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A B S T R A C T

Brain disease is one of the leading causes of death nowadays. Medical imaging is the most effective method for
brain disease diagnosis, which provides a clear view of the interior brain. However, manual interpretation re-
quires too much time and effort because medical images contain a large volume of information. Computer aided
diagnosis is playing a more and more significant role in the clinic, which can help doctors and physicians to
analyze medical images automatically. In this study, a novel pathological brain detection system was proposed for
brain magnetic resonance images based on ResNet and randomized neural networks. Firstly, a ResNet was
employed as the feature extractor, which was a famous convolutional neural network structure. Then, we used
three randomized neural networks, i.e., the Schmidt neural network, the random vector functional-link net, and
the extreme learning machine. The weights and biases in the three networks were trained by the chaotic bat
algorithm. The three proposed methods achieved similar results based on five runs, and they yielded comparable
performance in comparison with state-of-the-art approaches.
1. Introduction

Brain diseases are among the most severe health killers, and some of
them are still incurable with modern technology. For example, Alz-
heimer's disease (AD) belongs to dementia that develops slowly among
the elderly. AD affects the patient's thinking, behavior and memory
gradually and leads to death eventually. However, early diagnosis of
brain diseases can help control the illness conditions, prolong the pa-
tients' life and even cure them. So far, the most used brain diagnosis
method is through medical imaging. Compared with other imaging mo-
dalities like computed tomography (CT) and X-ray, magnetic resonance
image (MRI) is non-invasion and non-radioactive with a clearer view of
soft tissues. So, it is often used in brain imaging. Traditional manual
interpretation and analysis of the massive information in brain MRI
require too much time and effort, and weak in reproducibility. Fortu-
nately, with the development of artificial intelligence, computer aided
diagnosis (CAD) is becoming an important tool in clinical diagnosis. CAD
systems are used for automatic medical image analysis, such as seg-
mentation [1, 2], classification [3, 4] and data fusion [5, 6, 7, 8].

Pathological brain detection (PBD) is a branch of CAD that focuses on
brain diagnosis based on MRIs. Conventionally, a PBD system contains
four procedures: feature extraction, feature reduction, classifier training
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and testing. As MRIs are large in volume, it will cause the curse of
dimensionality if every intensity value of a pixel is fed into the classifier
for training. Hence feature extraction is an important step to generate
some representations from the images. In feature reduction or selection,
the number of features is further reduced by some strategy like principal
component analysis (PCA). Afterward, a classifier should be trained using
the features as the input and the labels as the expected output. Finally,
the trained classifier is tested on a testing set for performance evaluation.
With the aim to improve the accuracy and reduce the running time of
PBD systems, researchers have devoted time and energy to this field.

Chaplot, et al. [9] employed wavelet transform as the feature
extractor and chose the self-organization map (SOM) and support vector
machine (SVM) as classification algorithms. Experiment results showed
that SVM outperformed SOM in terms of accuracy. Nevertheless, their
feature vector contained thousands of features which increased the
computational complexity. El-Dahshan, et al. [10] utilized discrete
wavelet transform (DWT) to generate features and leveraged PCA for
feature reduction. For classifier, feedforward back propagation neural
network and k nearest neighbors were selected. Both classifiers achieved
over 95% accuracy in the experiment. Zhang, et al. [11] suggested using
feedforward neural network and optimize its parameters by chaotic
artificial bee colony algorithm. Zhang and Wu [12] employed kernel
udongzhang@ieee.org (Y.-D. Zhang).
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SVM for classification and compared the performance of SVMs using
different kernel functions. K-fold cross validation (CV) was utilized to
evaluate out-of-sample performance. Kalbkhani, et al. [13] proposed to
model the coefficients of DWT by generalized autoregressive conditional
heteroscedasticity and leverage PCA and linear discriminant analysis for
feature reduction. For classification, k nearest neighbors and SVM were
used. Padma and Sukanesh [14] put forward a PBD system based on brain
CT. They extracted wavelet coefficients and texture features, and selected
only six features to form feature vectors by student's t-test. The obtained
feature vectors were fed into an SVM for training and testing. Saritha,
et al. [15] employed wavelet entropy-based spider web plots as the
feature extractor, which was a geometric structure. A probabilistic neural
network was trained to classify brain MRIs as pathological or normal.
Zhang, et al. [16] proposed to utilize DWT and PCA to extract features
from brain MRI and employ kernel SVM for classification. The parame-
ters in kernel SVM was optimized by particle swarm optimization (PSO)
which belongs to a swarm intelligent algorithm. Yang, et al. [17]
employed a novel method called wavelet energy for feature extraction
and optimized the weights in SVM by biogeography-based optimization.
Ahmmed, et al. [18] firstly used K-means andmodified fuzzy C-means for
the segmentation of brain MRI. Then, an SVM was trained to detect
pathological brains from normal ones, and an artificial neural network
was trained to classify the samples into five categories: benign and four
malignant stages. Armato, et al. [19] proposed a deep learning method to
predict the survival time based on brain MRI. They used a pre-trained
deep convolutional neural network (CNN) for feature extraction, and
introduced transfer learning for fine-tuning of the fully connected layers.
Gilanie, et al. [20] combined Gabor filter and SVM for detecting patho-
logical brain in MRI. Firstly, local histogram equalization was performed
on brain MRI for preprocessing. Then, the Gabor texture descriptor and
co-occurrence matrix were employed to generate features. Finally, the
combined feature vector was used to train an SVM for prediction.
Gurusamy and Subramaniam [21] utilized various filters for brain MRI
de-noising and leveraged Otsu and clustering for tumor segmentation.
Afterward, DWT and PCA were performed for feature extraction and
reduction, respectively. The classifier was a kernel SVM. Islam and Zhang
[22] constructed an eleven layer CNN for AD detection in brain MRI.
Their system was capable of classifying the samples into four classes:
nondemented, mild AD, very mild AD and moderate AD. Korolev, et al.
[23] proposed a deep learning based method for AD detection. Inspired
by VGG, they constructed VoxCNN, and ResNet was also used for com-
parison. However, their dataset was a small one, which is not suitable for
training deep CNN. Kumar, et al. [24] applied the genetic algorithm for
feature extraction after DWT and PCA. They selected SVM to label the
samples as pathological and normal. Lahmiri [25] proposed a hybrid
method for glioma detection. He firstly segmented brain MRIs by PSO
Figure 1. MR
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methods: classical PSO, Darwinian particle swarm optimization (DPSO),
and fractional-order DPSO (FODPSO). Then, image features were
generated using the directional spectral distribution signature and
generalized Hurst exponents. Finally, an SVM was trained to label the
input samples as healthy or glioma. Results showed that the proposed
approach outperformed a bunch of state-of-the-art. Lebedeva, et al. [26]
extracted structure information from brainMRI to form the feature vector
and employed the random forest algorithm to distinguish mild cognitive
impairment from dementia. Nayak, et al. [27] proposed to leverage
contrast limited adaptive histogram equalization for brain MRI
enhancement and employ a novel orthogonal discrete ripplet-II transform
for feature extraction. Extreme learning machine (ELM), a randomized
neural network (RNN), served as a classifier. The parameters in ELM
were optimized with an improved Jaya algorithm. The proposed method
performed better than back propagation neural network (BPNN) and
conventional ELM. Usman and Rajpoot [28] calculated wavelet texture,
intensity information and local information to form the feature vector.
Random forest algorithm was used to classify the samples into five cat-
egories. Ateeq, et al. [29] proposed a cerebral microbleed detection
system for brain MRI. They first removed the skull in images and obtain
potential candidates using thresholding. Then, a bunch of shapes based
features and transform based features were extracted. Finally, quadratic
discriminant analysis and SVM were trained for CMB identification.
Hasan [30] employed PSO to find the cores of pathology in brain MRI and
extracted the pathological areas using an active contour method. Islam
and Zhang [31] suggested predicting different stages of AD based on
CNN. They trained three identical CNNs with dense blocks and generated
the output by counting votes. Li, et al. [32] proposed to predict patho-
logical brain connectome patterns in functional brainMRI. They trained a
stacked sparse autoencoder to learn from healthy connectivity patterns
and transferred it to a transfer learning model for classification. Rieke,
et al. [33] not only used CNN for AD classification but also tried to
interpret the results from CNN by visualization. Zurita, et al. [34] pro-
posed an SVM based CAD system for multiple sclerosis detection. Four
different features were extracted including fractional anisotropy maps,
structural connectivity, functional connectivity, and a combination of the
former two connectivity. Sajjad, et al. [35] utilized a deep learning
method to segment brain MRIs. A CNN structure was trained by the
segmented images and fine-tuned on the augmented dataset [36]. con-
structed a ResNet 34 based CNN architecture and trained it in a three
steps manner with transfer learning and augmented samples. The
developed system achieved 100% accuracy for classifying abnormal
brains and normal controls in their experiment.

From the abovementioned, we found that these methods achieved
good results, but there are still some problems remained. Firstly, many
systems used DWT for feature extraction, but the DWT features are
I samples.
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domain dependent, which may not work on new samples. Secondly, MRI
datasets are usually small, which often consist of hundreds of samples, so
they are not suitable for training deep learning models which will cause
overfitting problem. Last but not least, the performance of classifiers can
be improved in terms of both training time and accuracy. To overcome
these problems, we proposed our PBD methods based on ResNet-50 and
randomized neural networks. ResNet [37] is a deep CNN model, it used
residual function in training and achieved good classification results on
various open datasets. In this study, we utilized a pre-trained ResNet-50
model for extracting brain MRI features instead of training ResNet on the
MRI dataset. Then, the obtained feature was fed into three randomized
neural networks for training and testing. We optimized the randomized
neural networks parameters by chaotic bat algorithm (CBA) in order to
boost its classification performance. CBA is an improved form of bat al-
gorithm which was inspired by the flying, avoiding obstacles and prey of
bats. The Chaotic map is introduced to better exploring the solution space
in order to reach the global best solution.

The organization of the rest of this work is as follows. Section 2
presents the MRI datasets. Section 3 provides detailed methods,
including ResNet, three randomized neural networks and CBA. Section 4
is about the experiment settings. Section 5 gives the experiment results
and discussion. Finally, the conclusion is in Section 6.

2. Material

We obtained brain T2 weighted MRIs from the Whole Brain Atlas-
Harvard Medical School (HMS) dataset, which is an open dataset. The
slices are selected in axial orientation by experts of ten years’ experience.
The slices are resized in 256 � 256 pixels. The diseases of abnormal
samples include AD, glioma, sarcoma, cerebral calcinosis, Huntington,
etc. Originally, we obtained 177 pathological samples and only 28
normal samples, which is imbalanced. Firstly, 14 pathological and 14
normal samples were randomly selected to form the test set. Then, the
rest 163 pathological and 14 normal samples form the training set. To
Figure 2. Convolu
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balance the training set, resample was employed to generate 168 normal
samples, i.e., the 14 normal samplings were copied for 11 times. So, we
obtained a training set with 163 pathological and 168 normal samples at
last. Figure 1 presented some samples in our dataset.

3. Methods

PBD systems usually start with feature extraction and use the feature
to train a classifier for automated diagnosis. However, manual feature
extraction is tedious, and the features are domain dependent, which
means the features work on some datasets but fails on the others. The
rapid development of deep learning and applications sheds light on
automatic representation and feature learning. Therefore, we employed
ResNet for feature extraction, which is a deep CNN structure. CNN
implemented automated feature learning from low level to high level
through convolution and pooling. The feature vectors were sent to ran-
domized neural networks for classification training. Randomized neural
networks converge much faster than conventional BPNN because they
are based on gradient descent methods. CBA was used to optimize the
parameters in randomized neural networks to improve its classification
performance further.

3.1. ResNet

ResNet was proposed by He, et al. [37]. With residual learning
mechanisms, deep CNN can be trained more effectively. Traditionally, a
CNN contains three types of layers: convolution layer, pooling layer and
fully connected layer.

Convolution operation generates feature maps from the input by a set
of filters with trainable weights. Figure 2 presented a toy example of
convolution, in which a 4� 4 image was convoluted by a 2� 2 filter with
stride 2, and the feature map is 2 � 2. Given an image I in size of (M, N)
and a filter F in size of (p, q), the convolution formula can be expressed as
tion operation.
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Figure 4. Pooling methods.
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conv¼ðI *FÞðx; yÞ ¼
M N

Iðx� p; y� qÞFðp; qÞ (1)
Figure 5. Fully connected layers.
XX
The filters sweep from the top left to bottom right with some stride,

and the feature maps can be computed. But the map size will shrink
inevitably and the edge information can be lost during convolution. As in
Figure 2, the input was 4 � 4, but the feature map was 2 � 2. To handle
this problem, zero padding can be employed. Zero padding adds zero
valued pixels around the input image before convolution, shown in
Figure 3. A 4 � 4 image with 1 � 1 padding was convoluted by a 3 � 3
filter with 1 stride, and a 4 � 4 feature map was obtained. The detailed
relationship of input size and feature map size is given below:

8>><
>>:

heightmap ¼
�
heightinput�heightfilter þ 2� padding

�
stride

þ 1

widthmap ¼
�
widthinput�widthfilter þ 2� padding

�
stride

þ 1

(2)

Pooling is a simple but effective operation, and pooling layers are
usually placed after convolution layers. Pooling generates feature maps
with a local perceptive field. Pooling layers can extract main features
from the input and reduce the dimension, which helps accelerate the
training and improve the generalization ability. An example is given in
Figure 4, which illustrates three pooling strategies: min, average andmax
with the local perceptive field of 2 � 2.

The fully connected layers are usually arranged at the end of a CNN
structure, which was used for classification and recognition. Every node
in fully connected layers is linked to all the nodes in the adjacent fully
connected layers with trainable weights, shown in Figure 5.

The activation function is an important part of neural networks,
which offers nonlinearity. The network may become a linear system
composed of matrix multiplications without activation functions. In
classical BPNN, the sigmoid function was the most used, which can be
expressed as:

SðxÞ¼ 1
1� e�x

(3)

It is widely used because BPNN is trained by gradient descent algo-
rithms, and the gradient of sigmoid function is computationally effective,
which can be calculated by:
4

S
0 ðxÞ¼ SðxÞð1� SðxÞÞ (4)
However, in deep learning architecture, the sigmoid function doesn't
work anymore because it causes the gradient vanishing problem in which
the learning speed was very slow. So, in deep CNN, the rectified linear
unit (ReLU) is often a good option. The formula of ReLU is:

ReLUðxÞ¼maxðx; 0Þ (5)

For positive input, the output of ReLU is always 1, and for negative
input, the output is always 0. ReLU is simple to compute and it can
accelerate the forward progress in training. For the final classification
layer, Softmax function is often used:



Figure 6. Residual block.

Figure 7. ELM structure.
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softmaxðxÞi ¼
expðxiÞPn � � (6)
Table 1. ELM algorithm.

Input: training set M in Eq. (8)

Step 1: initialize the input weight wi and bias bi randomly.
Step 2: calculate the output matrix H using Eq. (12).
Step 3: calculate the output weight β by pseudo inverse in Eq. (14).

Output: the trained ELM structure
j¼1
exp xj

Softmax function maps the input vector into probabilities, so the
overflow can be avoided.

ResNet was proposed by introducing the residual learning method.
The idea is that network layers are capable of approximating any function
asymptotically. For instance, f(x) denotes the learned mapping of several
layers, then it is equivalent to train these layers to approximate the re-
sidual function: r(x) ¼ f(x)-x. So the target function becomes:

f ðxÞ¼ rðxÞ þ x (7)

The analysis suggested that nonlinear layers may be difficult to reach
identity mapping. So, if the identity mapping is optimal, the weights of
theses stacked layers will be simply driven to zero with residual learning
block, shown in Figure 6.

ResNet has been widely evaluated on a variety of open datasets
including CIFAR 10, ImageNet classification, and COCO. The residual
5

learning mechanism is a generic, easy to optimize and effective training
method for deep CNN architectures. The ResNet-50 in our experiment
was pre-trained by stochastic gradient descent (GSD) on a subset of
ImageNet, which is used in the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC).

3.2. Randomized neural networks

ResNet is an effective tool for solving computer vision tasks, but our
pathological brain dataset is too small to train such a giant structure
because overfitting is inevitable. Hence, ResNet was only used for feature
extraction in this study, and for classification, we use three types of
randomized neural networks, i.e., the ELM, SNN and RVFL, as summa-
rized below.

3.2.1. Extreme learning machine (ELM)
ELM was a training algorithm for single hidden layer feedforward

network, proposed by Guang-Bin, et al. [38] in 2006, shown in Figure 7.
BPNN is the most famous classical feedforward neural network, but it
often stops at local extrema because gradient descent methods are greedy
algorithms and they cannot jump out of local best solutions. The per-
formance of BPNN is also sensitive to the learning rate. Compared with
BPNN, which is trained by iteration, ELM learns faster because it doesn't
depend on gradient descent. At the same time, the generalization ability
of ELM is also good because the parameters are more likely to reach the
global best solution [39, 40]. Generally, the training of ELM can be
described as follows.

Given a training set M:

M¼fðxi; tiÞjxi 2Rn; ti 2Rm; i¼ 1; :::;Ng (8)

where xi ¼ ðxi1; xi2;…; xinÞT 2 Rn is the sample input and ti ¼
ðti1; ti2;…; timÞT 2 Rm denotes sample target, and a network with bN hid-
den nodes, the output of the ELM can be expressed as:

XbN
i¼1

βigi
�
wixj þ bi

�¼ oj; j¼ 1;…;N (9)

where wi ¼ ðwi1;wi2;…;winÞT denotes the input weight and bi represents
the bias of hidden layer, g(x) is the activation function in the hidden
layer, and βi ¼ ðβi1; βi2;…; βimÞT is the output weight. The training pur-
pose is to achieve:

XbN
i¼1

βigi
�
wixj þ bi

�¼ tj; j¼ 1;…;N (10)

The above Eq. (10) can be abbreviated as

Hβ¼T (11)

where

Hðw1;…;wbN ;b1;…;bbN ;x1;…;xNÞ¼
2
4 gðw1x1þb1Þ ⋯ gðwbN x1þbbN Þ

⋮ ⋱ ⋮
gðw1xN þb1Þ ⋯ gðwbN xN þbbN Þ

3
5

N�bN
(12)



Figure 8. Structure of SNN.

Table 2. Ideal rules of bat algorithm.

All the bats can distinguish object and background somehow, and they navigate by
echolocation.

The bats can adjust their pulse frequencies and emission rate according to their distances to
the object.

The loudness of their pulse decreases from a large constant to a predefined minimum.
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6 βT1 7 6 tT1 7

β¼

2
64 ⋮
βbN T

3
75
bN�m

;T¼

2
64 ⋮
tTN

3
75

N�m

(13)

By universal approximation theorem, any network with the single
hidden layer can approximate the training samples asymptotically.
Nevertheless, how to find optimal wi; bi and βi remains the challenge.

ELM consists of the following three steps shown in Table 1.
Pseudo inverse:

β¼HyT (14)

where Hy denotes the Moore-Penrose of H.
All the parameters in ELM were determined in only three steps

without iteration. Its generalization is also good because its parameters
are easy to optimize compared with SVM [41].
Figure 9. Architecture of RVFL.
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3.2.2. Schmidt neural network (SNN)
Schmidt neural network (SNN), was proposed by Schmidt, et al. [42]

in 1992. SNN and ELM are non-iterative training algorithms for SLFN
[43]. The only difference between SNN and ELM is that the bias of the
output neurons in SNN may be non-zero, whereas the bias of the output
neurons in ELM is always zero. The structure of SNN is shown in Figure 8.
The output of SNN can be obtained by

XbN
i¼1

�
βigi

�
wixj þ bi

��þ b¼ oj; j¼ 1;…;N (15)

3.2.3. Random vector functional link (RVFL)
RVFL was developed by Pao, et al. [44] in 1994. The only difference

between RVFL and ELM is that RVFL has direct links from the input layer
to the output layer, as shown in Figure 9, whereas ELM does not have
such direct links.

Through a very comprehensive evaluation by using 121 UCI classi-
fication datasets, Zhang and Suganthan [45] showed that the direct link
in RVFL improves performance, while the bias term in the output neuron
(in SNN) had no statistically significant effect. Similar conclusions were
drawn by Ren, et al. [46] for time series prediction.
3.3. CBA

The original randomized neural networks used random input weights
and bias, which has a bad effect on classification performance. Re-
searchers noticed this issue and proposed variants to obtain better per-
formance [47, 48, 49]. In this paper, we proposed to employ the chaotic
bat algorithm to optimize the weights and biases in the three randomized
neural networks. The pure bat algorithm (BA) was invented by Yang
[50], inspired by the echolocation of bats. As a swarm optimization al-
gorithm, BA is better than PSO and genetic algorithm. A set of bat par-
ticles with each containing a potential solution was utilized to search the
solution space by ultrasound with different frequencies and loudness.
CBA was built upon a set of ideal rules for simplicity in Table 2:

The Chaotic mechanism was utilized in CBA to achieve better opti-
mization capability and improve the global search ability [51]. It is used
to update the position of bats in our algorithm. There are several chaotic
strategies.

Cubic chaotic:

xkþ1 ¼ 3xk
�
1� x2k

�
(16)

where k denotes the iteration times.
Gaussian chaotic:

xkþ1 ¼

8><
>:

0; xk ¼ 0

1
xk

�
�
1
xk

�
; xk 2 ð0; 1Þ (17)

where the jxj denotes the largest integer no more than x.
Logistic chaotic:

xkþ1 ¼ rxkð1� xkÞ (18)

where r denotes a positive integer, and the graph is presented in
Figure 10.



Figure 10. Logistic chaotic map.

Figure 11. Diagram of CBA.
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Given a fitness function min g(x), and the solution vector x:

x¼ðx1; x2;…; xdÞT (19)

The training steps of CBA are presented in Table 3.
There are three important types of operations in CBA, which are listed

below.
Updating the parameters in bats using the chaotic mechanism,

including pulse frequency, velocity and position:

fi ¼ fmin þ ðfmax � fminÞ � β (20)

vti ¼ vt�1
i þ �

xti � x*
�� fi (21)

xti ¼ xt�1
i þ vti þ w� chaotic

�
xt�1
i

�
(22)

where fi represents the searching frequency of the ith bat, β varies from
0 to 1 randomly, vti and xti denote the velocity and position of the ith bat in
the tth iteration, respectively, chaotic(x) means a chaotic strategy, which
can be like in Eq. (16) (17) (18), and w is the weight factor for chaotic
(see Figure 11)

Generating a new solution from the current best one:

xnew ¼ xold þ εAt (23)
Table 3. Pseudocode of CBA steps.

Input: fitness function min g(x)

Step 1: random initialization of the parameters in bats, including: position, velocity,
searching frequency range [fmin, fmax], the max pulse rate R0, max pulse loudness A0,
frequency enhancement factor γ, the loudness attenuation factor α, and max iteration
i_max.
While (iteration < i_max)
{

Step 2: compute the fitness of every bat using their xi and get the current best
solution by sort.
Step 3: bats parameter updating using chaotic method (in Eqs. (20)–(22)).
Step 4: assign a random number to rand
Step 5: if rand >γi, generate a new solution around the current best solution (in Eq. (23)).
Step 6: if rand < Ai and f (xi)<f (x*), update the loudness and rate (in Eqs. (24), (25)).
}

Output: the optimal solution

7

where xnew and xold denotes new solution and the current best solution by
bats, respectively, ε varies from -1 to 1, and At represents the average bats
loudness in the tth iteration.

Updating the loudness and pulse rate:

Atþ1
i ¼ α� At

i (24)

rtþ1
i ¼R0 � ð1� e�γtÞ (25)

where At
i and rti represent the loudness and pulse emission rate of the ith

bat in the tth iteration, respectively.
3.4. ResNet-RNNs-CBA

In this paper, we proposed three PBD methods named ResNet-SNN-
CBA, ResNet-RVFL-CBA and ResNet-ELM-CBA. A pre-trained ResNet-50
was firstly employed for feature extraction from brain MRIs. The output
of the last forth layer in ResNet was extracted by training images and test
Table 4. Our PBD algorithms.

Input: training set and testing set

Step 1: A ResNet-50 pre-trained on ILSVRC was loaded.
Step 2: The ResNet-50 was divided into two parts: the last three layers and the rest of
ResNet-50. The last three layers were removed, and the rest of ResNet served as feature
extractor.
Step 3: Use the feature extractor to generate features from training images and test images.
Step 4: The training features were combined with training labels and sent into SNN, RVFL
and ELM for training.
Step 5: The loss function value of SNN, RVFL and ELM was calculated by Eq. (28).
Step 6: The weights and biases of SNN, RVFL and ELMwere optimized by CBA. The solution
vector in CBA contains the weights and biases of SNN, RVFL and ELM by Eq. (26) (27).
Step 7: Use the updated weights and biases by CBA to reconstruct the SNN, RVFL and ELM.
Step 8: Return to Step 5 until the stopping criteria is met which can be the max iteration
time or the value of loss function.
Step 9: Use the trained SNN, RVFL and ELM and test feature to generate the predicted
labels.
Step 10: Generate the performance of our method by the predicted labels and the actual test
labels.

Output: The ResNet-SNN-CBA, ResNet-RVFL-CBA and ResNet-ELM-CBA structures and
their classification statistics



Figure 12. Diagram of the proposed methods.

Table 6. Hyperparameter value.
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images, and vectorized as the features. Then, the obtained feature vector
was fed into SNN, RVFL, and ELM for training and classification. CBAwas
leveraged to optimize the parameters in the three randomized neural
networks. The solution vector s in CBA contains the weights and biases:

s¼ concatenateðw0
; bÞ (26)

w
0 ¼ vectorization ðwÞ (27)

where vectorization (w) denotes to reshape the weight matrixw to vector.
The fitness function of CBA is chosen as the loss function of the ran-
domized neural networks, which can be expressed as:

mse¼
Xi¼1

N

ðoi � tiÞ2 (28)
Table 5. Training and testing setting.

Total samples

359

Pathological Normal

177 182

Training Testing

331 28

Pathological Normal Pathological Normal

163 168 14 14

8

where oi and ti denote the network output and sample label, respectively.
Finally, the developed system was evaluated on the test set. The steps

of ResNet- RNNs-CBA were summarized in Table 4 and the diagram was
presented in Figure 12.

4. Experiment settings

The proposed ResNet-ELM-CBA was implemented on MATLAB
2018a, based on a laptop with CPU i5 8250U and 16 GB RAM. The
detailed dataset setting is presented in Table 5.

The pre-defined parameters are listed in Table 6. The number of
hidden nodes in SNN, RVFL and ELM is set as 500, because the feature
vector dimension is 1000. The parameters for CBA are set according to
Hyperparameter Value

# of hidden nodes in RNNs 500

# of population of bats 20

w for chaotic 0.3

i_max 20

A0 1.6

R0 1e-3

α 0.9

γ 0.99

[fmin, fmax] [0,2]



Table 7. Performance of different classifiers (5 runs).

Methods Sensitivity Specificity Accuracy

ResNet-SNN-CBA 94.29% � 3.19% 92.86% � 0.00% 93.57% � 1.60%

ResNet-RVFL-CBA 95.71% � 3.91% 90.00% � 3.92% 92.86% � 2.52%

ResNet-ELM-CBA 95.71% � 3.91% 94.29% � 5.98% 95.00% � 3.19%

Table 8. Performance comparison.

Methods Sensitivity Specificity Accuracy

RBFNN [52] 95.89% 92.78% 95.44%

CNN [35] 88.41% 96.12% 94.58%

DCNN [31] ~ ~ 93.18%

ResNet-ELM-CBA(ours) 95.71% � 3.91% 94.29% � 5.98% 95.00% � 3.19%

ResNet-SNN-CBA(ours) 94.29% � 3.19% 92.86% � 0.00% 93.57% � 1.60%

ResNet-RVFL-CBA(ours) 95.71% � 3.91% 90.00% � 3.92% 92.86% � 2.52%

Figure 13. Performance comparison.
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previous experience. The max iteration times i_max is set as 20 to prevent
overfitting.

5. Results and discussion

5.1. Performance of proposed methods

We evaluated the performance of our three ResNet-RNNs-CBA
methods based on 5�hold-out validation, i.e., we run the system for 5
times and calculated the average performance. The result is presented
below in Table 7. The three methods all achieved over 90% sensitivity,
but the specificity varied. The deviation of ResNet-SNN-CBA was the
smallest, which means its performance was more stable than the other
two algorithms. Generally, the performance of the three proposed
methods was at the same level. We shall re-test our approaches when a
bigger dataset is available. We consider sensitivity is more important
than specificity because if a patient with brain disease is misclassified as
normal, he/she may miss the valuable opportunity to be cured.
Table 9. Methods with good classification performance.

Methods Sensitivity Specificity

WE-ELM-BA [53] 99.04% 93.89%

AlexNet-TL [54] 100.00% 100.00%

IJaya-ELM [27] ~ ~

9

5.2. Comparison with state-of-the-art

Our three methods were compared with state-of-the-arts including:
RBFNN [52], CNN [35], and DCNN [31]. The result is listed in Table 8
and Figure 13. Our performance was obtained by 5 run hold-out vali-
dation. Our ResNet-ELM-CBA was not the best in three measurements,
but its accuracy, sensitivity and specificity are all around 95.00%.
However, the specificity of RBFNN was 92.78% and the sensitivity of
CNN was 88.41%, which were worse than ResNet-ELM-CBA. The ResNet
we used is not trained on the brain images but employed for feature
extraction. We only trained an ELM by CBA optimization, which belongs
to a classical neural network structure: SLFN, but its performance was
better than the deep neural network CNN [35] in terms of sensitivity.
Hence, our method offers a new solution for pathological brain detection.

There are also some methods achieved better classification results
than ours in terms of accuracy, like WE-ELM-BA [53], AlexNet-TL [54],
and IJaya-ELM [27], which are listed in Table 9. However, there are some
problems in these methods. AlexNet-TL achieved perfect 100.00%
Accuracy Defects

98.33% Imbalanced dataset, handcrafted features

100.00% Training AlexNet is time-consuming, AlexNet
requires more memory than ResNet

99.69% Imbalanced dataset, handcrafted features
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accuracy, but training such a deep CNN on a small brain image dataset
can bring about problems because there are massive parameters in deep
CNNs. Additionally, AlexNet requires more memory than ResNet.
WE-ELM-BA and IJaya-ELM also outperformed our method, but their
dataset was not balanced. Moreover, the features in the two methods
were handcrafted, extracted by wavelet transform and ripplet transform,
so these features are less transferable.

6. Conclusion

In this study, a novel pathological brain detection method was pro-
posed based on ResNet, randomized neural networks and chaotic theory.
The development system ResNet-ELM-CBA achieved the best average
accuracy of 95.00% in distinguishing pathological brain from normal
control, which is comparable to several state-of-the-art methods. It can
help doctors and radiologists in daily diagnosis.

However, the interpretation of the ResNet and RNNs was difficult, so
the reasons for the diagnosis results of the system are still unknown.
Additionally, it only differentiates the pathological brain from healthy
ones, it remains a problem what exact diseases are in the pathological
brains. Hence, multi-classification is needed.

In the future, we shall collect more brain MRIs to enlarge our datasets.
We will also try to use transfer learning to fine tune deep networks on
brain MRI datasets. Visualization of the neural network is another
research direction which can help human to understand how the network
works in a direct way. We shall apply our method to detect other diseases
like Alzheimer's disease, hearing loss, etc.
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