnology Information

archive that differs at 25,347 nucleotide positions was used as a

reference. The total numbers of false positive sites (a), true positive

sites (b), ambiguous sites (c), and gaps (d) present in all consensus

sequences were counted. Error bars were calculated as the square

root of the standard deviation of each dataset.

(PDF)

Figure S3 Phylogenetic analysis of eight Listeria mono-
cytogenes strain 08-5578 consensus sequences calculated
from the alignments of four reference-guided assem-
blers using L. monocytogenes strains 08-5578 and EGD-e
as references. The best of twelve Illumina MiSeq sequencing

runs of L. monocytogenes strain 08-5578 genomic DNA was

assembled with BWA, MOSAIK, Novoalign, and SMALT using

chromosome sequences of both L. monocytogenes strains 08-5578

Figure 3. Comparison of consensus sequences calculated from alignments of Illumina MiSeq short-read data to a non-identical
reference with four reference-guided assemblers. Genomic DNA from the Listeriosis Reference Service for Canada’s (LRS) Listeria
monocytogenes strain 08-5578 subculture was sequenced and indexed twelve times. The resulting reads were aligned with four reference-guided
assemblers (BWA, MOSAIK, Novoalign, and SMALT) using an L. monocytogenes strain EGD-e chromosome sequence obtained from the National
Center for Biotechnology Information (NCBI) archive as a reference. The NCBI strain EGD-e chromosome sequence differs from the LRS strain 08-5578
chromosome sequence at 25,347 nucleotide positions. The numbers of false positive sites (a), true positive sites (b), ambiguous sites (c), and gaps (d)
present in the resulting consensus sequences relative to the calculated coverage of each assembly are shown. Lines were calculated with power
regression and smoothed using a Catmull-Rom Spline.
doi:10.1371/journal.pone.0104579.g003
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and EGD-e (,0.000096% and ,0.82% distant from the subject at

the nucleotide level, respectively), available from the National

Center for Biotechnology Information archive, as references.

Trees were calculated from 2,735,325 aligned nucleotides with the

Randomized Axelerated Maximum Likelihood tool (RAxML;

GTRGAMMA+25+I). The best of 100 bootstrap replicates is

shown.

(PDF)

Table S1 Calls used for read-quality trimming and
filtering, assembly, and local realignment of Illumina
short-read sequences.
(PDF)

Table S2 Numbers of SNPs detected and gaps present
in consensus sequences calculated from assemblies of
simulated short-read sequence data aligned to referenc-
es of different genetic distances with four reference-
guided assemblers. Ten sets of simulated sequencing reads

were generated using a Listeria monocytogenes strain 08-5578

chromosome sequence obtained from the National Center for

Biotechnology Information archive as a reference. Nucleotide

variants were randomly introduced (101–105) in silico to the 08-

5578 chromosome sequence to simulate the presence of SNPs in

five reference sequences. The performance of four reference-

guided short-read sequence assemblers (BWA, MOSAIK, Novoa-

lign, and SMALT) was assessed by counting the numbers of true

SNPs detected and the numbers of gaps present in the consensus

sequences generated from alignments of the ten sets of reads. In

addition, assembly processing times are provided. The ranges of

sites observed are shown with averages in parenthesis. The best

values for each category are bolded.

(PDF)

Table S3 Summary statistics describing three sequenc-
ing runs of four Listeria monocytogenes strain 08-5578
genomic DNA samples on an Illumina MiSeq benchtop
sequencer. Genomic DNA was extracted from an L. monocy-
togenes strain 08-5578 culture grown from a single colony. The

sample was then divided into four subsamples that were indexed

and sequenced three times.

(PDF)

Table S4 Numbers of false positive sites, true positive
sites, ambiguous sites, and gaps detected in consensus
sequences calculated from alignments of Illumina short-
read data to a nearly identical reference with four
reference-guided assemblers. The ability of four reference-

guided short-read sequence assemblers (BWA, MOSAIK, Novoa-

lign, and SMALT) to align Listeria monocytogenes strain 08-5578

genome sequence data was assessed by aligning twelve sets of reads

to a reference chromosome sequence that differs by three

nucleotides. The ranges of events observed are shown with

averages in parentheses. The values for all twelve datasets are

provided as well as those with 50-fold or greater coverage. The

best values for each category are bolded.

(PDF)

Table S5 Numbers of false positive sites, true positive
sites, ambiguous sites, and gaps detected in consensus
sequences calculated from alignments of Illumina short-
read data to a non-identical reference with four
reference-guided assemblers. The ability of four reference-

guided short-read sequence assemblers (BWA, MOSAIK, Novoa-

lign, and SMALT) to align Listeria monocytogenes strain 08-5578

genome sequence data was assessed by aligning twelve sets of reads

to a reference chromosome sequence (strain EGD-e) that differs by

25,347 nucleotides. The ranges of events observed are shown with

averages in parentheses. The values for all twelve datasets are

provided as well as those with 50-fold or greater coverage. The

best values for each category are bolded.

(PDF)

Table S6 Total numbers of false positive sites, true
positive sites, ambiguous sites, and gaps detected in
consensus sequences calculated from alignments of
Illumina MiSeq reads to a nearly identical reference
with four reference-guided sequence assemblers before
and after read-quality filtering and trimming. Total

numbers of sites and gaps present in consensus sequences

calculated from alignments of twelve sets of Listeria monocytogenes
strain 08-5578 short-read sequence data with four reference-

guided assemblers (BWA, MOSAIK, Novoalign, and SMALT)

were counted. An L. monocytogenes strain 08-5578 chromosome

sequence obtained from the National Center for Biotechnology

Information archive that is different at three nucleotide positions

was used as a reference. The best values (Trim or No trim) for

each aligner within each category are bolded.

(PDF)

Table S7 Total numbers of false positive sites, true
positive sites, ambiguous sites, and gaps detected in
consensus sequences calculated from alignments of
Illumina MiSeq reads to a non-identical reference with
four reference-guided sequence assemblers before and
after read-quality filtering and trimming. Total numbers

of sites and gaps present in consensus sequences calculated from

alignments of twelve sets of Listeria monocytogenes strain 08-5578

short-read sequence data with four reference-guided assemblers

(BWA, MOSAIK, Novoalign, and SMALT) were counted. An L.
monocytogenes strain EGD-e chromosome sequence obtained from

the National Center for Biotechnology Information archive that is

different at 25,347 nucleotide positions was used as a reference.

The best values (Trim or No trim) for each aligner within each

category are bolded.

(PDF)

Table S8 Distances of eight Listeria monocytogenes
strain 08-5578 consensus sequences calculated from
the alignments of four reference-guided assemblers
using both L. monocytogenes strains 08-5578 and EGD-
e as references. The best of twelve Illumina MiSeq sequencing

runs of L. monocytogenes strain 08-5578 genomic DNA was

assembled with BWA, MOSAIK, Novoalign, and SMALT using

chromosome sequences of both L. monocytogenes strains 08-5578

and EGD-e (0.000096% and ,0.82% distant from the subject at

the nucleotide level, respectively), available from the National

Center for Biotechnology Information archive, as references.

Distances were calculated from 2,735,325 nucleotides with

PHYLIP using the Jukes-Cantor method and gamma-distributed

weights across sites. Calculated distances of sequences aligned with

strain 08-5578 followed by strain EGD-e (e.g., 08-5578/EGD-e)

are shown.

(PDF)
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