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Abstract: Recent years have witnessed the development of the applications of machine learning
technologies to well logging-based lithology identification. Most of the existing work assumes that
the well loggings gathered from different wells share the same probability distribution; however,
the variations in sedimentary environment and well-logging technique might cause the data drift
problem; i.e., data of different wells have different probability distributions. Therefore, the model
trained on old wells does not perform well in predicting the lithologies in newly-coming wells,
which motivates us to propose a transfer learning method named the data drift joint adaptation
extreme learning machine (DDJA-ELM) to increase the accuracy of the old model applying to new
wells. In such a method, three key points, i.e., the project mean maximum mean discrepancy,
joint distribution domain adaptation, and manifold regularization, are incorporated into extreme
learning machine. As found experimentally in multiple wells in Jiyang Depression, Bohai Bay Basin,
DDJA-ELM could significantly increase the accuracy of an old model when identifying the lithologies
in new wells.

Keywords: lithology identification; domain adaptation; manifold regularization; projected maximum
mean discrepancy; extreme learning machine

1. Introduction

Well logging data have grown dramatically over the past few decades due to the widespread
deployment of oil wells and the rapid development of sensing technology. A large amount of
data not only brings us more opportunities to understand the underground but also brings more
great challenges to the interpretation of logging data [1,2]. Well logging provides an objective and
continuous method with which to observe the properties of the rocks through which the drill bit
passes and to describe the deposition process quantitatively. As a bridge between surface geophysical
survey and subsurface geology, well logging is an effective and irreplaceable method to understand
reservoir characteristics. As conventional reservoirs dry up, oil and gas companies are turning to
unconventional exploration and development in shale and low-permeability reservoirs, posing more
challenges for logging interpretation [3].

In traditional logging interpretation, lithology determination, porosity, and permeability
calculations are performed by specialists in exploration and geology with specialized knowledge.
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Lithology identification is a fundamental problem in well logging interpretation and is of considerable
significance in petroleum exploration engineering. It is the basis of reservoir parameter calculation
(such as porosity, shale volume, permeability) and geological research (such as formation correlation,
sedimentary modeling, favorable zone prediction, etc.). Due to the complexity of reservoir geological
conditions, the uncertainty of exploration data and the inconsistency of expert experience, the results
of lithology identification are mainly dependent on expertise. With the increasing diversity of logging
data, the traditional logging interpretation methods which rely on human experience have some
shortcomings and limitations. As a result, researchers are turning to more advanced data analysis
methods for breakthroughs in lithology identification.

In recent years, with the rapid development of machine learning technology, its application
in lithology identification has also attracted full attention [4]. In order to accurately and effectively
determine the lithology type, a large amount of application work based on different machine learning
began to emerge [5]. For example, G. Askari [6] used satellite remote sensing data to find the lithological
information in Deh-Molla sedimentary succession by principal component analysis. Al-Anazi et al. [7]
proposed a support vector machine-based classification feature method and selection method based
on fuzzy theory to realize the recognition of potential features and the improvement of lithology
recognition performance. Wang et al. [8] proposed a novel back propagation (BP) model by modifying
the self-adapting algorithm and activation function, which is proven to be effective in predicting the
lithologies of the Kela-2 gas field. The experimental results show that, compared with discriminant
analysis and probabilistic neural network, support vector machines can identify different lithology
of heterogeneous sandstone reservoirs more accurately. Xie et al. [9] evaluated five typical machine
learning methods of naive Bayes, support vector machines, artificial neural networks, random forest
and gradient tree enhancement based on the formation lithology identification data of the Danudui
gas field and the Hangjinqi gas field. Experimental results show that the integrated method, including
random forest and gradient tree enhancement, has a lower prediction error. At the same time, the
gradient tree enhancement method has the highest accuracy compared with the other four methods.
In order to reduce exploration uncertainty, Bhattacharya et al. [10] compared different methods of
facies division and prediction of mudstone in the current conventional logging data, and applied
them to the Devonian Bakken and Mamentago–Marsilus formations in North America. In this study,
support vector machines (SVM), artificial neural networks (ANN), self-organizing mapping (SFM),
and multi-resolution map based clustering (MRMC) are compared experimentally. Dev et al. [11]
analyzed the data from China’s Danuci gas field and Hangjinqi gas field by the gradient lifting decision
tree system (i.e., XGBoost, LightGBM, and CatBoost) to study formation lithology classification,
and compared their performance with random forest, AdaBoost, and gradient boosting machines.
Experiments show that LightGBM and CatBoost are the preferred algorithms for lithology classification
by using well logging data. A large number of similar studies can be seen in [12–16].

In addition to these directly-applied studies, more and more scholars are focusing on how to
improve existing machine learning tools to solve practical problems in lithology identification. Due
to the different distribution of underground lithology, there is a severe class imbalance problem
in the training data set. Furthermore, Deng et al. [17] introduced a borderline-stroke technique
for dealing with unbalanced data, and the results showed that this method could effectively
improve the classification accuracy of SVM, especially for the minority classes. There are many
free hyper-parameters in machine learning algorithms, and the settings of these hyper-parameters
will have significant influences on the performance of lithology identification. Therefore, Saporetti
et al. [18] adopted an evolutionary parameter tuning strategy, and combined gradient boosting (GB)
with differential evolution (DE) to achieve the optimization of super parameters, thereby making
the lithology identification more stable. In the study of [19], the wavelet decomposition was used
to construct multi-channel images of logging data, and then the lithology identification problem
based on the logging curve was skillfully transformed into an image segmentation problem. Finally,
the feasibility of this method was verified by the application in the Daqing oilfield. Aiming at the
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issue of data drift between different wells, Ao et al. [20] proposed a hybrid algorithm for lithology
identification that combines the mean drift algorithm and the random forest algorithm in the prototype
similarity space. It is pointed out that a more accurate lithology identification model can be obtained
by transforming the classification problem into prototype similarity space. Li et al. [21] proposed a
semi-supervised algorithm based on Generated Adversarial Network, which uses logging curves as
the labeled data and seismic data as the unlabeled data. The model was trained by Adam algorithm
and uses the discriminator to identify the lithologies. Compared with the experimental results of
various supervised methods, the model can effectively use unlabeled data to achieve higher prediction
accuracy. Similar work can be found in [22–24].

Although much work has been done, a practical problem, i.e., the well loggings from different
wells are different in the probability distribution, is not taken into consideration. Hence, the model
trained on old wells might not perform well on new wells. As illustrated in Figure 1, the phenomenon
of data drift occurs between two wells, even when they are geospatially near. In particular, applying
the model trained on well Wb to well Wa has many errors, as shown in Figure 1a. To suppress the data
drift-induced accuracy decrease, we propose a transfer learning method named the data drift joint
adaptation extreme learning machine (DDJA-ELM) to increase the accuracy of the old model applying
to new wells. By incorporating the project mean maximum mean discrepancy, joint distribution domain
adaptation, and manifold regularization into the extreme learning machine, we realize the knowledge
transfer from old wells to new wells. As experimented in multiple wells in Jiyang Depression, Bohai
Bay Basin, DDJA-ELM could increase the accuracy of an old model significantly when identifying
the lithologies in new wells. In the remainder of the paper, Section 2 expatiates on the proposed
DDJA-ELM, which is evaluated in Section 3. The last section concludes the paper.

(a) (b) (c)
Figure 1. Illustration of data drift (a): Logging curves, core, and prediction results (using the model
trained on well Wb) on well Wa. (b) Logging curves, core, and prediction results (using the model
trained on Wa) of Wb. (c) t-SNE [25] visualization of data distribution for Wa and Wb. Gray, yellow, and
green indicate mudstone, sandstone, and dolomite, respectively. Point and hollow square indicate data
from Wa and Wb, respectively. Wa and Wb are geospatially near.

2. Methodology

2.1. Notation

The dataset D = {(xi, yi)}n
i=1 is composed of the sample xi = [x1, . . . , xd]

′ ∈ Rd with d dimension
and the label yi = [0, . . . , 0, 1︸ ︷︷ ︸

k

, 0, . . . , 0] ∈ {0, 1} if xi belongs to the k-th (1 ≤ k ≤ c) class, where n and c

are the numbers of samples and classes, respectively. In well logging-based lithology identification, d
generally means the number of loggings types, and c denotes the number of lithology types. A sample
is composed of the logging values at a certain depth. Considering the problem of data drift, we use
DS and DT to differentiate the datasets with drift; i.e., DS and DT represent the source dataset for
training and the target dataset to predict, respectively. Specifically, the source dataset is labeled and
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the target dataset is unlabeled, thereby denoting DS = {(xs
i , ys

i )}
ns
i=1 and DT = {xt

i}
nt
i=1 with ns and

nt samples accordingly, and ns + nt = ns+t, where xs
i and xt

i are source and target-dataset samples,
respectively; and ys

i is a source-dataset label of xs
i . By defining XS = [xs

1; . . . ; xs
ns ], YS = [ys

1; . . . ; ys
ns ],

and XT = [xt
1; . . . ; xt

nt ], then the DS = {(XS, YS)} and DT = {XT}.

2.2. Problem Definition and Formulation

In general, a classifier f (x) trained on D classifies well on those samples that satisfied the
independent identically distributed (i.i.d.) assumption. However, the classifier f (x) trained on DS
might not perform well on DT because the data drift means that the i.i.d. assumption does not hold;
i.e., the knowledge learned from DS cannot transfer to DT . In this case, it is necessary to add some
new constraint conditions to achieve expected performance while learning the classifier f . Exactly,
the expected performance can be concluded as the following constraint conditions: (i) minimizing the
structural risk to avoid overfitting; (ii) minimizing the data drift between the source dataset and the
target dataset; (iii) minimizing the prediction inconsistency within the target dataset. If considering
the ELM as the basic classifier f , f (x) = f (x; β) where β is the output weight matrix of ELM.

According to the structural risk minimization (SRM) and regularization techniques [26],
the classifier f can be denoted as

f = arg min
β

`( f (x; β), y) + R(x; β), (1)

where the first term represents the empirical loss on samples (i.e., describing the fitness of applying the
model to predict the training data); the second term represents the regularization term (i.e., representing
the formulation of constraint conditions). Thus, combined with the constraint conditions mentioned
above, the objective function is formulated mathematically as follows

f = arg min
β

`( f (x; β), y) +
1
2
‖β‖2 +

λ

2
Ω(DS,DT ; β) +

γ

2
M(DT ; β), (2)

where the empirical loss term `( f (x; β), y) and the structural risk regularization term ‖β‖2 compose
the model accuracy and complexity of ELM. The term Ω(DS,DT ; β) indicates the extent of data
drift between DS and DT . Additionally, we introduce the manifold regularization termM(DT ; β) to
improve the prediction consistency within the target dataset. λ and γ are the regularization parameters
accordingly.

In the remainder of this section, we will expatiate on each term of the objective function.

2.2.1. ELM

Recent years have witnessed the development of a promising machine learning model; i.e.,
extreme learning machine (ELM). ELM is actually an artificial neural network with a single hidden
layer, which was first proposed by Huang et al. [27] and found its application in many domains, such
as robotic perception, hyperspectral image classification, lithology identification, and human activity
recognition [28–32]. Compared with support vector machine and other artificial neural networks, ELM
has significant superiority in generalization performance and training time. In addition, many variants
for ELM have been investigated, including semi-supervised ELM, multi-kernel ELM, rough ELM,
one-class ELM, etc. [33–36].
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According to the objective function (2), we first describe the mathematical model of ELM as
follows [37],

arg min
β∈Rz×c

`( f (x; β), y) +
1
2
‖β‖2 =

C
2

ns+t

∑
i=1
‖ei‖2 +

1
2
‖β‖2 (3a)

s.t. jih(xi)β = yi − ei, i = 1, . . . , ns+t, (3b)

where ei ∈ Rc represents the error vector with respect to the i-th training sample, and ∑ns+t
i=1 ‖ei‖2 is the

sum of prediction errors. The tradeoff coefficient C is used to balance the contribution between the two
terms. Since the target dataset DT is unlabeled, ji = 1 if i ≤ ns; otherwise, ji = 0; and yi equals a zero
vector if i > ns. The output of hidden layer is equal to h(xi) = [g(xi; w1, b1), . . . , g(xi; wz, bz)], where
wj ∈ Rz; z is the number of hidden neurons; bj ∈ R are the j-th random generated weight vector and
bias constant; g(·) is a piecewise continuous nonlinear activation function, such as the sigmoid function
g(xi; wj, bj) = 1/{1 + exp(−w′j · xi − bj)} or the Gaussian function g(xi; wj, bj) = exp(−bj‖xi −wj‖2).
In this paper, the sigmoid function is used as the activation function.

2.2.2. Weighted ELM

Additionally, since each lithology in dataset D usually contains the samples of different amounts,
appropriate weights should be assigned to each error vectors for the samples imbalance issue, so (3) is
rewritten as

arg min
β∈Rz×c

`( f (x; β), y) +
1
2
‖β‖2 =

C
2

ns+t

∑
i=1

ωi‖ei‖2 +
1
2
‖β‖2 (4a)

s.t. jih(xi)β = yi − ei, i = 1, . . . , ns+t, (4b)

where ωi =
νi

∑
ns+t
i=1 νi

denotes the weight, νi =
1

nτ
i

and τ is a constant, and ni is the number of samples

belonging to yi, thereby modifying the ELM to the weighted ELM (WELM).
Substituting the constraints (4b) into (4a) yields the equivalent unconstrained optimization

problem and the matrix form:

arg min
β∈Rz×c

C
2

W ‖(Y− JHβ)‖2 +
1
2
‖β‖2, (5)

where W = blockdiag(WS, 0nt×nt) ∈ Rns+t×ns+t ; WS ∈ Rns×ns is a diagonal matrix with each item ωi;
and Y = [YS; 0nt×c] ∈ Rns+t×c, H = [h(x1); . . . ; h(xns+t)] ∈ Rns+t×z, J = blockdiag(Ins×ns , 0nt×nt) ∈
Rns+t×ns+t , where 0 and I are the zero matrix and the identity matrix with appropriate dimension,
respectively. By setting the gradient of (5) over β to zero, we have

β− CH′J′W(Y− JHβ) = 0, (6)

where ′ represents the transpose of matrix. There are two forms of an optimal solution to the β∗. When
the number of the training data is larger or smaller than the number of hidden neurons, then H has
more or fewer rows than columns, thereby resulting in an underdetermined or overdetermined least
squares problem. The closed-form solution for (6) can be described as

β∗ =


H′W

(
HH′W +

1
C

Ins+t

)−1
Y, if ns+t < z(

H′WH +
1
C

Iz

)−1
H′WY, if ns+t ≥ z

, (7)

where Ins+t and Iz are the identity matrix of ns+t and z dimensions.
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2.2.3. Data Drift Adaptation

In general, the data distribution properties can be used to statistically describe the correlation
among the samples (xi, yi) ∈ D, thus the data drift-induced distribution discrepancy can be estimated
by statistical criteria. In this paper, we utilize the projected maximum mean discrepancy (PMMD) criterion
for distribution discrepancy measure [38]. Thus, the regularization term Ω(DS,DT ; β) with PMMD is
formulated as

ΩP(DS,DT ; β) =

∥∥∥∥∥ 1
ns

ns

∑
i=1

h (xs
i ) β− 1

nt

nt

∑
j=1

h
(

xt
j

)
β

∥∥∥∥∥
2

, (8)

Further, (8) can be rewritten to a matrix form; that is,

ΩP(DS,DT ; β) = tr
(

β′H′MPHβ
)

, (9)

where tr(·) denotes the trace of a matrix. The elements of matrix MP ∈ Rns+t×ns+t are calculated by

(MP)pq =



1
n2

s
, if p, q ≤ ns

1
n2

t
, if p, q > ns

− 1
nsnt

, otherwise.

(10)

According to (8), the samples xs
i and xt

j are transformed from the feature space to the mapping
space by h(·), where the distribution discrepancy between the source and target datasets can be
reduced by adjusting β. Thus, the modified WELM named data drift adaptation WELM (DDA-WELM)
classifier can be achieved by introducing the regularization term ΩP(DS,DT ; β) to adapt the data drift.

However, the overall accuracy is increased with sacrificing the accuracies of some classes, because
DDA-WELM is a method of reducing the distribution discrepancy between two datasets as a whole.
Consequently, we modify the PMMD to propose the joint PMMD (JPMMD) that aims to reduce
the distribution discrepancy between classes of two datasets, respectively. The regularization term
Ω(DS,DT ; β) with JPMMD is formulated as

ΩJ(DS,DT ; β) =
c

∑
k=1

∥∥∥∥∥∥∥
1

n(k)
s

∑
ys

i =k
h (xs

i ) β− 1

n(k)
t

∑
ỹt

j=k

h (xs
i ) β

∥∥∥∥∥∥∥
2

, (11)

where ys
i is the real label of xs

i and ỹt
j is the pseudo label of xt

j which is generated by the DDA-WELM

classifier; n(k)
s and n(k)

t are the number of source-dataset samples which belong to the class k and the
number of target-dataset samples whose pseudo labels are k, respectively.

Similarly, (11) can be rewritten to the matrix form; that is,

ΩJ(DS,DT ; β) = tr
(

β′H′MJHβ
)

, (12)
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where the elements of matrix MJ ∈ Rns+t×ns+t are computed by

(
M(k)

J

)
pq

=



1

(n(k)
s )2

, if p, q ≤ ns and ys
p, ys

q = k

− 1

n(k)
s n(k)

t

, if p > ns, q ≤ ns and ỹt
p−ns , ys

q = k

− 1

n(k)
s n(k)

t

, if p ≤ ns, q > ns and ys
p, ỹt

q−ns = k

1

(n(k)
t )2

, if p, q > ns and ỹt
p−ns , ỹt

q−ns = k

0, otherwise.

(13)

Thus, the data drift joint adaptation WELM (DDJA-WELM) classifier can be obtained by introducing
the regularization term ΩJ(DS,DT ; β) and the DDA-WELM classifier to improve the WELM.

2.2.4. Manifold Regularization

Manifold regularization is widely used to improve the smoothness of predictions and suppress
the classifier cutting through the high-density regions [39]. Specifically, we introduce the manifold
regularizationM(DT ; β) to assign smooth labels within the target dataset and make the classifier more
adaptable to the target dataset.

The formulation of the manifold regularizationM(DT ; β) is that

M(DT ; β) =
1

2n2
t

nt

∑
i=1

nt

∑
j=1

ai,j

∥∥∥h(xt
i)β− h(xt

j)β
∥∥∥2

(14)

where the similarity ai,j between the sample xt
i and xt

j is calculated by

ai,j =


exp

−
∥∥∥xt

i − xt
j

∥∥∥2

4σ2

 , xt
i ∈ N (xt

j) or xt
j ∈ N (xt

i),

0, otherwise,

(15)

where N (xt
j) is the set of κ-nearest neighboring samples of xt

i under the metric of Euclidean distance
in feature space, and σ > 0 is the width of Guassian kernel. Additionally, (14) can be rewritten to a
matrix form

M(DT ; β) = tr(β′H′LHβ). (16)

where L = diag(0ns×ns , LT) ∈ Rns+t×ns+t , LT = D− A is the target dataset Laplacian matrix, and

A = [ai,j]nt×nt , D is a diagonal matrix with diagonal elements di =
nt
∑

j=1
ai,j.

Thus, the classifiers DDA-WELM and DDJA-WELM can be upgraded to the DDA-S2WELM
and DDJA-S2WELM by introducing the manifold regularization term M(DT ; β). Moreover,
the regularization term ΩJ(DS,DT ; β) with pseudo labels generated by the DDA-S2WELM classifier
can further improve the data drift adaptation performance of the DDJA-WELM and DDJA-S2WELM
classifiers.

2.3. Solution of Objective Function

The solution of the objective function (2) is introduced in this section. Especially, the regularization
term Ω(DS,DT ; β) is divided into ΩP(DS,DT ; β) with PMMD and ΩJ(DS,DT ; β) with JPMMD so
that we will discuss them in the followings, respectively.
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2.3.1. Solution of Objective Function with ΩP

By incorporating (5), (9), and (16) into (2), we have

f = arg min
β∈Rz×c

C
2

W ‖Y− JHβ‖2 +
1
2
‖β‖2 +

λ

2
tr
(

β′H′MPHβ
)
+

γ

2
tr(β′H′LHβ). (17)

By setting the gradient of f with respect to β to be zero

∇ f = CH′J′W(JHβ− Y) + β + λH′MPHβ + γH′LHβ = 0. (18)

According to (18), the closed-form solution of the optimal β is

β∗ =


H′W

(
1
C

In +

(
W +

λ

C
MP +

γ

C
L
)

HH′
)−1

Y, if ns + nt < z(
1
C

Iz + H′
(

W +
λ

C
MP +

γ

C
L
)

H
)−1

H′WY, if ns + nt ≥ z

(19)

where z is the number of hidden neurons.

2.3.2. Solution of Objective Function with ΩJ

Similarly, incorporating (5), (12), and (16) into (2), and solving ∂ f
∂β = 0 yields the optimal β as

follows

β∗ =


H′W

(
1
C

In +

(
W +

λ

C
MJ +

γ

C
L
)

HH′
)−1

Y, if ns + nt < z(
1
C

Iz + H′
(

W +
λ

C
MJ +

γ

C
L
)

H
)−1

H′WY, if ns + nt ≥ z

(20)

where z is the number of hidden neurons.

3. Experimental Verification

In this section, we conduct extensive experiments to verify the effectiveness of our method, using the
well-logging data collected from multiple wells in Jiyang Depression, Bohai Bay Basin. The experimental
datasets and settings will be described first. Then, the performance and impact of each regularization
terms are shown in detail. The analysis of hyper-parameters sensibility is presented at last.

3.1. Experimental Settings

As shown in Table 1, the experimental datasets are composed of three datasets collected from
different regions in the Jiyang Depression, Bohai Bay Basin and contain 3, 2 and 2 wells, respectively
(The wells in Figure 1 do not appear in the experimental datasets). Their relative positions are shown
in Figure 2. Table 2 describes the data drift statistically by maximum mean discrepancy. In one
experiment, we set the well A as the training data and the well B as the testing data, thereby verifying
the effectiveness of our method through A→ B. In this case, the other experiments are denoted as A
→ C, B→ A, B→ C, C→ A, C→ B, D→ E, E→ D, F→ G, and G→ F, respectively. Considering
the different ranges of measurements, the value of samples are transformed to [0, 1] by a min-max
normalization method. In the experiments, we adopt the index Recall (i.e., the number of classify
correctly divided by the number of samples) to calculate the classification accuracy, thus denoting the
average recall (Macro-R) to represent the overall classification accuracy.



Sensors 2020, 20, 3643 9 of 17

Table 1. Dataset description.

Dataset 1 2 3
LOGS AC, CAL, CNL, GR, RT, SP AC, CAL, GR, R25, SP AC, CAL, GR, R25, SP

Samples

LITH Mu Si Co LITH Mu Sa Do LITH Mu Sa Sh
Well A 3820 2048 452 Well D 4508 3076 1000 Well F 6072 2852 1644
Well B 2164 1584 432 Well E 5000 1464 1112 Well G 6996 3404 1548
Well C 2368 1452 400 - -

[1] Logging curves. AC: acoustic log, CAL: caliper log, CNL: compensated neutron log, GR: gamma ray
log, RT: true formation resistivity, SP: spontaneous potential log, R25: 2.5 m bottom gradient resistivity. [2]
Lithology. Mu: mudstone, Si: siltstone, Co: conglomeratic sandstone, Sa: sandstone, Do: dolomite, Sh: shale.

Figure 2. Relative positions of experimental wells.

Figure 3. Logging curves, core, and classification results of B.T. (before transfer) and A.T. (after transfer).
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Table 2. Data drift description.

A and B A and C B and C D and E F and G
MMD Class 1 0.107 0.182 0.281 0.109 0.090
MMD Class 2 0.230 0.067 0.277 0.238 0.251
MMD Class 3 0.203 0.026 0.384 0.189 0.601
MMD Overall 0.540 0.275 0.942 0.536 0.942

[1] MMD is short for maximum mean discrepancy, which can be found in [40]. [2] For (A,B), (A,C), and (B,C),
classes 1–3 mean Mu, Si, and Co, respectively. For (D,E), classes 1–3 mean Mu, Sa, and Do, respectively. For
(F,G), classes 1–3 mean Mu, Sa, and Sh, respectively.

3.2. Experimental Results

Figure 3 exhibits the logging curves, core (i.e., label), classification performance before B→ A
transfer (i.e., using model trained on data B to directly predict data A), and classification performance
after B → A transfer. It is observed that transfer learning could eliminate the data drift-induced
accuracy loss. As shown in Figures 4, 5, and 6, the classification performances of applying the classifiers
ELM, S2ELM, DDA-ELM, DDA-S2ELM, DDJA-ELM, and DDJA-S2ELM to datasets 1, 2, and 3 are
presented, respectively. It can be obviously observed from Figures 4a–c,g–i, 5a,c, and 6a,c, that the
accuracy of each class is gradually increased with the introducing of DDJA regularization terms,
especially when it comes to the accuracy of Si and Sh that increase from 0 to more than 80 in Figure 4i,
6a,c, respectively. Additionally, the ELM and S2ELM classifiers without DDJA regularization term are
insufficient to the tasks with data drift.

Considering the ELM–based classifier with the random weights and biases parameters, we
conduct multiple experiments by setting different random seeds to generate different weights and
biases parameters which yield the experimental results in Figures 4d–f,j–l, 5b,d and 6b,d. According to
the results, we have the following observations: (i) The overall Macro-R shows a trend of increasing
step by step and the DDJA-S2ELM classifiers achieve the highest accuracy. Moreover, the Macro-R
of DDJA-S2ELM are increased to 88% at least compared with the ELM on dataset 1 (B→ C and C→
A), 80% on dataset 2 (D→ E), and 69% on dataset 3 (F→G and G→ F). Additionally, compared the
ELM classifier with the DDJA-S2ELM classifier, the Macro-R of our method are increased 52% on
dataset 1 (C→ B), 10% on dataset 2 (E→ D), and 42% on dataset 3 (F→ G). (ii) Although the Macro-R
is not increased on dataset 1 (A→ C) and dataset 2 (D→ E), the standard deviation can be kept at a
lower level. Thus, the stability can be improved by introducing the DDJA-S2ELM. (iii) Comparing
the experimental results on dataset 3 with datasets 1 and 2, the ELM classifiers only achieve 27% (F→
G) and 35% (G→ F). The performance is significantly enhanced with our method regarding the data
drift-induced accuracy decrease surges.

3.3. Parameters’ Sensitivity

In this section, we aim to analyze the sensitivity on the key hyper-parameters of the DDJA-S2ELM:
the trade-off coefficient C, the contribution coefficient of DDJA regularization term λ, and the
contribution coefficient of semi-supervised regularization term γ. By analyzing the Macro-R over
different settings of hyper-parameters, the configuration of these parameters is given. To avoid
repetition, we only show the results of B→ C.
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(a) A to B (b) A to C (c) B to C

(d) A to B (e) A to C (f) B to C

(g) B to A (h) C to A (i) C to B

(j) B to A (k) C to A (l) C to B
Figure 4. The results of performing our method on dataset 1. In (a)–(c), (g)–(i), we show the recalls for
the classes of Mu, Si, and Co by using different methods. In (d)–(f), (j)–(l), we show the macro average
recalls by using different methods.
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(a) D to E (b) D to E

(c) E to D (d) E to D
Figure 5. The results of performing our method on dataset 2. In (a) and (b), we show the recalls for the
classes of Mu, Sa, and Do and their macro average recall by transferring D to E. In (c) and (d), we show
those by transferring E to D.

In the Figure 7, we set the hyper-parameter C range from 100 to 10,000,000. It can be seen from
these figures in Figure 7 that the maximum and minimum Macro-R are increased first and then
decreased with the increasing of C, indicating that a small C incurs under-fitting in classification and a
high C causes the over-fitting. Additionally, when C is set too small or too big, the overall accuracies
are preserved in the large variation range highest 94.9% in Figure 7a and lowest 41.1% in Figure 7a
or the overall just more than 70% sightly in Figure 7f. According to Figure 7c,d with C = 1000 and
C = 10000, respectively, the overall Macro-R are held steady highest 96.9% in Figure 7c and lowest
73.8% in Figure 7c and the accuracies are presented a trend of increasing gradually. Therefore, it is
important to configure a moderate C first.
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(a) F to G (b) F to G

(c) G to F (d) G to F
Figure 6. The results of performing our method on dataset 3. In (a) and (b), we show the recalls for the
classes of Mu, Sa, and Sh and their macro average recall by transferring F to G. In (c) and (d), we show
those by transferring G to F.

The influence of adjusting λ and γ are given by fixing the C. It can be seen from Figure 7 that
the maximum Macro-R is achieved 96.9% in Figure 7c when set λ/C = 10, 000 and γ/C = 100.
Additionally, the Macro-R almost increase first and then decrease with γ getting larger under fixed λ

showing in Figure 7a–c. Moreover, these results show that the maximum is achieved almost when
setting the λ larger than γ by two to four orders of magnitude. Since the γ control the contribution of
semi-supervised regularization term that based on the manifold assumption, but the assumption is
invalid when the dataset with data drift. We introduce the DDJA regularization term to suppress the
data drift, so the coefficient λ should be more than γ.
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(a) λmax/C = 100000, γmax/C = 1000,
λmin/C = 10000000, γmin/C = 100000.

(b) λmax/C = 10000, γmax/C = 100,
λmin/C = 100, γmin/C = 1.

(c) λmax/C = 10000, γmax/C = 100,
λmin/C = 10, γmin/C = 0.1.

(d) λmax/C = 10000, γmax/C = 100,
λmin/C = 1, γmin/C = 0.01.

(e) λmax/C = 1000, γmax/C = 10,
λmin/C = 0.1, γmin/C = 0.001.

(f) λmax/C = 10, γmax/C = 0.1,
λmin/C = 10, γmin/C = 0.1.

Figure 7. Classification accuracies of JDA-S2ELM on dataset 1 over the variation of C, λ and γ.

According to the analysis of setting C, λ, and γ mentioned above, it can be concluded that: (i) C
should be set a relatively larger range first to configure a moderate value; (ii) the setting of λ should be
bigger than γ by two to four orders of magnitude. Here are some suggested settings: C ∈ [103, 106],
λ
C ∈ [103, 104], γ

C ∈ [102, 103].
Furthermore, we use Sobol method (In our experiment, the python tool "SALib" is employed,

which can be found at https://salib.readthedocs.io/en/latest/index.html). Ref. [41] to implement a
global sensitivity analysis where all parameters are varied simultaneously over the entire parameter

https://salib.readthedocs.io/en/latest/index.html
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space. The sensitivities shown in Table 3 demonstrate that: (i) C and λ contribute mainly compared
with γ, (ii) C contributes more than λ slightly, and (iii) the interactions between these parameters are
weak, so they are relatively independent.

Table 3. Sensitivity analysis using Sobol method.

Param. First-Order Sensitivity Total Sensitivity Param. 1 Param. 2 Second-Order Sensitivity
C 0.511 0.575 C λ 0.074
λ 0.337 0.495 C γ 0.008
γ 0.051 0.102 λ γ 0.085

4. Conclusions

In this paper, we have investigated the well logging-based lithology identification under data
drift, thus proposing a transfer Extreme Learning Machine method to handle it. According to the
projected maximum mean discrepancy (PMMD) criterion and extreme learning machine, we introduce
a new PMMD criterion and then propose the DDJA-ELM to minimize the data drift between the
source dataset and the target dataset. Additionally, in order to improve the prediction consistency
within the target dataset, the manifold regularization is introduced to promote the DDJA-ELM to the
DDJA-S2ELM. Extensive experiments have validated the high and stable accuracy of our method.
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