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Abstract: While cells from multicellular organisms are dependent upon exogenous signals for their
survival, growth, and proliferation, commitment to a specific cell fate requires the correct folding
and maturation of proteins, as well as the degradation of misfolded or aggregated proteins within
the cell. This general control of protein quality involves the expression and the activity of molecular
chaperones such as heat shock proteins (HSPs). HSPs, through their interaction with the STAT3/STAT5
transcription factor pathway, can be crucial both for the tumorigenic properties of cancer cells (cell
proliferation, survival) and for the microenvironmental immune cell compartment (differentiation,
activation, cytokine secretion) that contributes to immunosuppression, which, in turn, potentially
promotes tumor progression. Understanding the contribution of chaperones such as HSP27, HSP70,
HSP90, and HSP110 to the STAT3/5 signaling pathway has raised the possibility of targeting such
HSPs to specifically restrain STAT3/5 oncogenic functions. In this review, we present how HSPs
control STAT3 and STAT5 activation, and vice versa, how the STAT signaling pathways modulate
HSP expression. We also discuss whether targeting HSPs is a valid therapeutic option and which
HSP would be the best candidate for such a strategy.
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1. Introduction to Heat Shock Proteins/Chaperones

Heat shock proteins (HSPs), also called stress proteins, are highly conserved molecular chaperones
induced by a broad variety of exogenous or intracellular stresses, including chemotherapy. Based
on their molecular weight, HSPs have been classified into five conserved families: HSP110 (also
called HSPH), HSP90 (HSPC), HSP70 (HSPA), HSP60 (HSPD/E), and the small HSPs (HSPB). The
expression of HSPs is mostly regulated by heat shock factor 1 (HSF1), which is able to translocate
from the cytoplasm to the nucleus following stress to bind to a short, highly conserved DNA sequence
known as a heat shock element (HSE) [1]. As cytoprotective proteins, HSPs participate in the correct
folding, activity, transport, and stability of proteins [2], which are essential processes for cell survival.
In physiological conditions, these proteins support neosynthesized proteins, favoring post-translational
modification processes and protein folding. Otherwise, the functions attributed to them include
the subcellular transport of their “client” proteins, or participation in certain signaling pathways.
In response to stress, many partially denatured proteins accumulate and cluster together forming
protein aggregates via the exposure of their hydrophobic residues. Some HSP proteins are then able

Cancers 2020, 12, 21; doi:10.3390/cancers12010021 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0001-5549-1992
https://orcid.org/0000-0003-0376-9299
http://dx.doi.org/10.3390/cancers12010021
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/1/21?type=check_update&version=3


Cancers 2020, 12, 21 2 of 27

to bind to these partially denatured proteins, thus preventing protein aggregation and favoring their
correct folding. However, HSPs can also promote the elimination of these proteins by orienting them
towards different degradation pathways, notably the ubiquitin–proteasome system, when correct
folding is no longer possible. It has also been reported that HSP proteins are able to inhibit the intrinsic
apoptotic (inhibition of apoptosome formation) and extrinsic (inhibition of signal transduction of
death receptors) processes [3,4]. Interestingly, HSPs can also be secreted and act extracellularly via
membrane receptors or within extracellular vesicles as a damage-associated molecular pattern and
exhibit immune-cell dysregulation properties.

2. HSP Chaperones and Cancer

As cancer cells accumulate mutations and generate physiologically stressful conditions, they
require a constitutively high level of HSPs for their survival and maintenance. In 2011, in order to
simplify the complexity of this disease, researchers suggested that tumor development was organized
around six essential alterations [5]. These major modifications include (i) self-sufficiency in growth
signals; (ii) insensitivity to growth inhibition; (iii) tissue invasion and capacity to develop metastases;
(iv) unlimited replication potential; (v) de novo angiogenesis; and (vi) inhibition of programmed cell
death. Although the appearance of these changes is mainly linked to instability genomics, many
studies have demonstrated the involvement of HSPs in these processes, indicating that these molecular
chaperones have an oncogenic role. Comprehensive discussion about the oncogene-like functions of
these different molecular chaperones and their participation in the progression of resistance to cancer
treatment can be found in excellent recent reviews elsewhere [6,7]. Given the role of HSPs in cancer
biology, these chaperones have also been suggested as potential therapeutic targets [3,8]. A number of
these proteins have been correlated to cancer aggressiveness and/or cancer resistance to radiotherapy
and adjuvant chemotherapy [9].

Targeting HSPs has emerged as a promising sensitization strategy in cancer therapy since HSPs
have oncogene-like functions and mediate “non-oncogene addiction” of stressed tumor cells that must
adapt to a hostile microenvironment. Except for one inhibitor of HSP27 (an antisense oligonucleotide
in phase I/II) [10], all the HSP inhibitors used in clinical trials target HSP90 [11,12]. In this review,
we mainly focused on the chaperones HSP90, HSP70, HSP110, and HSP27 and their regulation of
protein misfolding and signaling in TYK2-STAT3/5 core cancer pathways, as well as the possibility
of targeting such HSPs to specifically restrain STAT3/5 oncogenic functions. We also discuss the
machinery behind the chaperones, which is becoming a major therapeutic target in cancer, and the
emergence of promising HSP inhibitor-based drugs, which are currently being clinically tested or
developed for cancer treatment (Table 1).

Table 1. Summary of the main strategies for HSP inhibition.

Inhibitor Study Type Cancer Model Ref.
Name Nature/Structure

Target: HSP27

Apatorsen
(OGX-427)

2nd generation
2’-methoxyethyl-modified

ASOs

in vitro/preclinical Prostate, Ovary [13,14]

clinical trial (phase I)
CRPC, Breast,
Ovary, Lung,

Bladder
[10]

in vitro/preclinical Pancreatic, NSCLC [15,16]

clinical trial (phase II)
Stage IV

non-squamous
NSCLC

[17]

3-arylethynyltriazolyl
ribonucleoside ASOs in vitro Pancreatic [18]

ASOs-Hsp27 ASOs in vitro Lymphoma [19]

RP101
(Brivudine)

Uridine derivative and
nucleoside analog in vitro/preclinical/clinical Pancreatic [20]
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Table 1. Cont.

Inhibitor Study Type Cancer Model Ref.
Name Nature/Structure

Target: HSP70

Pifithrin-µ
(PFTµ, PES) Drug-like small molecule in vitro

AML, ALL,
Primary AML

blasts
[21,22]

VER-155008 ATP-derivative inhibitor in vitro Breast, Colon,
Prostatic, Myeloma [23–25]

A17/A8 Peptide aptamer in vitro/preclinical Cervix (HeLa cells),
Melanoma [26]

ADD70 Peptide aptamer in vitro/preclinical
Rat colon

carcinoma, Mouse
melanoma

[27]

cmHsp70.1 Antibody preclinical Colorectal [28]

Hsp70-peptide
targeted NK based

adoptive
immunotherapy

A specific amino acid
sequence (TKD) of Hsp70

clinical trials
(phase I/II)

NSCLC (and colon
cancer) patients

with ex vivo Hsp70
peptide activated,

autologous NK

[29]

Target: HSP90

Radicicol
natural product isolated from

the fungus Monosporium
bonorden

in vitro CML [30]

17-AAG; 17-DMAG Derivative of the antibiotic
geldanamycin

in vitro/preclinical Breast, Brain,
Medulloblastoma [31–33]

17-DMAG in vitro CLL [34]

IPI-504 (retaspimycin) Water-soluble derivate of
17-AAG

in vitro/preclinical

Breast, Pancreatic,
Metastatic

gastrointestinal
stromal tumor

[35–39]

in vitro/preclinical NSCLC [40]

IPI-504, AUY922
Ganetespib, Onalespib - clinical trials

(phase I–III)

NSCLC
Breast, Ovary,

Colon
[41]

Novobiocin
Aminocoumarin antibiotic,

produced by the actinomycete
Streptomyces nivens

in vitro/preclinical Leukemia, Prostate [42–44]

Panaxynol Natural pesticide and fatty
alcohol in vitro/preclinical Lung [45]

Ganetespib
(STA-9090)

Synthetic, non-geldanamycin,
small molecule inhibitor

preclinical Thyroid [46]

in vitro Breast [47]

BIIB021
(CNF2024)

Orally available, fully
synthetic purine scaffold,
small molecule inhibitor

in vitro/preclinical
Blood

malignancies, Solid
tumors

[48]

PU-H71 Non-ansamycin, purine
scaffold inhibitor

preclinical

mouse models of
the MPN PV and

ET
[49]

MPN [50]
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Table 1. Cont.

Inhibitor Study Type Cancer Model Ref.
Name Nature/Structure

NVP_AUY922
(AUY922)

Esorcinylic isoxazole amide,
second-generation

non-geldanamycin inhibitor

in vitro/preclinical Gastric, Small cell
lung, Thyroid [51–55]

in vitro

32D mouse
hematopoietic cells

expressing
wild-type

BCR-ABL (b3a2,
32Dp210) and

mutant BCR-ABL
imatinib-resistant

cell lines

[56]

in vitro/preclinical

Drug-resistant
chronic

myelogenous
leukemia

[57]

clinical trial (phase II) Myeloproliferative
neoplasms [58]

clinical trials (phase
I/II)

EGFR-mutant lung
cancer with

acquired resistance
to epidermal
growth factor

receptor tyrosine
kinase inhibitors

[59]

AUY922,
HSP990, PU-H71 - in vitro/preclinical Leukemia [60]

Onalespib
(AT13387)

second-generation,
non-ansamycin inhibitor

in vitro

Transformed
kidney cells,

primary lung
adenocarcinoma

[61]

in vitro/preclinical Melanoma [62]

in vitro/preclinical NSCLC [63]

in vitro/preclinical NSCLC [64]

XL888
Orally available inhibitor with

high selectivity for HSP90α
and HSP90β

clinical trial (phase I) Melanoma [65]

SNX2112
SNX5422

Orally bioavailable, synthetic,
small molecule inhibitors that
competitively bind to HSP90α,

HSP90β, Grp94 and Trap-1

in vitro/preclinical

Head and neck
squamous cell

carcinoma
[66]

NSCLC [67]

CUDC-305, Ganetespib
CH5164840, WK88-1

17-DMAG
- preclinical NSCLC [68–71]

Target: HSP110

Foldamers
33 and 52

Protein–protein interaction
inhibitors, based on pyridyl
scaffolds mimicking α-helix

in vitro/preclinical Colorectal [72]

ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; ASOs: antisense oligonucleotides; CLL: chronic
lymphocytic leukemia; CML: chronic myelogenous leukemia; CRPC: castration-resistant prostate cancer; EGFR:
epidermal growth factor receptor; ET: essential thrombocytosis; MPN: myeloproliferative neoplasm; NK: natural
killer cells; NSCLC: non-small cell lung cancer; PES: 2-phenylethynesulfonamide; PV: polycythemia vera.

3. HSP90

3.1. HSP90 Structure and Functions

HSP90 (also known as HSPC) is one of the most abundant chaperones in eukaryotic cells in
the absence of stress. HSP90 is critical for the operation of cellular machinery under physiological
conditions through interactions with so-called “client” proteins. This is only achieved through the
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formation of a multimeric protein complex of cochaperones that binds to all three domains of HSP90.
Hundreds of client proteins for HSP90 have been identified so far [73]. Many of these proteins are
involved in essential cellular functions that promote cell growth, proliferation, cell survival, and
immune responses. Most of these processes are also involved in cancer development. Three main
groups of “client proteins” can be described for HSP90: first, the group of kinases represents the main
group because HSP90 interacts with 60% of them [74]; second, the group of multiprotein complexes
for which HSP90 promotes assembly [75]; and third, the group of ligands that HSP90 stabilizes with
their receptors. It is difficult to identify new client proteins because HSP90 does not bind particular
sequences. In contrast, the interaction seems to be based on the overall structural instability of the
client proteins [74,76]. Among the client proteins, here we focus on the kinases and receptor tyrosine
kinases involved in the STAT3/5 signaling pathway.

3.2. HSP90 and Nonfusion Protein Kinases

3.2.1. Jak Kinases

The mammalian family of Janus kinases (JAKs) is composed of 4 members: JAK1, JAK2, JAK3, and
Tyrosine kinase 2 (Tyk2). This family is the main activator of STAT proteins. JAK regulation by HSP90
was discovered by studying the effect of HSP90 inhibitors on the type I and II Interferon (IFN) signaling.
In several cell lines, this treatment suppressed the expression of multiple IFN-γ-induced genes and
decreased IFN-γ-induced STAT1 phosphorylation on Tyr-701, required for dimerization, and on Ser-727,
required for transcription factor activation. As JAK1/2 were known to be the protein kinases responsible
for STAT1 phosphorylation, Shang et al. investigated the effect of HSP90 inhibitors on JAK1/2. They
showed that HSP90 inhibition led to the proteasome-mediated degradation of JAK1/2. Further they
showed that JAK1 interacted with HSP90 (and the CDC37 cochaperone [77]), and that both interactions
were destabilized by HSP90 inhibitors [78]. As overactivation or constitutive JAK1/2 signaling promotes
cell proliferation and survival in a variety of solid tumors and leukemia [79,80], this discovery paved
the way for the identification of the critical role of HSP90 in the aberrant JAK/STAT signaling pathway.
In particular, an activating point mutation in JAK2 (JAK2V617F) was described as being highly frequent
in chronic myeloproliferative neoplasms (MPN) that promote disease progression [81–84].

Despite this activating mutation, HSP90 inhibition in cell lines homozygous for JAK2V617F reduced
total and phospho-JAK2, and subsequently cell viability [85]. In vivo experiments in a mouse model of
MPN confirmed the efficacy of HSP90 targeting because treatment with the HSP90 inhibitor PU-H71
resulted in significant reductions in disease parameters and better chances of survival [49]. Furthermore,
combined treatment that included HSP90 inhibitors and JAK2 inhibitors induced a greater depletion of
the signaling proteins than a single inhibitor alone, and synergistically induced apoptosis in human
primary CD34(+) MPN cells harboring JAK2V617F [50]. Therefore, HSP90 interaction with JAK2 is
not altered by activated mutations, but instead could be used as a therapeutic target. This point is of
great value, as mutations within the JAK2 kinase domain that confer resistance across a panel of JAK
inhibitors have been described (G935R, Y931C, and E864K). Fortunately, genetic resistance to JAK2
enzymatic inhibitors can be overcome by HSP90 inhibitors, which still promote the degradation of
both wild-type and mutant JAK2 [60]. Recently, results from a phase II clinical trial with the HSP90
inhibitor AUY922 (Novartis, transferred to Vernalis) have been published and have demonstrated a
clinical response in five out of seven patients with MPN [58]. This response correlated with a reduction
in overall levels of JAK2, pYSTAT3, and pYSTAT5. Unfortunately, most patients experienced severe
adverse effects due to the toxicity of the inhibitor, a phenomenon that has already been observed with
other HSP90 inhibitors.

3.2.2. Src Kinases

The members of the Src family of nonreceptor tyrosine kinases (Src, Fyn, Yes, Blk, Yrk, Rak, Fgr,
Hck, Lck, Srm, and Lyn) are implicated in numerous important functions in eukaryotic cells. They
control proliferation, survival, and differentiation, therefore playing a critical role in many cancer
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types [86]. Src members can activate STAT3 directly and synergize with JAK family tyrosine kinase
action [87]. Among the family members, c-Src has been linked to cancer development [88]. The viral
homolog of c-Src kinase, v-Src (from the Rous sarcoma virus), has a constitutive kinase activity and was
the first discovered oncogene [89,90]. Both homologs bind to the HSP90/CDC37 complex but with
striking differences. HSP90, which binds weakly and transiently to c-Src, binds strongly to v-Src, which
appears to be its strongest client protein [91–93]. Accordingly, v-Src kinase activity depends strongly
on HSP90 [74,94]. Recently, Boczek et al. provided more insight by determining the influence of HSP90
isoforms α and β on purified c-Src and v-Src activity. They have shown that HSP90 does not affect
c-Src activity in vitro, whereas v-Src activity was increased two-fold when human HSP90β (but not
HSP90α) was added to the experimental setting. HSP90β also stabilized v-Src at high temperatures
when it would be inactive otherwise. Until recently, the mechanism behind this striking difference was
unknown [76,95]. To solve this issue, Bolcek et al. generated an Src mutant that mimics the oncogenic
v-Src kinase activity (c-src3M∆C). This mutant exhibited a more extended activation loop (A-loop)
(usually present in an open form during wild-type Src active state to allow substrate binding). The
A-loop from c-Src3M∆C is also less stable in comparison with the wild-type Src. Consequently, the
c-Src3M∆C is conformationally uncontrolled, which enhances its interaction with HSP90 and suggests
this could be a more general mechanism for the interaction between HSP90 and oncogenic kinases
than the presence of a general client sequence motif. Indeed, HSP90 potentially interacts more strongly
with structurally extended kinases, a frequent state observed upon activating mutations. Interestingly,
a very similar mechanism needed to aid the initial folding of immature kinases such as c-Src, which is
furtive is this case, governs the binding of HSP90 to conformationally unstable but mature kinases like
v-Src. In this context, CDC37 appears to bind to parts of the unfolded kinase first (which might be
considered as an independent kinase binding unit), partly unfolding it further before HSP90 clamps
around the CDC37/kinase complex [96]. Other Src family members, like LckY505F and HCK499F, are
probably stabilized by the same mechanism [97,98].

3.2.3. ACK1

Another nonreceptor tyrosine kinase, activated CDC42-associated kinase-1 (ACK1), catalyzes the
phosphorylation of STAT1, STAT3, and STAT5. HSP90 interacts with ACK1 [99] and is necessary for
the phosphorylation of STAT1 in transformed kidney cells and STAT3 in primary lung adenocarcinoma
by ACK1 [61].

3.2.4. BRAF

The activated serine/threonine kinase BRAF mutant is a main driver of melanoma growth and
progression [100] and is a HSP90 client protein [74,101]. Inhibition of HSP90 by AT13387 delays the
emergence of resistance to BRAF inhibitors [62]. A recent phase I dose escalation clinical trial in
melanoma has shown that another HSP90 inhibitor (XL888) in combination with a specific anti BRAF
inhibitor (vemurafenib) has clinical activity in patients with advanced BRAFV600-mutant melanoma,
with a tolerable side effect profile [65].

3.3. HSP90 and Fusion Protein Kinases

3.3.1. BCR-ABL

Chronic myeloid leukemia (CML) is driven by the BCR-ABL fusion oncoprotein [102], which
is involved, among other pathways, in the transcriptional regulation of STAT3 [103,104] and
STAT5 [105,106]. In this context, the BCR-ABL/STAT3/STAT5 signaling pathway is mainly involved in
tumor-initiating stem cell maintenance [107]. BCR-ABL is a HSP90 client protein that is destabilized
by HSP90 inhibition, which leads to cell death [56]. In CML cells, BCR-ABL forms a high molecular
weight network with JAK2, STAT3, and AKT. This network pushes disease progression, but could also
be its Achilles’ heel. Indeed, HSP90 directly binds to this signaling network, and its inhibition breaks
the whole network apart [56]. As for other targeted therapies, resistance to BCR-ABL tyrosine kinase
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inhibitors can develop during the course of the treatment because of acquired BCR-ABL mutations.
Hopefully, combination therapies involving HSP90 inhibitors and anti-JAK2 may overcome this
resistance [57].

We are still unsure of how this mechanism of action can be extended to the interaction with other
oncogenic mature kinases, but an important process for protein stabilization by HSP90 and CDC37 has
been uncovered.

3.3.2. EML4-ALK

The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK)
fusion gene is an oncogenic driver in about 5% of patients with non-small cell lung cancer (NSCLC).
It is also an HSP90 client protein (one of the most sensitive), which is very rapidly degraded upon
exposure to HSP90 inhibitors [40]. These results prompted the initiation of numerous clinical trials
reviewed elsewhere [41,108]. Yet despite encouraging results, clinical response was weak, and so the
development of HSP90 inhibitors was halted for NSCLC.

3.4. HSP90 and ErbB Family of Receptor Tyrosine Kinase (RTK)

STAT3 and STAT5 are also known to be phosphorylated by several receptor tyrosine kinases
(RTK), such as the ErbB family, IGF-1R, or FGFR [109], most of which are HSP90 client proteins.
Interestingly, they are also activated or captured for signal transduction by those RTK without
phosphorylation [110]. Given their membrane localization, these RTK must go through a complex
process of folding, maturation, and membrane insertion that requires significant chaperone cooperation.
This is particularly true for mutated RTK, which is frequently observed in cancers. For instance, ErbB2
stability and maturation is regulated by its binding to HSP90 through its cytoplasmic tail [111] and is
ATP dependent [112].

Accordingly, HSP90 inhibition leads to RTK destabilization and absence of STAT3 activation in
different models of cancer [47,66,67]. Many drugs have been developed to inhibit mutated or rearranged
RTK, but despite early success, most patients develop resistance and eventually relapse [113]. The
strong HSP90/EGFR interaction has then been used to propose an alternative therapeutic strategy
combining an HSP90 inhibitor with an EGFR inhibitor. Interestingly, this combination (with the
EGFR inhibitor erlotinib) resulted in prolonged animal survival in nonmutated and erlotinib-resistant
models [67,68,70,71,114,115].

3.5. STAT3/5 and HSP90

The STAT3/5 signaling pathway is also regulated downstream from the tyrosine kinases and
RTK. Indeed, HSP90 is found within the cytosol, directly bound to dimers of STAT3 or STAT5 via its
N-terminal regions [116]. However, in contrast to its role in TK or RTK folding and stabilization, HSP90
is not required for STAT3/5 maturation or total protein levels. They are therefore nonclassical HSP90
client proteins. The chaperone would rather change STAT conformation to ease the phosphorylation
process and/or, once phosphorylated, maintain this active state for a prolonged period of time.
Moulick et al. have suggested this pattern in chronic myeloid leukemia [69]. They showed that HSP90
directly binds to active pYSTAT5 (Tyr694), but not to inactive STAT5, and that pYSTAT5 acquires a
conformation that is more susceptible to trypsine cleavage in the presence of HSP90. HSP90/STAT3
also protects pYSTAT3 from dephosphorylation by the phosphatase SHP-1 in gastric cancer cells.
Luteolin (3,4,5,7-tetrahydroxyflavone), a natural flavonoid present in fruits and vegetables, inhibits
STAT3 activation by disrupting the association of HSP90 to STAT3, which allows it to interact with
SHP-1 [117].

In order to function as a transcription factor, STAT3/5 needs to translocate into the nucleus and
form a stable interaction with DNA. In this context, as suggested by Longshaw et al., HSP90 appears to
play a specific role in association with the cochaperone HOP [118]. They have shown that the depletion
of HOP decreased the nuclear localization of STAT3. Although it is not yet clear how HSP90 promotes
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STAT3/5 nuclear shuttling, it may involve the capacity of HSP90 to form molecular complexes with
specific carriers, like importins alpha [119], that can transport STAT3 to the nucleus. This scheme
would mimic what has been described for other molecular complexes implicating HSP90, such as the
glucocorticoid receptor [120] or PKCZeta [121]. After entering the nucleus, HSP90 seems to promote
STAT3/5 transcriptional activity as STAT3/5 interaction with promoters of target genes is enhanced by
the presence of HSP90. Indeed, the STAT3/5 complexes and HSP90 have been shown to colocalize
in MYC and in CCND2 promoters [69]. Furthermore, nuclear hormone receptors form multiprotein
complexes with STAT3 and STAT5 [122,123], which together with HSPs could contribute to chromatin
landscaping [124].

In conclusion, HSP90 appears to be a key chaperone for the STAT3/5 pathway. It operates at
all levels of message transmission, from interaction with RTK in the cytoplasmic membrane, to the
interaction with multiple kinases in the cytosol, and to favoring active STAT3/5 localization and binding
of target genes the nucleus (Figure 1). This role is also central in the pathological overactivation of
STAT signaling where HSP90 favors oncogenic proteins (Figure 1), promoting the development of
several inhibitors for cancer treatment (Table 1, Figure 2). However so far, most clinical trials have
yielded mixed results and frequent side effects that precluded the broad utilization of these treatments.
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pathways. HSP90 promotes those pathways through direct interaction with STAT3 or STAT5 dimers
and favors their phosphorylation, nuclear localization, and promoter binding, but HSP90 also limits
dephosphorylation and proteasomal degradation. Upstream of STAT3/STAT5 activation, HSP90
stabilizes several kinases, like JAK2, JAK2V617F, c-Src, v-Src, ACK1, BCR-ABL, EML4-ALK, LckY505F,
and HCK499F, and several receptor tyrosine kinases, such as the ErbB family.
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4. HSP27

4.1. HSP27 Structure

HSP27 (27 kDa), also known as HSPB1, belongs to the small HSP family. In contrast to other HSPs,
it is an ATP-independent chaperone [125]. HSP27 shows a highly dynamic process of oligomerization
that transforms proteins from dimers to large oligomers, which can culminate at 1000 kDa. This state
of oligomerization dictates the affinity of HSP27 towards the proteins to be chaperoned, given that the
multimer form is the most binding-competent state [126].

Four phosphorylation sites (S15, S78, S82 and T143) in the N-terminal domain regulate the
assembly of oligomers [127]. Phosphorylation promotes the formation of small oligomers, while
dephosphorylation promotes the formation of large oligomers [128]. Stressors such as anticancer agents,
hydrogen peroxide, mitogens, inflammatory cytokines (TNF-α, IL-1b, etc.), and kinases (p38 MAPK,
p70RSK, PKB, PKC, PKD and PKG) can promote HSP27 phosphorylation [129]. However, we have
also shown that oligomerization can occur independently of phosphorylation through cell–cell contact,
as observed in confluent cultures in vitro or solid tumors in vivo [130].
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4.2. HSP27 Functions

HSP27 chaperone functions have been less described than higher molecular weight HSPs like
HSP70 and HSP90. However, HSP27’s main function as a chaperone is to stabilize denatured or
aggregated proteins to bring them to a soluble and stable form [131,132].

HSP27 plays an important role and has been associated with poor prognosis in many cancers (for
a recent review, see [127]). For instance, Rocchi et al. described the promotion of the STAT3 signaling
pathway in prostate tumors [133]. They showed that HSP27 directly interacts with STAT3 and that total
STAT3 levels correlated directly with HSP27 levels. Furthermore, the cytoprotective effect of HSP27
was attenuated by STAT3-reduced expression, underlying the importance of this pathway in prostate
cancer [133]. HSP27 is also involved in the process of prostate cancer metastasis through the promotion
of IL-6-mediated epithelial-to-mesenchymal transition (EMT), because reduced HSP27 expression
decreases cell migration and invasion [134]. In the absence of HSP27, IL-6-induced phosphorylation
of STAT3 is reduced, but not total STAT3 content. This inhibition leads naturally to reduced STAT3
nuclear localization and binding to the TWIST gene, which codes for a key EMT transcription factor.

Beside cancer development, HSP27 regulation of STAT3 has recently been implicated in placental
implantation. HSP27 is indeed expressed during placenta formation and in the first two trimesters
of pregnancy [135,136]. In particular, HSP27 is highly expressed during the differentiation of
cytotrophoblast cells and extravillous trophoblast cells, and its silencing was found to significantly
reduce total STAT3. Interestingly, the phosphorylation state of STAT3 was not altered in the absence of
HSP27 in placental explants, suggesting a role in protein protection from proteasomal degradation [137].
This could be explained by the fact that STAT3 and STAT5 have a relatively low thermodynamic
stability as isolated proteins and are thus more prone to aggregation, which would be limited by
HSP27 [124]. Given the importance of STAT3 in embryonic development (STAT3 knock-out mice have
a lethal embryonic phenotype) [138], this finding revealed the critical role of HSP27 in this process.

There has been little study of the state of HSP27 phosphorylation, and consequently the state of
oligomerization, required for STAT3/5 binding, despite the fact that therapeutic targeting of specific
kinases would logically impact HSP27 functions. We only know, from one study of prostate cancer,
that IL-6 stimulation leads to HSP27 phosphorylation and correlates with the EMT, suggesting the
phosphorylated form is required for STAT3 activation [134]. Other STAT family members are HSP27
client proteins, like STAT2 (a STAT family member involved in viral or interferon responses), which
was also shown to be degraded upon HSP27 knockdown in Hela cells [139]. However, this process
was reversed by proteasome inhibition. However, STAT3 and 5 were not or were only weakly reduced
in this particular tumor cell line. Again, the discrepancy between tumoral contexts or cell lines could
come from differences in HSP27 phosphorylation or oligomerization status.

As stated previously, HSP27/STAT3 interaction occurs also in nontumoral contexts. In normal liver
cells under a high fat diet, the phosphorylated form of HSP27 stimulates autophagy and lipid droplet
clearance through interaction with STAT3. In this particular situation, no STAT3 activation by HSP27 is
described, but rather the disruption of STAT3/PKR complexes, facilitating PKR and eIF2α mediated
autophagy [140]. These data suggest that dimers and multiprotein complexes can be displaced by the
action of phospho-HSP27 on different binding partners, including STAT3, and this can also mediate
critical cellular physiological processes.

Upstream from STAT3/5 activation, JAK2 plays a major role that can be modulated by HSP27 [141].
In the specific context of thrombopoietin- and JAK2V617F-induced myelofibrosis (a chronic degenerative
disorder of the hematopoietic system associated with the aberrant activation of the JAK/STAT
pathway) [142], our team has recently shown that HSP27 interacts directly with JAK2/STAT5, stabilizing
the complex. Neither total JAK2 nor STAT5 protein levels were affected, but we found that the state of
phosphorylation of STAT5 (Tyr694) by JAK2 was HSP27 dependent. We demonstrated that HSP27,
through interaction with STAT5, physically prevented its dephosphorylation by the phosphatase SHP2
in those cells.
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In conclusion, HSP27 plays a very important role in STAT3/5 signaling, both in contexts of
tumor development and others such as placenta development. In contrast with HSP90, whose
functions depend on the client proteins, HSP27′s different functions (protein stability, phosphorylation,
disruption of complex of proteins, etc.) may rely on the phosphorylation and oligomerization status
of the chaperone (Figure 3). The general vision is mainly dichotomous: on one side there are large
phosphorylated oligomers, and on the other nonphosphorylated dimers. This simplistic description
does not reflect the reality of cellular dynamics. Future studies will be needed to specify the proportion
of each HSP27 oligomer within the cells and the associated function.
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pathways. HSP27 state of oligomerization varies dynamically to modulate its binding capacity to
target proteins in a context-dependent way. HSP27 directly interacts with pYSTAT3 and total STAT3 to
promote stabilization and phosphorylation. HSP27 directly binds to JAK2V617F/STAT5 complexes to
prevent STAT5 dephosphorylation by SHP-2 in MPN. HSP27 also displaces multiprotein complexes
like the STAT3/PKR complex.

5. HSP110

5.1. HSP110 Structure

The 110 kDa heat shock protein (HSP110), also known as HSP105 or HSPH1, belongs to the
members of the HSPH family. Although it appears to be distinct from other HSPs (HSP27, HSP40,
HSP70, and HSP90) because of its molecular weight and the specificity of certain sequences, HSP110
is a member of the family of HSP70 proteins [143,144]. Until quite recently, HSP110 was considered
as a mere nucleotide exchange factor of HSP70. However, it is now well established that HSP110
is able to act as an unfolding chaperone on its own using ATP hydrolysis to lead to conversion of
stable misfolded polypeptide substrates into natively refolded products, even when HSP70 is not
present [145]. In an ATP-independent manner, HSP110 also has the antiaggregating properties of
unfolded or misfolded proteins.
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5.2. HSP110 Functions

In contrast to other chaperones, like HSP90 or HSP70, little is known about the cellular and
extracellular functions of HSP110. It is a ubiquitous and conserved chaperone with antiaggregation
capabilities that act in synergy with the refolding activity of HSP70, which contributes to efficient
protein homeostasis [145,146]. HSP110 expression is induced by a wide array of stress including
hyperthermia, ethanol, oxidative stress, recovery from anoxia (i.e., reperfusion injury), some anticancer
drugs, and inflammation. HSP110 is approximately four-fold more efficient at binding and stabilizing
denatured protein substrates than HSP70 [147]. Due to its strong chaperone (or holder) function,
HSP110 is a very good antigen carrier. It is therefore used in vaccine formulations [148] as a recombinant
chaperone vaccine for antigen-targeted cancer immunotherapy. These vaccines have generated robust
antigen-specific T lymphocyte responses in different preclinical cancer models [149]. Two forms of
HSP110 exist: HSP110α and an alternatively spliced form called HSP110β, which contains 43 fewer
amino acids [150]. While HSP110α is constitutively expressed in the cytoplasm of cells and can be
induced in stressful conditions such as heat shock, HSP110β is strictly heat-inducible and specifically
localized in the nucleus (Figure 4) [151]. Beyond the different localization of these two forms of HSP110,
their differential roles remain unclear. Like other HSP proteins, the expression of HSP110 can be
induced by a number of physical or chemical sources of stress and depends on the heat shock factor 1
(HSF1) transcription factor. Moreover, the presence STAT3 on the HSP110 promoter has been recently
reported in humans, suggesting its regulation by STAT3 [152]. Conversely, HSP110β can induce HSP70
expression through STAT3 in mammalian cells (Figure 4) [153]. It is now clearly established that
HSP110 favors several signaling pathways, including the Wnt/β-Catenin, MyD88/TLR, and STAT3
pathways [154,155].

Concerning the STAT signaling pathway, we have demonstrated that HSP110 directly binds
to STAT3 and favors its phosphorylation (Tyr705) by JAK2 in the cytosol, thereby promoting cell
proliferation (Figure 4) [156]. Colon cancer cells in which HSP110 has been shRNA-mediated and
knocked down hardly proliferate, but proliferation is reactivated by the re-expression of HSP110 in
these cells. Tumors from patients with high levels of HSP110 show high STAT3 phosphorylation levels
and strong expression of proliferation markers [154,156]. Therefore, both the protein homeostasis
function and the role of HSP110 on proliferative pathways may explain why this protein is linked to
aggressive tumors. We suggest that HSP110 expression could be a surrogate prognostic marker and a
potential therapeutic target, particularly for treatment of carcinomas, particularly colorectal cancer, for
which there is strong evidence.

Given the emerging role of HSP110 in cancer and its role on STAT3 in particular, we selected two
foldamers upon screening of a chemical library based on their ability to inhibit and block recombinant
HSP110-mediated antiaggregation activity and to disrupt HSP110–STAT3 interaction [72]. These
compounds, named 33 and 52 (Table 1, Figure 5), inhibit HSP110 chaperone function and colorectal
cancer growth in vitro and in vivo [72]. Altogether these results confirm the interest of targeting
HSP110, at least in colorectal cancers, and probably in other types of cancer, such as B-cell lymphoma.

Although HSPs are generally considered intracellular proteins, we now know that HSP110 can
also be released to act extracellularly like HSP27, 70, and 90 [157–159]. The release of HSP110 from
human intestinal epithelial cells has also been described, suggesting a role in the physiological process
of epithelial renewal [160]. More recently, we have demonstrated that HSP110, like other HSPs,
can be secreted by cancer cells and is abundantly observed in the cancer microenvironment [161].
Interestingly, extracellular HSP110 affects macrophage differentiation/polarization by favoring a
protumor, anti-inflammatory profile and the formation of tumor-associated macrophages (TAMs),
which are associated with immune suppression. Furthermore, we found a correlation between the
level of extracellular HSP110 and the number of TAMs in patient biopsies [161], suggesting that the
effect of extracellular HSP110 function on macrophages may also contribute to the poor outcomes that
are associated with HSP110 expression.
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Figure 4. Localization and described functions of HSP110 and HSP70 within the STAT3 and STAT5
signaling pathways. HSP110 directly binds to STAT3 in the cytosol and favors its phosphorylation
through JAK2, and, through this mechanism, participates in the promotion of cell proliferation.
HSP110α and HSP110β localize to the cytoplasm and nucleus of cells, respectively. HSP110β induces the
expression of HSP70 in mammalian cells. Overexpression of HSP110β stimulated the phosphorylation
of STAT3 (Tyr705) and its translocation to the nucleus. STAT3 binds to the sequence of the HSP70
promoter at the level of a sequence (−206 to −187 base pair) whose mutation abrogated the activation
of the HSP110β-mediated HSP70 promoter. HSP70 directly interacts with STAT3 and STAT5. It favors
STAT3 phosphorylation and activity, and STAT5 levels, phosphorylation, and activity.
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Figure 5. Structure of the main small-molecule inhibitors of HSP27 (blue), HSP70 (Green), and HSP110
(Orange). RP101 can inhibit HSP27 function via direct binding to Phe29 and Phe33. VER-155008 binds
to the ATP-binding site at the N-terminus of HSP70. Pifithrin-µ inhibits specifically function of HSP70
via direct binding to its substrate binding domain. Compounds 52 and 33 bind to the ATP binding site
at the N-terminus of HSP110.
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6. HSP70

6.1. HSP70 Structure

Stress-inducible HSP70 (also called HSP72 or HSP1A, HSPA1B) is another member of the HSP
superfamily that has emerged as a viable and very promising target for development of antitumor
drugs to combat various forms of cancer [162–164]. As the most ubiquitous stress-inducible chaperone,
HSP70 exhibits numerous chaperone functions that are critical for both the folding and proteasomal
degradation of misfolded proteins. It thus participates in cellular protein quality control systems,
leading to cell homeostasis and survival during stress conditions. The human HSP70 protein family
consists of at least 13 members, including stress-induced HSP70 and the heat shock cognate protein
70 (HSC70) [165]. The chaperone mechanism of HSP70 has been extensively studied [166]. HSP70
associates with misfolded proteins in a manner controlled by its ATPase cycle and cochaperones such
as HSP40, BAG family proteins, HIP, HOP, and HSPBP1 [165].

6.2. HSP70 Functions

Based on immunoprecipitation analysis from normal rat kidney interstitial fibroblast (NRK-49F)
cells, HSP70 has been shown to directly interact with multiple STAT proteins, including STAT3/5
(Figure 4). This interaction increased when cells were stressed by exposure to advanced glycation end
product [167]. Although the data are still limited, studies show that manipulating HSP70 expression
or activity affects STAT protein activity within cells. HSP70 (HSP701A/B) knock down using siRNA
further decreased constitutive STAT3 activity in an acute myeloid leukemia cell line (HEL) treated with
arsenic trioxide and the HSP90 inhibitor 17-DMAG [168]. In addition, increasing HSP70 activity with
administration of geranylgeranylacetone before and three days after intracerebral hemorrhage resulted
in increased STAT3 and AKT phosphorylation and also cerebral levels of eNOS, which are collectively
associated with preserved cerebral blood flow, decreased neuronal cell death, and improved functional
recovery in rats [169]. Uchida et al. suggested that the mechanism for HSP70 induction through
geranylgeranylacetone may be the result of geranylgeranylacetone-induced induction of protein kinase
C [170].

It is worth noting that upregulation of HSP70 could stimulate cell proliferation through the
control of tyrosine kinase functions. In cancer cells derived from chronic myeloid leukemia cells,
BCR-ABL tyrosine kinase activity results in the phosphorylation and activation of AKT, and in the
phosphorylation and DNA-binding activity of STAT5, which leads in turn to an increase in the
expression of antiapoptotic protein Bcl-xL [171]. Interestingly, while increased expression of HSP70
results in the upregulation of STAT5 level and activity, inhibition of the BCR-ABL tyrosine kinase
activity with imatinib or inhibition of PI-3K activity with wortmannin both result in a decrease in HSP70
expression and STAT5 activity. Thus, uncontrolled cell signaling may result in the transcription of
HSP70, which in turn regulates the level and activity of STAT5 (Figure 4) [171]. Besides the intracellular
role of HSP70 as a survival factor that promotes tumorigenesis [172], it is now known that HSP70 also
regulates diverse immunoregulatory activities such as antigen cross presentation [173,174], dendritic
cell maturation [175,176], and natural killer cell [177,178] and myeloid-derived suppressor cell [179]
activities, by acting extracellularly as a cytokine [180,181]. We demonstrated that membrane-associated
HSP70 is found extracellularly in tumor-derived exosomes and that it restrained tumor immune
surveillance by promoting myeloid-derived suppressor cell functions in both mice and humans.
Interestingly, tumor-derived exosomes harboring HSP70 were found to mediate the suppressive
activity of the myeloid-derived suppressor cells via activation of STAT3 and ERK [179].



Cancers 2020, 12, 21 15 of 27

7. Regulation Mechanisms of HSF/HSPs by JAK/STAT Signaling: A Feedback Loop?

7.1. HSF and SOCS Regulation

The activation of the JAK family and the subsequent STAT signaling is regulated by the family
of suppressors of cytokine signaling (SOCS) proteins. This system aims to protect organisms from
permanent and/or overstimulation that could lead, for instance, to severe systemic inflammations
mediated by IFN-γ signaling [182]. Conversely, a deficit in SOCS expression could play a pivotal role
in the development and progression of cancers [183]. Expression of SOCS3, which has been shown to
inhibit JAK1, JAK2, and TYK2 [184], is frequently reduced in cancer cells, thereby leading to a growth
advantage. The effect of HSF1 and HSP on SOCS3 expression changes depending on the tissue and
whether the context is normal or tumoral. In nontumoral microglia cells, the activation of HSF1 by
paeoniflorin induced an indirect increase of SOCS3 expression mediated by HSP70 production and
autocrine action [185]. Conversely, it was recently shown that HSF1 could directly bind to the SOCS3
promoter region and inhibit the transcriptional activity of its promoter [186]. This reinforces the role of
HSF1 as a transcription factor for many genes not related to heat shock response [3]. SOCS3 repression
of expression can also be mediated by HSPs, as seen in chronic lymphocytic leukemia. In this context,
HSP90 inhibition by 17-DMAG induces the expression of SOCS3 through the activation of the p38
MAPK signaling [34]. This regulation is probably a specific to tumors, as normal B cells were not found
to upregulate SOCS3 expression upon HSP90 inhibition, and their migration was not affected [34].

7.2. HSF/HSPs and JAK/STAT

The regulation of the STAT signaling pathway by HSPs has been largely described, but in a
positive feedback loop STAT3/5 has been shown to regulate HSPs. Little is known about HSP regulation
apart from the fundamental role of HSF. The STAT3/5 pathway modulates expression of HSP27, HSP70,
HSP90, and HSP110 when faced with different stressful stimuli [187]. Among those, mild heat shock
is a type of stress (that was used to first describe the function of HSPs) during which the induction
of HSPs prevents cell death from intense heat shock that otherwise would have been lethal. This
thermotolerance is also accompanied by STAT3 phosphorylation. Inhibition of STAT3 activation by
STAT3 inhibitors AG490 or static partially suppresses thermotolerance and HSP110 expression, but not
HSP70 and HSP27 [188]. This result underlines a particular role for HSP110 in the process, which is in
line with its capacity to interact with α-tubulin. This mechanism could therefore protect microtubules
from severe heat shock [189]. Besides STAT3, STAT1 is also involved in HSP70 and HSP90 regulation,
particularly after IFN-γ activation [190,191] or under heat shock [192]. Together with HSF1, STAT1 is
recruited to the first intron of the HSP90β gene to favor the recruitment of a chromatin-remodeling
complex, leading to enhanced HSP90β expression.

Other types of stress, such as hypoxic stress (a common phenomenon in a majority of tumors), are
strong inducers of HSP90α expression. In these conditions, STAT5 is one of the transcription factors that
regulate HSP90α, and hypoxia increases the binding of STAT5 to the HSP90α promoter [193]. When
the STAT signaling pathway is constitutively active in tumors, like in breast and colon cancer, STAT3
has also been shown to transcriptionally induce HSP27 expression [194]. Though less documented, this
mechanism also exists in hematological malignancies like Burkitt’s lymphoma, where pharmacological
inhibition of STAT3 by AG490 downregulates HSP70 expression [195].

8. Conclusions

We have reviewed here the multiple roles of HSPs in the STAT3/5 activation network. From receptor
tyrosine kinases to promoter binding of STAT3/5 target genes, HSPs appear to use several mechanisms
to control this pathway. Among the various HSPs, HSP90 has a central role in the cellular machinery
and is one of the most abundant cytosolic proteins. This role is clearly exposed when we describe both
kinases and STAT proteins as HSP90 client proteins. The current literature points to the important role
of HSP90/STAT3/STAT5 in cancer growth and the ability to thwart chemotherapy [3,196–198].
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This discovery has prompted the development of drugs specifically targeting HSP90 and the
subsequent initiation of clinical trials for cancer patients (Table 1, Figure 2). Almost all of the trials have
reported clinical responses, confirming the relevance of this strategy. However, adverse side-effects
were also frequent due to the inherent toxicity of HSP90 inhibitors. This could be explained by the
number of client proteins that are simultaneously chaperoned by HSP90, which obviously endangers
critical physiological processes in normal cells. A strategic question emerges from this observation:
should we continue searching for more specific, less toxic drugs? Or should we limit studies to
fundamental science to uncover new biological mechanisms? Other HSPs are gaining interest in
the scientific community. In particular, HSP110 is a newly discovered player in the field of cancer
aggressiveness that controls the STAT3 pathway in colon cancers and in B-cell lymphomas. Our team
recently identified the first HSP110 inhibitors (Table 1, Figure 5) that block interaction with STAT3
and that effectively limit colon cancer progression in mouse models; we plan to bring these to the
clinic within the next few years. No toxicity has been demonstrated so far, and we believe this new
type of inhibitor is promising for cancers whose poor prognosis is associated with HSP110/pYSTAT3
expression. Both intra- and extracellular HSP70, which belong to a related HSP family, favor STAT3/5
phosphorylation by JAK2. This dual action is of particular therapeutic interest since targeting HSP70
would simultaneously blunt the macrophage-mediated immunosuppression and block the intratumoral
growth signal. To reach the goal of bringing HSP70 inhibitors to the clinic, we have identified peptide
aptamers that bind to the peptide-binding domain of HSP70. This has not been an easy task since HSP70,
contrary to HSP90, is not a “druggable” protein. Despite this limitation, our HSP70 inhibitors are
specific and have proven effective in xenograft models of colon cancer. Of course, further studies will be
needed before clinical trials can be initiated. Finally, HSP27 has recently been found to play new roles in
myeloproliferative neoplasms. In this disease, which is driven by the JAK2V617F/STAT5 pathway, HSP27
inhibition destabilizes the protein complex and limits disease related myelofibrosis. Furthermore, in
contrast to HSP90 inhibitors, the HSP27 inhibitor does not induce the compensatory expression of
other HSPs that usually account for resistance to treatment. Targeting HSP27 would therefore be an
alternative to the failed HSP90 therapy, which also targeted JAK2V617F. An oligonucleotide antisense
of second generation (OGX427) is currently under clinical evaluation (Table 1).

Furthermore, small molecules targeting STAT3/5 have been identified as enhancing protein
degradation. The inhibition of STAT pathways is therefore likely highly amenable to HSP inhibition
and presents a potential synergistic therapeutic strategy (Table 1).

In conclusion, we show in this review that the STAT3/5 pathways rely on multiple HSPs
under physiological and pathological conditions. Targeting various members of the HSP family,
alone or in combination, will probably improve the inhibition of this central pathway and should
foster the development of new, more specific and less toxic HSP inhibitors to complete the existing
therapeutic arsenal.
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