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Abstract LIF, a member of the IL6 family of cytokine,
displays pleiotropic effects on various cell types and organs.
Its critical role in stem cell models (e.g.: murine ES, human
mesenchymal cells) and its essential non redundant function
during the implantation process of embryos, in eutherian
mammals, put this cytokine at the core of many studies
aiming to understand its mechanisms of action, which could
benefit to medical applications. In addition, its conservation
upon evolution raised the challenging question concerning
the function of LIF in species in which there is no
implantation. We present the recent knowledge about the
established and potential functions of LIF in different stem
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cell models, (embryonic, hematopoietic, mesenchymal,
muscle, neural stem cells and iPSC). We will also discuss
EVO-DEVO aspects of this multifaceted cytokine.
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Abbreviations

AK7 Adenylate Kinase 7

ALDH Acetal.dehyde DeHydrogenase
AP1 Activator Protein 1

BFU-E Burst Forming Unit Erythroid

BMP Bone Morphogenetic Protein

cDNA complementary DeoxyriboNucleic Acid

Ceacaml Carcinoembryonic antigen-related cell
adhesion molecule 1

CFU-Blast  Colony-Forming Units Blast

CFU-E Colony-Forming Units Erythroid

CFU-Eo Colony-Forming Units Eosinophil

CFU-GM Colony-Forming Units Granulocyte
Macrophage

CFU-Mix Colony-Forming Units Mix

Chdl Chromodomain-helicase-DNA-binding
protein 1

CHIP-seq Chromatin ImmunoPrecipitation

followed by sequencing
CIS Cytokine-Inductible SH2
CNTF Ciliary NeuroTrophic Factor
CLC Cardiotrophin-Like Cytokine
CTl1 CardioTrophin-1

Cobral cofactor of BRCA1 (breast cancer 1)
CrxOs Crx Opposite strand

Dappl Dual adaptor for PY and PI3K

DG Dentate Gyrus
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EED

EGF
EpiSC
ERK
ES
ESRRB
FGF
FGFR
Gjal

Gib3
GM-CSF

GP
GSK3b
hES
HSC
ICM
1L6/11/27
IL6ST
iPSC
IRAK 3
JAK
JNK
JunB
KD
kDa
KLF4/5
KO
KRT42
LIF
Lifind
LIFR
Lin
L-Myc

Ly6
MAPK
MARCH?7
MEK
mES cells
miRNA
MRas
MSC
MW
MYO D
NANOG
NFKb
N-Myc

NPC
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Polycomb protein Embryonic Ectoderm
Development

Epidermal Growth Factor

epiblast stemcells

Extracellular signal-Regulated Kinases
Embryonic Stem

EStrogen-Related Receptor beta
Fibroblast Growth Factor

Fibroblast Growth Factor Receptor
Gap junction membrane channel
protein alpha 1

Gap junction membrane channel
protein beta 3

Granulocyte Macrophage Colony
Stimulating Factor

GlycoProtein

Glycogen Synthase Kinase 3 beta
human Embryonic Stem
Hematopoietic Stem Cell

Inner Cell Mass

InterLeukin 6, 11, 27

InterLeukin 6 Signal Transducer
induced Pluripotent Stem Cells
Interleukin 1 Receptor-Associated Kinase 3
Janus Kinase

Stress-Jun-activated protein Kinase
Oncogene JUN-B

Knock Down

kilo Dalton

Kruppel-Like Factor 4/5

Knock-Out

Keratin 42

Leukemia Inhibitory Factor
LIF-induced

LIF Receptor

Lineage

Avian myelocytomatosis viral oncogene
homolog 1, lung carcinoma-derived
Ly6g6e lymphocyte antigen6 complex
Mitogen Activated Protein Kinase
Membrane Associated Ring finger (C3HC4) 7
MAP Kinase Kinase

mouse Embryonic Stem cells

micro RNA

Muscle and Microspikes ras
Mesenchymal Stem Cells

Molecular Weight

MY Ogenic Differentiation Antigen
Homeobox transcription factor Nanog
Nuclear Factor Kappa-B

v-myc avian myelocytomatosis viral-related
oncogene, neuroblastoma-derived
Neural Precursor Cells

NSC Neural Stem Cells
OCT4 OCTamer 3/4
OSM Oncostatin M
Pem Placenta and embryonic expression protein
PI3K Phosphatidyllnositol 3-Kinase
PIAS Protein Inhibitor of the Activated STAT
Pim3 Proviral integration site 3
Pleio- Pleiotropic LIF-Induced
Lifind
TGFbeta Transforming Growth Factor beta
TNFalpha Tumor Necrosis Factor alpha
RALDH RetinALdehyde Deshydrogenase
Rex1 Reduced expression protein 1
(or Zfp-42, Zinc finger protein 42)
Scal Stem Cell antigen 1

SH Src Homology

SHP SH2-containing Phosphatase

Spe-Lifind  Specific LIF-Induced

SOCS Suppressor Of Cytoking Signaling

SOX2 Sex-determining region Y-box2

STAT Signal Transducer and Activator of
Transcription

Susd2 Sushi domain containing 2

Tcfep2ll Transcription factor CP2-like 1

TYK2 Tyrosine Kinase 2

WT Wild Type

Yap Yes associated protein

ZAP70 Zeta-chain-Associated Protein kinase 70

Zic3 Zinc finger protein of the cerebellum 3

Zfx Zinc finger protein, X-linked

Zscan4 Zinc finger and SCAN domain containing 4

Generalities on LIF

LIF cytokine is a glycosylated protein (MW of 37-62 kDa
depending on its degree of glycosylation) secreted by
extraembryonic part of the embryo at the egg cylinder
stage as well as by many cell types in adult organs (e.g.:
endometrial cells, fibroblasts, hepatocytes, osteoblasts,
monocytes, macrophages, T cells) [1, 2]. Three laboratories
simultaneously discovered and cloned the LIF cytokine
through its pleiotropic biological activities on 1) the
proliferation of adult human T cells (HILDA; [3]), ii) the
maintenance of ES cells pluripotency (DIF [4]) and iii) the
inhibition of leukemic cell differentiation (LIF; [5]). LIF
was thus characterized as a pleiotropic cytokine with pro or
anti-differentiation, pro or anti-survival effects depending
upon cell maturity and cell types [6, 7].

LIF belongs to the “helical type 17 Interleukin 6 family,
which includes IL11, IL27, CNTF, CT1, CLC, and OSM [8—
12]. These cytokines interact with homo- or heteromeric
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receptors, all including the common gpl130 subunit (IL6
signaling transducer, (IL6ST)) [13]. LIF receptor is composed
of two subunits, gp130 and gp190 (LIF receptor beta). The
gp130 common subunit is believed to explain the functional
redundancies with several members of the IL-6 family [1].
The gpl90 subunit is under ERK MAPK and axotrophin/
March7 E3 ligase-dependent degradation pathways, respec-
tively in liver cell models and in T cells [14, 15]. Glycosylated
LIF can also hold mannose phosphate residues able to bind
the Mannose 6 phosphate receptor to the core gp130/GP190
complex and allowing recycling of LIF ligand [16]. Recently,
Sortilin, an intracellular sorting receptor, member of vacuolar
protein sorting-10 (Vps10) domain-containing proteins, has

Table 1 Pleiotropic effects of LIF: in vitro models

been shown to facilitate the signaling of all helical type 1
cytokines which engage the gp130/LIFR beta complex [17].

Studies of LIF Knock-Out (KO) mice revealed that LIF
is essential for the implantation process of blastocysts, for
the maintenance of hematopoietic stem cell pools and for
the not so well understood mechanisms leading to cachectic
animals ([18-20] and reviewed in [7]). In addition, in LIF
rescued KO mice model, it was shown that LIF is essential
for mammary gland involution after lactation [21]. More
recent studies performed with LIF KO mice challenged for
injury responses, demonstrated the importance of LIF at
various stages of neurogenesis and for tissue regeneration
after brain or spinal cord injury [22-24]. Also, LIF is

Model

Reproduction/ Healthy women volunteers and

fertility 8-week-old female mice.
In vitro studies from germ and testis cell culture.
Primary human endometrial epithelial cells and
human endometrial epithelial cell line.
Hormone NCI-H295R adrenocortical cells
regulation

Hematopoiesis Bone marrow from 2 month old C3H/HeJ mice.
Human mesenchymal stem cells, Treg cells.

Muscle C2C12 myoblast cell line
Model of JNK17~ mice

Vessels IEM, murine endothelial cell line.

Neurons Neural crest cultures from CBA mouse

embryos at stage E9.

Human midbrain precursor cells.

Eyes Human retinal cells.

Ears Cortil cells.

Kidneys Culture of rat metanephric mesenchyme.

Liver Human hepatoma cell lines (HepG2).

LIF in cancer Cell lines derived from thyroid tumor specimen
in human patients.

Normal and tumoral mammary derived cell lines.
ARMS and ERMS rhabdomyosarcoma cell lines.

In vivo and in vitro studies.

In vivo and in vitro studies: BalbC/mice; SEKI
cells; 8 human melanoma-derived cell lines.
In vivo and in vitro studies: human glioma cell
lines: U373MG and A172 and human primary

cell cultures.

Effects of LIF Ref

LIF induces oocytes and graafian [176]
follicle expansion.

LIF increases male germ cell maturation [177]
during spermatogenesis.

LIF and IL11 synergize to regulate cell [178]
adhesion of endometrial epithelial cells
with blastocyst during implantation process.

LIF stimulates adrenal steroidogenesis. [179]

LIF and multi-CSF synergize to stimulate [180]
murine megakaryocyte production in vitro.

LIF is involved in transplantation tolerance. [15, 181]

LIF induces the proliferation of myoblasts. [182]

There is a link between TNFalpha/LIF/JNK1 [183]
in myoblast proliferation/differentiation.

LIF, in synergy with FGF, regulates signals [184]
controlling capillary outgrowth.

LIF stimulates the generation of sensory [185]
neurons in culture of mouse neural crest.

LIF favours neurogenic differentiation of long-term [186]
propagated human midbrain precursor cells.

LIF allows CD133" adult retinal cells to [187]
remain undifferentiated.

LIF is involved in auditory cell proliferation. [188]

LIF converts kidney mesenchyme to epithelia [189]
which then form nephrons.

LIF, with oncostatin M, induces hepcidin production [190]
in hepatoma cell lines. Hepcidin is considered to
be the main factor responsible for the development
of anemia in inflammatory conditions.

[191]

LIF inhibits (in non-tumorigenic cells) or induces [192]
(in tumorigenic cells) cell survival.

LIF is involved in rhabdomyosarcoma-derived [193]
metastasis.

LIF is involved in melanoma tumor growth. [194]

LIF has a potential role in melanoma-induced [195]
bone metastasis.

LIF and TGFbeta induce self renewal of [196]

glioma-initiating cells, promoting oncogenesis in vivo.
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Table 2 Pleiotropic effects of LIF revealed by LIF”~ KO mice model analysis

Effects of LIF Ref
Implantation LIF is required for implantation of blastocysts. [19, 20]
Hematopoiesis LIF is involved in the maintenance of HSC pools. [20]
LIF is secreted by mesenchymal stromal cells to stimulate survival and proliferation of haematopoietic stem cells. [135]
LIF regulates the differentiation potential of MSC. [59]
Muscles LIF contributes to regenerate muscle. [197]
LIF is critical for the development of skeletal muscle hypertrophy in the functional overload model. [143]
Vessels LIF modulates oxygen-dependant VEGF expression and is essential for ensuring proper capillary density. [198]
Bones LIF regulates osteoclast size. [199]
Neurons LIF is a key regulator of neural injury. [200]
LIF is involved in glia phenotypes. [201]
LIF prevents oligodendrocytes destruction and improve remyelination of neurons in mice suffering from multiple [202]
sclerosis.
LIF is required for normal development of hippocampal astrocytes, a process regulated by spontaneous neural — [203]
impulse activity through the release of ATP.
LIF is required for correct myelination for a short time window, during postnatal mouse optic nerve [152]
development.
LIF may activate an endogenous rescue pathway that protects viable photoreceptor cells, leading to an increased [204]
photoreceptor survival in stressed retina.
LIF signalling pathway is required for the initiation of the astrogliosis-like reaction of retinal Miiller cells after  [205]
optic nerve injury.
LIF is necessary for injury-induced neurogenesis. [206]
Inflammation LIF is a major anti-inflammatory molecule produced in the CFA model (injection of complete Freund’s adjuvant [207]

which induces cutaneous inflammation). It is a key regulator of the cytokine cascade.

Hormonal functions LIF regulates the production of pituitary ACTH and inhibits the production of prolactin and growth hormone.

[208]

potentially involved in particular contexts of muscle
stimulation and regeneration [25-27] and analysis of LIF
KO newborn mice revealed a 40% decrease in bone volume
[28]. Double and triple KO model mice with other members
of the IL6 family, as CT1 and CNTF, revealed also the
importance of LIF and CNTF for motor neuron functions
[29, 30]. The therapeutic potential of LIF in neurodegen-
erative and autoimmune diseases and in reproduction
failure treatments has recently been reviewed stressing the
importance to dissect LIF outcomes in the different cell
contexts [31, 32]. Exemples of LIF functions in vitro and in
muso are presented in Tables 1 and 2.

Recent studies have also demonstrated that LIF expres-
sion is under the control of the p53 pathway for the
implantation process [33-35]. This recent finding of a
crosstalk between p53 (the so called “guardian of the
genome” also recently involved in somatic cell reprogram-
mation) and LIF opens new perspectives for LIF studies in
relation with the resetting of the pluripotent program, from
committed or mature differentiated cells [36—41].

LIF Signaling and Pleiotropy: As a Lego

We propose to view LIF signaling as a Lego built with
different combinations of similar pieces, leading to various

@ Springer

outcomes, which range from cell proliferation and survival
to differentiation and apoptosis, depending on maturity and
cell types [1, 2, 7, 42]. This Lego includes the “ptyr
signaling toolkit” described recently by Lim and Pawson
[43]. Indeed, major pieces, always present in the core of the
Lego, are kinases (as JAKs, SRC members, ZAP70
cytosolic tyrosine kinases and MAPK family members),
activated transcription factors (STAT, AP1 (e.g.:JunB/cfos),
NFKb, MYC family members) and feedback loop compo-
nents like SHP1 and SHP2 phosphatases, PIAS (Protein
Inhibitor of the Activated STAT) family of proteins and
SOCS (Suppressor of cytoking Signaling). In both mouse
and human genomes, there are four JAKs (JAKI, 2, 3
TYK2), nine SRC [44], two ERK/MAPK (ERKI and
ERK?2), eight STATs, two SHPs (i.e., SHP-1 and SHP-2),
eight SOCS (SOCS1 to SOCS7 and CIS) and four PIAS
(PTIAS1, -3, -x, and -y) proteins [45]. Many combinations of
these proteins will result in pleiotropic effects of this
cytokine. For example, the LIF/JAK1/ERK1/2/PI3K/
STAT3/JunB-cfos/KLF4/5/SOCS3 combination leads to
maintenance of the pluripotency in the murine ES cell
model, with ERK signaling pushing towards differentiation
while STAT3 and its targets allow cells to remain undiffer-
entiated by repressing endoderm and mesoderm differentia-
tion programs [46-48]. Epigenetic marks, not yet studied in
details, represent an additional level of sophistication
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required to understand the mechanisms of LIF pleiotropy, in
cell models in which LIF mediates opposite effects. Eed
protein, a LIF-dependent STAT3 target of the repressive
Polycomb complex, has been shown to silence
differentiation-associated genes in self-renewing mES cells
[49]. We have proposed that the level of expression and/or of
activation of chromatin regulators could end up to opened or
closed chromatin configuration, leading to accessibility (or not)
of STAT3-dependent promoters, helping to explain opposite
outcomes of LIF/STAT3 pathway [7]. It might be informative
to perform parallel Chromatin Immunoprecipitation (ChIP)-
seq analyses with anti-phosphoSTAT3 antibody in mES and
in the M1 cell line (a leukemic myeloid cell line in which LIF
triggers differentiation) to characterize LIF/STAT3—depen-
dent promoters in two cell models in which LIF drives
opposite effects [50-54]. The importance of feedback loop
control of LIF signaling, almost always including SOCS3, has
recently been illustrated in mice engineered to express
mutated forms of gp130 lacking the SOCS3-binding site. In
those mice, which develop a variety of hematopoietic and
immunological defects, STAT signaling is sustained high-
lighting the critical role of SOCS3 in limiting gp130 signaling
[55]. In addition, differential kinetic of inactivation and
desensitization of LIF-dependent pathways, which could be

.

oocyte
spermatozoon

Injection in
— blastocyst

R

genetically modified stem cells

mediated by different inhibitory signaling components, as
shown for the IL6 cytokine [56], could account for its
various cell-dependent effects. The characterization of
combinatorial LIF-dependent activated/repressed compo-
nents (including proteins and also miRNAs, as demonstrated
in mES and human mesenchymal cells [57-59]) and the set
up of tools allowing to understand the mechanisms of action of
these proteins and/or miR complexes on cell physiology, is a
future challenge in cytokine and stem cell fields.

LIF in Stem Cells

LIF in mES Cells: Highlights on New LIF Targets
and of Connections with the Trio OCT4/NANOG/SOX2

Murine ES cell model, strictly depending on LIF for self
renewal and maintenance of pluripotency, is a powerful
model to study its effects on cells grown at different stages
of maturity (from pluripotent to early differentiated cells)
and to unravel the mechanisms of pluripotency and
pleiotropy (Fig. 1). LIF, in synergy with BMP4 or Wnts
protein members (Wnt3a and Wnt5, [60, 61]) induces PI3K
and ERK signals which are contradictory signals leading

chimeric mouse

Injection in .
morula —lectopic sites in [=»> teratocarcinoma - LIF
mouse
PLURIPOTENCY 24h 48h 72h
paary e | | |
+ LIF § @1 Reversible Irreversible Heterogeneous
self-renewal commitment commitment differentiation
=1 in vitro (rev.com.) (irrev. com.) and
\/ Apoptosis
blastocyst - LIF + LIF
¢ + various factors SPECIFIC
DIFFERENTIATION + LIF
;2 @% {
mouse .
embryonic in vivo | foetus
stem cells

Fig. 1 The mES system: the «three in one» cell model to study LIF
mechanisms in pluripotent, committed and differentiated cells. Part of
this figure has been taken from the Web site: http://en.wikipedia.org/

wiki/Stem_cell, available under the «Creative Commons Attribution-
ShareAlike 2.5 Generic License ». This model is based on references:
[105, 112—-114]
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respectively to maintenance of pluripotency (through
NANOG) or to differentiation [46, 47, 62—66]. ES cells
are poised, able to respond shortly and efficiently to
differentiation signals. However, a complex pluripotent
program locks cells in self renewal and undifferentiated state,
at least in cell culture. Years of studies of the mES cell model
led to the characterization of master pieces of pluripotent
program. This includes. along with the LIF signaling pathway,
which represses expression of endoderm and mesoderm
markers, the OCT4/SOX2 targets genes, which block differ-
entiation towards trophectoderm lineage. Knowledge of these
complementary and intricate pathways led also to the set up of
defined medium complemented with specific chemicals
which mimic the effects of essential components of stemness,
as the 31 medium (a basic serum free medium supplemented
with three chemical inhibitors, repressing MEKs, GSK3b and
FGFR pathways) or the “pluripotin/LIF” medium [64, 67-69]
. Recently retinol, the alcohol form of Vitamin A, which is
not metabolized in retinoic acid (RA) in ES cells, because of
the absence of RALDH and ALDH enzymes, has been
shown as a new powerful inducer of NANOG allowing
maintenance of ES cell pluripotency in the absence of
LIF [70, 71]. In addition, it has been demonstrated that
mES cells express some markers in a salt/pepper way, as
shown in Inner Cell Mass (ICM) of early blastocysts [72].
Indeed, genes as RexI, Nanog, Zscan4 and many others
have heterogeneous expression in morphologically homo-
geneous colonies of mES cells, probably allowing cells to
respond quickly to differentiation signals [73, 74]. The
importance of LIF-dependent components involved in the
heterogeneity of mES cells is presently unknown.

Genes Involved in Cell Pluripotency: Functional
Involvement, One by One

There are at least a hundred of genes individually involved
in the maintenance of mES cell pluripotency. Indeed,
Knock Down (KD) or Knock Out (KO) of candidate genes,
proves to be a powerful way to demonstrate their role in ES
cell pluripotency. Proteins in each cell compartment, from
the membrane to the nucleus have been shown to be critical
for maintenance of pluripotency as shown for Gap junction
proteins [75-78], CrxOS [79], Yap [80], Pem [81], Zic3 [82,
83], Zfx [84], Pdcd2 [85], Cobral [86] and many other
genes revealed by high throughput RNAI strategies [87—
89]. Also chromatin regulators (Jumonji members, [90] and
Chdl, [91], which modulate respectively the level of
histone methylation and the degree of chromatin compac-
tion, and Ronin [92, 93], all able to regulate many genes
together) and miRNAs (controlling cell cycle regulators via
c-MYC [57, 94] or Master gene expression [95]) are also
key players involved in the maintenance of mES cell
pluripotency. The importance of miRNAs was established in
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previous studies showing that embryos or ES cells lacking
proper miRNA synthesis (Dicer and Dger8 KO models) are
not anymore pluripotent, stressing the importance of miRNA
in ES cell plasticity [96-101].

It is worth stressing that some of these genes behave as
“rheostat” with various level of their expression leading to
different (sometimes opposite) cell phenotypes, as first
shown for Oct4 and then for Nanog and Sox2 [102—-104],
illustrating the poised state of mES cells.

However, in seeking for the “Holy Grail” of the
pluripotency markers, we might attempt to dissociate genes
whose repression will lead to slow destruction of cells
(which could go through a pseudo-differentiation stage before
death, when touching Gap junctions, adhesion or cytoskeleton
cell components, for example), to genes having specific
effects on the pluripotent machinery, a not easy task.

Novel LIF Signatures

By extensive microarray studies performed in mES cells
grown with or without LIF for 24 or 48 h and reinduced with
LIF for 30 min, we have defined three types of LIF signatures:
Pluri, Spe-Lifind and Pleio-Lifind [105]. Genes from both
Pluri and Lifind clusters are essential for the proper self
renewal and maintenance of pluripotency in mES cells.

Pluri genes, whose expression is restricted to undiffer-
entiated mES cells, at least up to 10 days of differentiation
triggered by LIF withdrawal, includes Esrrb, Gjb3, Krt42,
Ak7, Ly6, Susd2, Irak3, Tcfcp2ll, Pim3, Ceacaml and
Mras. This extends the list of known stemness genes [89,
106, 107]. By analyzing the expression profiles of the Pluri
genes in Microarray data obtained with the KD of Oct4 or
Nanog [108] we concluded that while the expression of
Esrrb and Ly6 is repressed in OCT4 or NANOG KD cell
lines, expression of Susd2, Ak7, Krt42 and Irak3 is only
under OCT4 control. In addition, expression of gap junction
protein encoding genes is induced in OCT4 (Gjb3/Connexin
31 and Gjb5/connexin 31.1) or NANOG (Gjal/connexin43)
Knock Down cell lines. Individual KD of /rak3, Susd2 and
Ly6 leads to weak increase of differentiation markers
suggesting their involvement in mES cell pluripotency.
Efficient approaches allowing to disrupt the expression of
many genes at once should be necessary for further
characterization of gene clusters in mES cells [105].

In cells grown without LIF for 24 or 48 h and reinduced
with LIF for 30 min, we have identified the Lifind (Lif
induced) genes. Some of them are direct targets of STAT3
and a subset of these genes is also regulated by the PI3K/
NANOG pathway [48, 109, 110]. Only part of the genes
induced after 24 h of LIF withdrawal is also induced after a
longer period of starvation. We have made a distinction
between Spe-Lifind genes (only induced in restricted time
windows of LIF withdrawal, 24 h) and Pleio-Lifind genes
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(induced by LIF after different periods of LIF starvation,
24 h, 48 h or 10 days after LIF withdrawal, this latter
condition corresponding to differentiated cells which re-
express LIF and its receptors [4, 7, 105, 111]). Since
withdrawal of LIF for 24 h leads to reversible commitment
[112—114], we postulate that some of the Spe-Lifind genes
could be involved in the reversible process.

Klif4 (a well known member of the “Yamanaka” cocktail,
involved in reprogrammation of somatic cells to iPSC) and
KIf5 are both Spe-Lifind genes shown to be critical actors of
maintenance of pluripotency in mES [115-120]. Both genes
are also direct STAT3 targets and block endoderm (Klf4) or
mesoderm (KIf5) differentiation [48]. KIf4 and 5 are also
under the control of NANOG expression and a regulatory loop
between KLF4 and NANOG has been suggested since KLF4
regulates the expression of NANOG by direct binding to its
promoter [120]. KIf4 synergizes with OCT4, definitively
connecting master genes (OCT4/SOX2/NANOG) with LIF/
STAT3 pathway [48, 117, 120, 121]. Other Spe-Lifind genes,
could be essential “ressetors” of pluripotent program during
the reversible phase of commitment [7, 114].

LIF in Adult Stem Cells
Hematopoietic Stem Cells (HSC)

Several groups have described similar, different or even
contradictory results about the in vitro effects of LIF on
cultured normal adult hematopoietic stem cells and progeni-
tors. In articles devoted to its functional effects on normal
hematopoietic progenitors it was shown that LIF has a growth
stimulating activity on human CFU-Eo and BFU-E [122]
while it is ineffective on mouse CFU-GM [123]. LIF also
induces the proliferation of very primitive multipotential
progenitors (so called CFU-Blast) suggesting that this
cytokine could stimulate the cell cycle entry of these mostly
quiescent primitive progenitors [124]. Interestingly, LIF is
active on CFU-Mix only in serum containing medium and its
effect is mostly synergistic or additive to other multi-linecage
cytokines (IL-3, IL-6 and GM-CSF) [125]. These data
suggest that LIF mostly stimulates the in vitro proliferation
of primitive hematopoietic progenitors. In vivo, LIF is active
on hematopoietic progenitors and play a role in the
regulation of the stem cell pool [20]. Permanently elevated
levels of LIF in adult mice induced a polyvisceral and
rapidly lethal pathology [126]. The most important hemato-
logical modifications are a reduction of bone marrow
hematopoiesis related to myelosclerosis that contrasts with
a splenomegaly due to an abnormal spleen hematopoiesis,
increased levels of progenitors in the spleen and thrombo-
cytosis [126, 127]. However the most informative results
concerning the physiological role of LIF in the regulation of
hematopoiesis were obtained from KO mouse models. LIF

deficient mice are viable. However, when compared to wild
type animals the pool of BFU-E and CFU-GM progenitors
were reduced in bone marrow and even more in the spleen of
LIF—/— mice [20]. More surprising is the fact that the null
LIFR beta (gp190) spontanecous mutations in humans and
induced by gene targeting in KO mice had no hematological
abnormality despite the fact that other LIF target tissues were
disturbed [128, 129]. Taken altogether, these in vitro and in
vivo results suggest that LIF is not a mandatory cytokine for
the physiological regulation of adult hematopoiesis. This is in
agreement with its potential role on some basic functions such
as effect on chromatin status, for example, for which a degree
of redundancy is expected.

Mesenchymal Stem Cells (MSC)

Among their numerous biological functions, MSC display
immune-modulatory properties. They suppress T cell
proliferation induced by various stimuli in vitro and they
show similar effect in vivo. Indeed several clinical trials
evidenced that injection of MSC to Bone Marrow (BM)
allografted patients reduced their graft versus host disease
by improving the donor T cells immune tolerance [130].
Interestingly, LIF is produced by human BMMSC [131]
and its overexpression and depletion in mouse models led
to immune disturbances [132]. Recently, it was suggested
that the MSC-induced immune tolerance is due to their
production of LIF [133]. However, the cellular and molecular
mechanisms (that also involve other identified MSC mole-
cules) leading to this transplantation tolerance remain
functionally ignored. Another established ex vivo effect of
MSC is to improve the maintenance of HSC in liquid
cocultures. Indeed, a positive effect of LIF on the in vitro
maintenance of murine HSC was mediated by BM stromal
cells in which it upregulates the expression of various
hematopoietic cytokines [134]. By using an elegant model of
young and old, wild type and LIF—/— mice for cross cocultures
of MSC and Lin- Scal+ hematopoietic progenitors and stem
cells, it has been shown that LIF—/— mice had only slight
disturbances of hematopoiesis when explored in culture [135]
since LIF—/— and WT MSC were not significantly different
in their capacity to maintain Lin— Scal+ hematopoietic
progenitors of WT and LIF—/— mice in liquid cocultures.
Complementary experiments (including transplantation)
should be performed if one wants to conclude about the real
direct/indirect effects of LIF on HSC in vivo. However, a
novel direct autocrine effect of LIF to maintain the multi-
potent program of MSC has recently been described. Indeed,
down regulation of MSC LIF expression by specific miRNA
favors their differentiation towards the osteoblast and
adipogenic lineages [59]. In this context, it is worth stressing
that in vivo silencing of the gp190 subunit of the LIF receptor
leads to major disturbances of the bone and other mesenchy-
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mal tissues suggesting a major non redundant role of LIF in
the maintenance and commitment of MSC [128, 129].

Muscle Satellite Cells

Muscle satellite cells are the major cell type responsible for
post-natal skeletal muscle growth and regeneration. These
quiescent cells are located under the basal lamina of muscle
fibers, and become activated upon injury. They proliferate
and differentiate into new muscle fibers and during
regeneration, the satellite cell pool is also reconstituted
[136-138]. Since the first articles showing a role of LIF in
stimulation of myoblast proliferation in culture [139, 140],
it has been shown that LIF engages JAKI1, STATI, and
STAT3 to promote cell proliferation and to repress
myogenic differentiation, in primary myoblasts and in the
C2C12 cell models [26, 141]. However, an opposite role for
STAT3 in myoblast differentiation was shown by knock-
down of endogenous STAT3 which dramatically blocked
myogenic differentiation. It was then suggested that, as in
the murine ES cell model, LIF/STAT3 might play distinct
roles at different stages of muscle differentiation [142].
Further studies are needed to understand how STAT3
coordinates with myoD to control myogenic differentiation
and how they cross-talk with other signaling pathways. It
has also been demonstrated that LIF expression in skeletal
muscle is critical for the development of skeletal muscle
hypertrophy in the functional overload model [143]. LIF
has also been suggested as being a novel myokine, secreted
by muscle cells during exercise in link with activation of
calcium-dependent pathway and changes in energy status
[27]. However, in this study, the LIF secretion is around
3 pg/ml, which could be considered to be close to
background level, based on known physical constant
describing cytokine/receptor interactions [144].

Neural Stem Cells

Neural stem cells (NSCs) in the adult brain continuously
provide new neurons to the hippocampal dentate gyrus
(DG) and the olfactory bulb (OB). The progression from
neural precursor cells (NPCs) to mature neurons is tightly
controlled by coordination of cell-intrinsic programs and
external signals within the neurogenic niche. Understanding
signaling in adult neurogenesis is a key challenge to
understand the physiological roles of neurogenesis, but
also to provide knowledge required to use NSCs as
potential therapy for treatment of brain diseases [145-147].

Cytokines that signal through the LIFRbeta/gp130
receptor complex, including LIF and CNTF have been
suggested to promote the self-renewal of embryonic and
adult mouse or rat NPCs [22, 148]. However, with CNTF or
LIF KO models, it was shown that while CNTF-induced

@ Springer

STAT3 signaling is essential for the formation and/or
maintenance of the neurogenic subgranular zone in the adult
dentate gyrus, LIF was not required [149]. In addition, in a
model of human neural stem cells, which can be expanded
under EGF and FGF2, no effect of LIF was observed [150].
In contrast, in a rat model, LIF, and not CNTF, was crucial
for the expansion of NPCs in the Sub Ventricular Zone
(SVZ) after perinatal brain injury [151]. LIF was also shown
to control neural differentiation and maintenance of stem
cell-derived murine spiral ganglion neuron precursors, a
finding which could be relevant in cell replacement studies
with animal models featuring spiral ganglion neuron degen-
eration [23]. Another study shows that during normal
development of mouse optic nerve, there is a defined
developmental time window when LIF is required for correct
myelination [152].

Understanding of LIF signaling in adult stem cells will
still depend on detailed analysis performed in LIF KO
model mice, challenged with particular stimuli aiming at
increasing or decreasing the natural pool of stem cells in
their relevant niche.

LIF in Reprogrammation: Antagonism Between LIF
and p53 Pathways. What for?

Somatic cell reprogrammation which leads to the derivation
of iPSC is mediated by specific set of genes (Oct4, Sox2,
cMyc and KIf4 or Oct4, Sox2, Lin28 and Nanog), including
LIF targets [119, 153, 154]. L-Myc has been shown
recently to replace c-MYC in the reprogrammation cocktail
with the potential advantage to reduce the tumorigenicity of
the derived iPSC [155]. In addition, growing cells at low
02 concentration (3%-5% 02), [156], and blocking the
p53 pathway [36, 37, 40, 41, 157], are also critical
parameters which increase the efficiency of somatic cell
reprogrammation.

The expression of the LIF cytokine is under the direct
control of p53 (at least in mouse endometrium cells [35]),
and of N-MYC (in the neuroblastoma cell model, [158]).
Indeed, LIF promoter contains specific binding sites for
these regulatory transcription factors. Whether N-MYC and
pS3 act together or not have not been established so far.
LIF-induced genes and repression of p53 pathway seems to
be paradoxical effectors for efficient cell reprogramming,
unless both signals are not required simultaneously, a
hypothesis which will deserve future attention.

LIF in EVO-DEVO

A large amount of data has been accumulated on the
pleiotropic functions of LIF in mammals, but so far we have
little insight on what could be its functions in non mammalian
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vertebrate with respect to early development and differentia-
tion [159]. A limited number of signaling pathways is
operating during metazoan development and most, if not all
of them are conserved over a large evolutionary scale [160,
161]. Among them is the JAK/STAT pathway which
conveys LIF signals. LIF belongs to class I-helical cytokines
family which is considered to constitute a monophyletic
group having evolved from a single ancestral gene through
successive duplication events mainly in the vertebrate
lineage [162]. Indeed, the core signaling elements of the
JAK/STAT pathway has been found in invertebrate such as
Drosophila with a unique cytokine-like peptide ligand
capable of activating the pathway [163]. The knowledge of
the conservation of IL6 family members, as LIF, between
divergent vertebrate species and the functions of LIF during
development can be very informative for understanding its
pleiotropic functions. LIF ortholog has been identified
through ¢cDNA cloning and in silico analysis in several non
mammalian vertebrates. Chicken cDNA LIF has been cloned
and shown to be able to maintain blastodermal cells into an
undifferentiated state [164]. cDNA encoding LIF ortholog
has also been cloned in teleost species as zebrafish, carp and
goldfish [165-167]. The finding of LIF-like cytokine in
fishes indicates that the cytokine already existed before the
fish-tetrapod divergence that occurred aproximatively 450
million years ago. LIF ortholog is also present in amphibian
and we have cloned, through in silico analysis, a Xenopus
LIF cDNA (our unpublished data). Although the amino acid
conservation of LIF sequences between mammalian and
non mammalian vertebrate species is rather low (20%-—
40%), those sequences share a conserved tridimensional
fold. LIF receptor (LIFR) has been identified in chick
and zebrafish and functional analysis performed in both
species. In chicken, LIFR is involved in the control of
vasoactive intestinal peptide expression in sympathetic
neurons [168]. Functional experiments using morpholino
based mediated knock down in zebrafish have shown that,
unlike LIF, whose knock down has no obvious effects on
development, LIFR knock down impairs proper neural
development [169]. Although there is no functional data
about LIF and LIFR functions in Xenopus development
yet, it has been found that STAT3 activation, through
gpl130 signaling, ventralizes embryo independently of
BMP4 [170]. Whether this effect can be related to LIF
signaling through its receptor awaits experiments. Since
LIF is essential to murine ES cells pluripotency, it is
striking to note that STAT3 is able to maintain Xenopus
pluripotent neural crest cells in an undifferentiated state
downstream of FGF signals [171].

According to the current data and the evolutionary
conservation of the components of the LIF signaling pathway,
we speculate that LIF can generate distinct responses at
different times during development/differentiation in different

species. Most of the genes, that we have defined as LIF
signatures in the mES model, is conserved in non mammalian
vertebrate genomes and their study in the amphibian Xenopus
model should allow for a rapid and efficient screening of the
functions of the genes that make up the LIF signatures. This
should also allow a better understanding of the functions of
the LIF pathway during development.

Conclusions

The challenge, when studying LIF, is to catch the proper
time window of its effects. Indeed, while LIF is essential
for maintenance of pluripotency of murine ES cells
(mES), it is not required for human ES cells (hES). It has
been elegantly demonstrated that this was due to the fact
that murine and human ES cells are respectively derived
from early and late epiblast, stressing the differential
effects of LIF that might depend on the embryonic stage.
In addition, LIF/STAT3 signaling reverts murine EpiSC
cells (Epiblast-derived cells, which are similar to human
ES cells) to mES cells probably by LIF-dependent
expression of KLF4, as suggested by recent reports
[172-175].

Functions of LIF studied in KO model mice, along with
functional tests performed at different time windows in the
mES cells model, with new LIF targets, should increase our
knowledge on this still fascinating cytokine in the near
future.
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