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Monocytes and their derived macrophages are found at the site of remodeling tissue,

such as fracture hematoma, that is exposed to mechanical forces and have been

previously implicated in the reparative response. However, the mechanoresponsive of

monocytes and macrophages to skeletal tissue-associated mechanical forces and their

subsequent contribution to skeletal repair remains unclear. The aim of this study was

to investigate the potential of skeletal tissue-associated loading conditions to modulate

human monocyte activation and phenotype. Primary human monocytes or the human

monocyte reporter cell line, THP1-Blue, were encapsulated in agarose and exposed

to a combination of shear and compressive loading for 1 h a day for 3 consecutive

days. Exposure of monocytes to mechanical loading conditions increased their

pro-inflammatory gene and protein expression. Exposure of undifferentiated monocytes

to mechanical loading conditions significantly upregulated gene expression levels of

interleukin(IL)-6 and IL-8 compared to free swelling controls. Additionally, multiaxial

loading of unstimulated monocytes resulted in increased protein secretion of TNF-α (17.1

± 8.9 vs. 8 ± 7.4 pg/ml) and MIP-1α (636.8 ± 471.1 vs. 124.1 ± 40.1 pg/ml), as well as

IL-13 (42.1 ± 19.8 vs. 21.7 ± 13.6) compared monocytes cultured under free-swelling

conditions. This modulatory effect was observed irrespective of previous activation with

the M1/pro-inflammatory differentiation stimuli lipopolysaccharide and interferon-γ or the

M2/anti-inflammatory differentiation factor interleukin-4. Furthermore, mechanical shear

and compression were found to differentially regulate nitric oxide synthase 2 (NOS2)

and IL-12B gene expression as well as inflammatory protein production by THP1-Blue

monocytes. The findings of this study indicate that human monocytes are responsive to

mechanical stimuli, with a modulatory effect of shear and compressive loading observed

toward pro-inflammatory mediator production. This may play a role in healing pathways

that are mechanically regulated. An in depth understanding of the impact of skeletal

tissue-associated mechanical loading on monocyte behavior may identify novel targets

to maximize inflammation-mediated repair mechanisms.
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INTRODUCTION

The repair process following traumatic injury to the
musculoskeletal system is known to be influenced by the
mechanical environment. The natural course of bone healing
can be intramembranous ossification resulting from stable
fracture fixation and subsequent low interfragmentary
motion, or endochondral ossification which is associated
with moderate interfragmentary movement (1). In addition
to driving fracture healing responses, mechanical forces of an
appropriate magnitude are also key to maintaining cartilage
homeostasis within the articulating joint (2).

A wound healing response is initiated during the process of
bone fracture repair, as well as marrow stimulation techniques
applied in cartilage repair strategies where the subchondral
bone is penetrated. This involves inflammatory cell exudation
or infiltration to the site of injury, followed by coagulation
activation and fibrin clot formation, which is known to regulate
monocyte chemotaxis and proliferation (3, 4). Monocytes and
monocyte-derived macrophages are key immune effector cells
playing a vital role in host defense, as well as contributing to tissue
remodeling and repair (5). Macrophages are associated with a
high degree of plasticity having the potential to change phenotype
in response to environmental cues, and may be classified
according to pro-inflammatory (M1) or anti-inflammatory (M2)
subsets (5). Pro-inflammatory macrophages are associated with
high production of pro-inflammatory cytokines and increased
microbicidal activity, whereas anti-inflammatory macrophages
are associated with wound healing and immunoregulatory
functions (3, 6).

Infiltrating monocytes and macrophages may influence the
success of musculoskeletal tissue repair processes. Macrophage
depletion has been previously demonstrated to negatively
impact endochondral ossification and subsequently delay bone
fracture healing (7–9). Furthermore, monocyte and macrophage
associated inflammatory cytokines such as IL-6 and TNF-
α are known to promote bone repair, with inhibition of
TNF-α signaling shown to delay both intramembranous and
endochondral bone formation (10, 11). In contrast to bone
healing, pro-inflammatory factors such as IL-1β and TNF-

α produced by both activated monocytes and M1 polarized
macrophages, induce destructive processes in cartilage tissue
including catabolic enzyme expression and reduced extracellular
matrix deposition (12–14). However, recruitment of anti-
inflammatory macrophages to the site of subchondral drill holes
within osteochondral defects using chitosan-glycerol phosphate
composites was reported enhance subchondral bone repair and
improve cartilage resurfacing, further highlighting the impact
of macrophages on skeletal tissue repair (15). Monocytes and
macrophages are found at the site of remodeling tissue that
is exposed to mechanical forces and have been previously
implicated in the reparative response (16–18). As the area
of osteoimmunology gains in importance, the influence of
mechanical stimulation on immune cell phenotype needs to
be investigated in greater detail. However, the responsiveness
of macrophages and monocytes, their lineage precursors, to
mechanical forces that are native to skeletal tissues and the

effect of such mechanical stimuli on macrophage phenotype
requires further elucidation. Therefore, the aim of this study was
to investigate the impact of mechanical shear and compressive
loading on monocyte activation and phenotype. Unstimulated,
M1 or M2-stimulated primary human monocytes as well as
the human monocyte reporter cell line, THP1-Blue, were
exposed to a combination of shear and compressive loading
in vitro. Gene expression levels of inflammatory mediators and
inflammatory protein secretion was assessed following 3 days of
mechanical stimulation.

MATERIALS AND METHODS

Human Monocyte Isolation
Human monocytes were isolated from buffy coats left over
from voluntary whole blood donations after informed consent
of the donors according to the regulations of Swiss Red Cross
Blood Service. Buffy coats were processed within 23 h after blood
donation by centrifugation at 5,000 g for 15min and subsequent
separation on Compomat G5 (Fresenius, Oberdorf, Switzerland)
using top-and-bottom 450ml blood bag systems pre-filled with
Citrate-Dextrose-Phosphate Solution (Fresenius). Buffy coats
were anonymized prior to delivery from the Blood Service to AO
Institute in line with the ethics code provided by the Swiss Drug
Law (Heilmittelgesetz). For the isolation of peripheral blood
mononuclear cells (PBMCs), each buffy coat was diluted at a
1:5 ratio with 0.1% bovine serum albumin (BSA) in phosphate
buffered saline (PBS). Thirty milliliter of diluted buffy coat was
layered on 15ml of Ficoll and centrifuged at 1,000 g for 15min
without brake. Following centrifugation, the interphase layer
containing PBMCs was removed and washed with 0.5% BSA/PBS
containing 2mM EDTA. Isolated PBMCs were labeled with
100 µl of anti-CD14 magnetic bead solution (Miltenyi Biotec

Bergisch Gladbach, Germany) in the dark at 4
◦

C for 20min.
Monocytes were isolated utilizing MACS LS Separation columns
and a MidiMACSTM Separator (Miltenyi Biotec), according to
manufacturer’s instructions. Purity of isolated CD14+ cells was
assessed by fluorescence activated cell sorting (FACS) analysis.
1 × 105 monocytes were incubated with APC-Cy7-conjugated
anti-human CD14 antibody (BD pharmingen) for 20min in the
dark at 4

◦

C. FACS analysis was performed using a BD Aria III
machine, and data analyzed using BD FACS Diva 6.1.3 software
(BD Biosciences). The average purity of CD14+monocytes from
all donors was found to be 95% (data not shown). Monocytes
were isolated from two individual buffy coat donors and pooled
per experiment.

THP1-Blue
TM

Cell Culture
The human monocyte reporter cell line THP1-BlueTM

(InvivoGen, CA, USA) which expresses an NF-κB and AP-
1-inducible secreted embryonic alkaline phosphatase (SEAP)
reporter gene, was cultured in RPMI-1640 medium (2mM
L-glutamine; Gibco, Carlsbad, USA) supplemented with 1%
penicillin/streptomycin (Gibco) and 10% heat inactivated
fetal bovine serum (FBS; Pan Biotech, Aidenbach, Germany).
Monocyte suspension cultures were maintained at a density of at
3–8× 100,000 cells/ml.
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Agarose Gel Seeding and Culture
To evaluate the effect of mechanical loading on monocyte
phenotype, human primarymonocytes and THP1-Blue cells were
encapsulated in 2% low melting temperature agarose (Lonza) at
a cell density of 3× 106 monocytes per gel. In brief, a 4% agarose
solution was prepared by dissolving low melting temperature
agarose in sterile phosphate buffered saline and heated. The 4%
agarose solution was cooled and mixed with an equal volume
of cells suspended in pre-warmed culture media, composed
of RPMI-1640 medium supplemented with 2mM L-glutamine,
1% penicillin/streptomycin and 10% heat inactivated FBS. Two
hundred and fifty microliters of cells/agarose suspension was
added to a sterile cap of an Eppendorf tube and gels were
allow to set at 37

◦

C for 20min. All agarose constructs were
carefully removed from the Eppendorf cap, placed in a sterile
PEEK sample holder and cultured with 2.5ml of culture
medium. To investigate the effect of mechanical loading on
macrophage phenotype, CD14+ monocytes were stimulated
with 10 ng/ml IFN-γ (PeproTech, Rocky Hill, NJ, USA) and
100 ng/ml lipopolysaccharide to induce differentiation toward a
pro-inflammatory/M1 phenotype, 10 ng/ml IL-4 (PeproTech) for
an anti-inflammatory/M2 phenotype or unstimulated for 72 h
prior to loading. Agarose gels containing THP1-Blue monocytes
were prepared 24 h prior to loading.

Mechanical Loading
CD14+monocyte seeded agarose gels were mechanically loaded
using a custom built multi-axial load bioreactor based on a
32mm ceramic hip ball that can apply compression, shear or a
combination of the two, to the sample as previously described
(19, 20). Shear (±25◦ ball rotation at 1Hz) and compression
(10% compression superimposed on top of a 10% pre-strain
at 1Hz) loading was applied for 1 h a day for 3 consecutive
days. This protocol was chosen as it has been shown to direct
osteochondral differentiation of human MSCs and therefore we
aimed to investigate similar loading patterns on the modulation
of macrophage phenotype (21). Control gels were maintained in
free-swelling conditions for the duration of the experiment. To
investigate the effect of shear or compression alone on monocyte
phenotype, THP1-Blue monocytes were stimulated with shear or
compression alone as well as multiaxial loading for 1 h a day for
3 consecutive days. Control gels were maintained in free-swelling
conditions for the duration of the experiment. Cell culture media
was refreshed every 24 h prior to loading.

Reverse Transcription and PCR
Monocyte-seeded agarose gels were homogenized in 1ml TRI
reagent (Molecular Research Center Inc., Cincinnati, OH,
USA). Homogenized samples were supplemented with 100 µl
of 1-Bromo-3-chloropropane (Sigma-Aldrich) and processed
according to manufacturer’s instructions to achieve phase
separation. Following phase separation the aqueous phase was
removed, supplemented with an equal volume of 70% ethanol
(Sigma-Aldrich) and transferred to a RNeasy spin column
(Qiagen, Hilden, Germany). RNA was extracted using RNeasy
mini spin columns according to manufacturer’s instructions.
The purity of isolated RNA was assessed using a NanoDrop

spectrophotometer (Fisher Scientific, Delaware, USA) based on
the absorbance ratios 260/280 nm and 260/230 nm. Reverse
transcription was performed using random hexamer primers
and TaqMan reverse transcription reagents (Applied Biosystems,
Carlsbad, CA, USA). Quantitative real time PCR was performed
in 10 µl reactions on cDNA using the Applied Biosystems
QuantStudio 6 Flex Real Time PCR system (Applied Biosystems).
Primers for cyclooxygenase(COX)-2 (PTGS2) were synthesized
by Microsynth AG (Balgach, SG, Switzerland; Table 1). Gene
expression assays for 18S ribosomal RNA (18S), interleukin(IL)-
6 (IL6), IL-8 (IL8), IL-10 (IL10), tumor necrosis factor
(TNF)-α (TNF), chemokine (C-C motif) ligand 18 (CCL18),
mannose receptor CD206 (MRC1), nitric oxide synthase 2
(NOS2), and monocyte chemoattractant protein 1 (CCL2) were
purchased fromApplied Biosystems, Switzerland (Table 1). Gene
expression levels were normalized to 18S rRNA, and relative
expression calculated via a 11CT comparison.

Cytokine Assays
Levels of IL-6, IL-8, and CCL18 in cell culture supernatant
were quantified utilizing commercially available human IL-6
and CCL18 DuoSet ELISA kits according to manufacturer’s
instructions (R&D Systems, Minneapolis, Minnesota). Levels
of IL-10, IL-13, IL-1β, C-X-C motif chemokine 10 (IP-
10), macrophage-derived chemokine (MDC), monocyte
chemoattractant protein-1 (MCP-1), macrophage inflammatory
protein-1α (MIP-1α), and TNF-αweremeasured utilizing aMeso
Scale Development multiplex assay according to manufacturer’s
instructions (Meso Scale Discovery, Maryland, USA).

Secreted Alkaline Phosphatase Assay
Secreted embryonic alkaline phosphatase (SEAP) levels were
detected in cell culture supernatant using a QUANTI-BlueTM

enzymatic assay (InvivoGen) according to manufacturer’s
instructions. SEAP levels were determined qualitatively following
spectrophotometric measurement at 620 nm.

Statistical Analysis
IBM SPSS Statistics 21.0 (IBM, New York, USA) and GraphPad
Prism software version 6 (GraphPad Software Inc., La Jolla,
USA) were used for all statistical analysis. To take donor
variability into account between primary monocyte donors,
mixed models analysis was applied to test for statistical
differences between loaded and free-swelling groups with
monocyte donor considered a random factor. THP1-Blue
monocyte data sets were analyzed using a Kruskal–Wallis test
followed by Dunn’s multiple comparisons test. For all analyses,
differences were considered statistically significant at P < 0.05.

RESULTS

Pro-inflammatory Gene and Protein
Expression by Differentially Activated
Primary Human Monocytes Following
Multiaxial Loading
Monocytes encapsulated in 2% agarose gel were unstimulated,
LPS and IFN-γ or IL-4-stimulated for 3 days, prior to subjection
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TABLE 1 | Gene expression assays utilized for quantitative real time PCR.

Gene name Alias Assay ID/Primer sequence

Human 18S rRNA (18S) 18S ribosomal RNA (18S rRNA) Hs99999901_s1

Human interleukin-8 (IL8) C-X-C motif chemokine ligand 8 (CXCL8) Hs00174103_m1

Human interleukin-10 (IL10) Cytokine Synthesis Inhibitory Factor (CSIF) Hs00961622_m1

Human interleukin-6 (IL6) B-Cell Stimulatory Factor (BSF)- 2 Hs00985639_m1

Human tumor necrosis factor (TNF) Tumor Necrosis Factor (TNF)-α Hs01113624_g1

Human chemokine (C-C motif) ligand 18 (CCL18) Macrophage Inflammatory Protein (MIP)-4 Hs00268113_m1

Human mannose receptor, C type 1 (MRC1) Macrophage Mannose Receptor (MMR, CD206) Hs00267207_m1

Human C-C motif chemokine ligand 2 (CCL2) Monocyte Chemoattractant Protein (MCP)-1 Hs00234140_m1

Human nitric oxide synthase 2 (NOS2) Inducible Nitric Oxide Synthase (INOS) Hs01075529_m1

Human interleukin 12B (IL12B) Natural Killer Cell Stimulatory Factor Hs01011518_m1

Human Prostaglandin-Endoperoxide Synthase 2 (PTGS2) Cyclooxygenase (COX)-2 Forward: 5′-TTG TAC CCG GAC AGG ATT CTA

TG-3′

Reverse: 5′-TGT TTG GAG TGG GTT TCA GAA

ATA-3′

Probe(5′FAM/3′ TAMRA):

5′-GAA AAC TGC TCA ACA CCG GAA TTT TTG

ACA A-3′

to multiaxial loading or free-swelling conditions and analysis
of inflammatory gene and protein expression. Monocytes
stimulated with LPS and IFN-γ had significantly higher gene
expression levels of the pro-inflammatory genes IL8 and CCL2
under free-swelling conditions compared to IL-4 stimulated
monocytes (10.3- and 28.3-fold increases, respectively),
confirming their pro-inflammatory phenotype (Figure 1A).
Additionally, IL-4 stimulated monocytes were associated with
significantly higher CCL18 expression compared to LPS and
IFN-γ stimulated monocytes (41.5-fold increase), confirming
their polarization toward an M2-like phenotype. Unstimulated
primary human monocytes significantly upregulated gene
expression levels of the pro-inflammatory genes IL6 (5.9-fold
change) and IL8 (2.8-fold change) following 3 days of mechanical
loading compared to monocytes cultured in free-swelling
conditions (Figure 1B). Additionally, expression of the anti-
inflammatory macrophage marker IL10 was decreased in all four
donors compared to free-swell controls, with gene expression
levels undetectable in donors 1 and 3 following loading. No
significant difference was observed in the expression levels of
inflammatory mediators CCL18, TNF, and CCL2. Although a
similar trend was observed toward inflammatory gene expression
by LPS and IFN-γ activated monocytes following mechanical
loading, larger variation was observed between donors and
these findings were not statistically significant (Figure 1C).
However, expression of CCL2 was significantly decreased
(1.9-fold decrease). Additionally, gene expression levels of IL10
were also undetectable in LPS and IFN-γ stimulated monocytes
from donors 1 and 3 following loading. In a similar manner to
unstimulated monocytes, IL-4 activated cells were also associated
with a significant increase in IL6 (8.9-fold change) and decrease
of IL10 (3.1-fold) expression (Figure 1D).

Compared to free-swelling controls, mechanical loading of
unstimulated monocytes significantly increased production of
the pro-inflammatory mediators TNF-α (17.1 ± 8.9 vs. 8 ± 7.4

pg/ml) and MIP-1α (636.8 ± 471.1 vs. 124.1 ± 40.1 pg/ml), as
well as IL-13 (42.1 ± 19.8 vs. 21.7 ± 13.6) (Figure 2). Protein
levels of IL-10, CCL18, IP-10, MCP-1, MDC, and IL-1β produced
by loaded unstimulated monocytes did not significantly differ
from free-swelling controls. In a similar manner to gene
expression levels, a trend toward an increase in IL-6 production
was observed in response to loading of unstimulated monocytes.
However, large donor variation was observed and this finding
was not statically significant. Mechanical stimulation of LPS
and IFN-γ stimulated monocytes significantly increased MDC
levels in addition to TNF-α, MIP-1α, and IL-13 (Figure 2). In a
similarmanner to gene expression data, IL-4 activatedmonocytes
were associated with significantly increased production of pro-
inflammatory factors IL-6, IL-8, TNF-α, MIP-1α, IP-10, IL-13,
IL-1β as well as IL-10 in response to mechanical loading, and
decreased expression of CCL18 and MDC (Figure 2).

Inflammatory Gene and Protein Expression
by THP1-Blue Monocytes Following
Mechanical Shear or Compression
To evaluate the potential of mechanical shear or compression to
differentially regulate inflammatory gene and protein expression
by human monocytes, unstimulated THP1-Blue monocytes
were subjected to multiaxial loading conditions, or mechanical
shear or compression alone. THP1-Blue monocytes significantly
upregulated gene expression levels of the pro-inflammatory
markers NOS2 and IL12B in response to compression alone
compared to the combination of compression and shear, as
well as shear alone following 3 days of loading (Figure 3).
Gene expression levels of IL6, IL-8, TNF-α, PTGS2, IL-10,
CCL2, and CCL18 did not significantly differ between loading
conditions, or compared to free-swelling controls at this time
point. However, significantly increased levels of TNF-α, IL-10,
IL-8, IL-13, and MDC were detected in the cell culture media
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FIGURE 1 | Inflammatory gene expression by differentially activated primary human monocytes following multiaxial loading. (A) Gene expression by primary

monocytes cultured for 6 days under free-swelling conditions as measured by real-time PCR. Gene expression levels were normalized to the housekeeper gene 18S

rRNA. (B) Gene expression levels by unstimulated primary human monocytes, or LPS & IFN-γ (C) or IL-4 (D) stimulated monocytes following 3 days of multiaxial

loading. Gene expression levels were normalized to the free swelling control, represented by the dashed line. Data is represented as dot plots including the median for

4 monocyte donors, each assessed in experimental triplicate. Missing points indicate undetectable gene expression. Statistical significance was determined utilizing a

mixed model analysis, *P < 0.05.

harvested from gels subjected to the combination of compression
and shear, as well as compression and shear alone for 3 days
compared to control (Figure 4A). Additionally, the application
of compressive loading alone significantly upregulated IL-1β
production by monocytes, whereas shear alone increased the
release of MCP-1 compared to all other culture conditions.
Levels of IL-6 and IP-10 did not significantly differ in response
to any loading condition compared to free-swelling cultures.
In addition to modulating inflammatory cytokine production,
the application of both compression and shear or shear alone
induced the release of secreted alkaline phosphatase by THP1-
Blue monocytes, indicative of NF-κB and AP-1 transcription
factor activation (Figure 4B).

DISCUSSION

Monocytes and their derived macrophages are considered key
players in tissue remodeling and repair processes. Mechanical
loading has been previously shown to influence the levels
or pro and anti-inflammatory macrophages in a model of
tendon healing (18). Additionally, cyclic strain has been
reported to modulate macrophage polarization state toward
a reparative phenotype which promoted extracellular matrix
synthesis (22). Monocytes are found at the site of skeletal
tissue injuries resulting from either traumatic bone fractures, or
microdrilling of the subchondral bone to facilitate microfracture-
mediated cartilage repair (23). However, the mechanoresponsive

of monocytes and their derived macrophages to skeletal
tissue-associated mechanical forces, and their subsequent
contribution to skeletal repair remains unclear. The aim
of this study was to investigate the potential of shear and
compressive forces to modulate human monocyte activation
and phenotype. In the present study, exposure of monocytes to
mechanical loading conditions increased their production of
pro-inflammatory mediators. Furthermore, mechanical loading
modulated the production of inflammatory factors produced
by monocytes irrespective of previous activation with the
M1/pro-inflammatory differentiation stimuli LPS and IFN-γ or
the M2/anti-inflammatory differentiation factor IL-4.

Bone fractures associated with less mechanical stability are
known to heal via the process of endochondral ossification,
involving inflammation, callus formation and tissue remodeling
processes (1). Infiltration of macrophages into the fracture callus
occurs at an early stage of fracture healing, and inhibition of
macrophage recruitment impairs vascularization, decreases
callus formation and delays repair (24). Macrophages are
associated with a high degree of plasticity and can change
phenotype according to environmental cues, encompassing both
pro-inflammatory/M1 and anti-inflammatory/M2 phenotypes
(5). In an experimental osteotomy model, M1-polarized
macrophages were identified as the primary macrophage
phenotype in the osteotomy area 24 h post-surgery (7).
Interestingly, M1 polarized macrophages have also been
reported to promote the osteogenic differentiation of bone
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FIGURE 2 | Inflammatory mediator production by primary human monocytes following multiaxial loading. Levels of inflammatory mediators produced by primary

monocytes following 3 days of multiaxial loading as quantified by ELISA and multiplex assay. Data is represented as dot plots including the median for 4 monocyte

donors, each assessed in experimental triplicate. Missing points indicate undetectable protein levels. Statistical significance was determined utilizing a mixed model

analysis, *P < 0.05. IL-6, Interleukin-6; IL-10, Interleukin-10; CCL18, chemokine (C-C motif) ligand 18; TNF-α, Tumor necrosis factor-α; MIP-1α, Macrophage

inflammatory protein-1α; IP-10, C-X-C motif chemokine 10; MCP-1, Monocyte chemoattractant protein-1; IL-13, Interleukin-13; MDC, Macrophage-derived

chemokine; IL-1β, Interleukin-1β; IL-8, Interleukin-8.
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FIGURE 3 | Levels of inflammatory genes expressed by THP1-Blue monocytes in response to multiaxial loading, shear or compression alone. Gene expression by

THP1-Blue monocytes following 3 days of multiaxial loading, shear, or compression alone as measured by real-time PCR. Gene expression levels were normalized to

the free-swelling control, represented by the dashed line. Data is represented as dot plots including the median for three separate experiments, each assessed in

experimental triplicate except for experiment 2 compression only group, which was assessed in duplicate. Statistical significance was determined by a Kruskal–Wallis

test followed by Dunn’s multiple comparisons test. *P < 0.05. Comp, Compression.

marrow-derived mesenchymal stem cells (MSCs) (25).
Furthermore, macrophage infiltration and prevalence of a
M1-like phenotype has been observed in association with
MSC-mediated bone repair in vivo (26, 27). In the present study,
we have observed a skewing of monocyte activation toward a
M1-like phenotype following 3 days of shear and compressive
loading, highlighting the responsiveness of human monocytes
to mechanical stimuli. These findings may shed some light on
how the biomechanical environment may play a role in guiding
monocyte/macrophage polarization, and potentially contribute
to skeletal tissue repair.

In the present study, we have observed an increase in TNF-
α, MIP-1α, and IL-13 protein production by unstimulated as
well as LPS and IFN-γ and IL-4 activated monocytes following
mechanical shear and compression. Two of four donors in the
unstimulated group also substantially increased IL-6 production
upon loading. Furthermore, levels of the pro-inflammatory

cytokines IL-1β, IL-8, and IL-6 produced by IL-4 activated
monocytes were increased following loading. Additionally, gene
expression levels of IL-8 and IL-6 were increased by unstimulated
primary human monocytes subjected to the combination of
mechanical compression and shear. This could indicate that
these factors would be induced within an unstable fracture.
Previous reports have highlighted an influence of mechanical
stimuli resulting from fracture fixation stability upon gene
expression of matrix metalloproteinase (MMP)-9 and MMP-
13 by fracture hematoma in rats (28). Both MMP-9 and
MMP-13 are known to play a key role during the process of
endochondral bone formation, facilitating extracellular matrix
and cell migration (29). Additional studies have demonstrated
an upregulation in the expression of genes involved in cartilage
and skeletal development by callus tissue following mechanical
stimulation, in a rat osteotomy model (30). However, the impact
of mechanical stimuli upon the induction of inflammatory
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FIGURE 4 | Shear and compression differentially regulate inflammatory mediator expression by THP1-Blue monocytes. (A) Levels of inflammatory mediators

produced by THP1-Blue monocytes following 3 days of multiaxial loading, shear or compression alone as measured by ELISA and multiplex assay. Protein levels were

normalized to the free-swelling control, represented by the dashed line. Data is represented as dot plots including the median for 3 separate experiments, each

assessed in experimental triplicate except for experiment 2 compression only group, which was assessed in duplicate. (B) SEAP levels detected in cell culture

supernatant following 3 days of loading, as measured by spectrophotometric measurement. Statistical significance was determined by a Kruskal–Wallis test followed

by Dunn’s multiple comparisons test. *P < 0.05. IL-6, Interleukin-6; IL-10, Interleukin-10; CCL18, chemokine (C-C motif) ligand 18; TNF-α, Tumor necrosis factor-α;

MIP-1α, Macrophage inflammatory protein-1α; IP-10, C-X-C motif chemokine 10; MCP-1, Monocyte chemoattractant protein-1; IL-13, Interleukin-13; MDC,

Macrophage-derived chemokine; IL-1β, Interleukin-1β; IL-8, Interleukin-8; Comp, Compression.
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gene expression by fracture hematoma in vivo requires further
investigation. Production of IL-6 and TNF-α is characteristic
of activated monocytes and pro-inflammatory M1 macrophages
(5, 31). Both IL-6 and TNF-α signaling are known to play a
key role in bone fracture healing (32, 33). Additionally, TNF-
α is involved in osteoclastic bone resorption (34). Interestingly,
in addition to acting as a chemotactic cytokine for monocytes
and neutrophils, IL-8 has been reported by Ringe et al. to
induce migration of human MSCs (35, 36). Furthermore, IL-8 is
known to promote angiogenesis (37, 38). Mechanical stimulation
of early human fracture hematoma has also been previously
reported to result in increased production of the pro-angiogenic
protein vascular endothelial growth factor (VEGF) (39). MIP-
1α, also known as CCL3, has been previously implicated in the
recruitment of macrophages to the site of injury during bone
repair (40). In contrast to the observed upregulation of pro-
inflammatorymediators bymonocytes in response to mechanical
loading, we also detected increased levels of IL-13 protein
irrespective of cell activation with LPS and IFN-γ or IL-4. The
pleiotropic cytokine IL-13 is known to polarize macrophages
toward an M2 phenotype, encompassing anti-inflammatory and
tissue repair subsets (41). Additionally, IL-13 is a key mediator of
tissue fibrosis, reported to stimulate transforming growth factor
(TGF)-β1 production by monocytes and macrophages, as well
as increasing TGF-β1 activation (42, 43). TGF-β signaling may
promote extracellular matrix deposition and tissue remodeling
(44, 45). In addition to mediating tissue fibrosis and macrophage
polarization, a role for IL-13 in osteoclast differentiation
and bone resorption has been previously highlighted (46).
Macrophages have been previously reported to change their
phenotype throughout the course of bone healing, with a more
predominant role of the M2 subset identified at later stages of
repair (7). Given that in the current study loading of monocytes
also resulted in production of the M2-polarization factor IL-13,
whether a longer duration of loading may switch the balance
fromM1/M2 requires further investigation.

Having identified an influence of mechanical loading upon the
phenotype of M1 or M2-differentiated as well as undifferentiated
primary human monocytes, we next sought to investigate
whether shear forces or compression alone may be responsible
for this effect. In addition to compressive loading, cartilage in
the articulating joint and fractures that have not been rigidly
fixated, are also subjected to shear. Therefore, we next sought
to examine whether shear or compression alone may exert
differential effects on undifferentiated monocytes, to gain further
insight into whether loading associated with various skeletal
tissues may differentially modulate monocyte activation. The
human monocyte cell line THP1-BlueTM was utilized to assess
the effect of shear, compression or the combination of both
on inflammatory mediator expression by monocytes. THP1-
BlueTM cells are a reporter cell line, which express secreted
embryonic alkaline phosphatase (SEAP) following activation of
the transcription factors NF-κB and AP-1. Both NF-κB and
AP-1 are activated in monocytes following toll-like receptor
4 (TLR4) stimulation and are involved in the induction of
inflammatory gene expression (47). In a similar manner to
primary human monocytes, the application of both compression

and shear increased expression of inflammatory mediators TNF-
α, IL-13, macrophage-derived chemokine (MDC), and IL-10.
Interestingly, IL-10 is an anti-inflammatory cytokine but is
also produced by monocytes in response to pro-inflammatory
stimulation a part of a regulatory feedback mechanism (48).
Furthermore, IL-10 is a factor also known to induce the
differentiation of macrophages toward an anti-inflammatory
phenotype (5). MDC is chemotactic for monocytes and is also
considered a marker of M2 macrophages (49, 50). Additionally,
we observed differential effects of compression or shear alone
on monocyte phenotype. Application of compression alone
increased expression of the pro-inflammatory genes IL12B and
NOS2 compared to shear alone or the combination of both
stimuli. Interestingly, inducible nitric oxide synthase, which is
encoded by the gene NOS2, has been previously shown to
be expressed the initial phase of bone fracture repair (51).
Compression alone also significantly increased IL-1β production
compared to control, whereas shear alone was found to increase
MCP-1. Furthermore, stimulation with both compression and
shear or shear alone significantly increased SEAP expression
compared to free-swelling controls, suggestive of potential TLR4
activation by monocytes in response to shear force (47). TLR4
has been previously implicated in the pro-inflammatory response
of chondrocytes to high fluid shear, and increasing evidence
highlights a role of TLR4 activation in inflammatory and
catabolic processes associated with osteoarthritis pathogenesis
(52–54). Our present findings may provide further insight to
the mechanism of the effect of mechanical loading on monocyte
activation, however further investigation is required to evaluate
the effect of such mechanical stimuli directly on monocyte
TLR expression and activation. These mechanically induced
changes suggest that the initial monocyte containing hematoma
would respond to mechanical motion by upregulating pro-
inflammatory cytokines. This could be a danger signal that
recruits cells to the site of damage and regulates their response.
Rigid fixation would reduce this inflammatory signal leading to a
different response. However, further investigation is required to
fully determine the impact of mechanical stimuli resulting from
fracture fixation stability upon monocyte behavior in vivo, and
the subsequent influence of mechanically-stimulated monocytes
upon skeletal tissue repair.

The findings of the present study highlight the mechanical
sensitivity of human monocytes to skeletal tissue-associated
loading conditions. Monocyte-derived macrophages have been
previously shown to respond to mechanical strain in vitro, with
an observed upregulation of MMP-1 and MMP-3 expression
as well as the transcription factors c-fos and c-jun (55).
Furthermore, Yang et al. highlighted a potential role of
mechanical strain in the induction of monocyte to macrophage
differentiation, mediated by upregulation of the monocyte
differentiation-associated transcription factor PU.1 (55). In line
with our findings, shear stress has also been shown to promote
macrophage differentiation toward a pro-inflammatory M1-like
phenotype in a model of atherosclerosis (56). Interestingly,
extracellular physical cues resulting from surface stiffness have
been reported to modulate TLR signaling by macrophages
(57). However, whether these signaling pathways play a role
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in the responsiveness of monocytes and monocyte-derived
macrophages to shear and compressive forces native to skeletal
tissue requires further elucidation. This study has several
limitations. Primary peripheral blood monocytes treated with
LPS and IFN-γ or IL-4 were used as a model in vitro culture
system to evaluate the effect of loading on M1 or M2-polarized
cells, respectively. Investigation of the effect of mechanical
loading on M1 and M2 pre-differentiated macrophages and a
longer duration of study may be required to specifically examine
the modulatory effect of mechanical loading on macrophage
polarization state. Additionally, 2% agarose was used in this
study as a cell-carrier system in our in vitro model to
investigate the short-term response of human monocytes to
skeletal tissue-associated mechanical stimuli. However, previous
studies have highlighted an impact of different scaffold materials
toward the cellular mechanical response (58). Therefore, further
investigation may be required to determine whether monocyte
interactions with different scaffold materials such as fibrin gels,
as a more specific model of the wound healing phase of tissue
repair, may determine their response to such mechanical stimuli.
Furthermore, additional examination utilizing in vivo models
of fracture healing is required to relate this observed induction
of inflammatory mediators by mechanical loaded monocytes to
skeletal tissue repair.

In conclusion, the findings of the present study indicate
that human monocytes are responsive to mechanical stimuli,
with a modulatory effect of shear and compressive loading
observed toward pro-inflammatory mediator production.
An in depth understanding of the impact of skeletal tissue-
associated mechanical loading on monocyte behavior and
their subsequent influence on local cellular responses
and tissue repair processes, may identify novel strategies

to maximize inflammation-mediated repair mechanisms.

Furthermore, the findings of this study may provide insights
for the development of novel rehabilitation medicine
strategies to improve therapeutic outcome for skeletal
tissue repair.
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