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Abstract

The enzyme endo-inulinase hydrolyzes inulin to short chain fructooligosaccharides (FOS)

that are potential prebiotics with many health promoting benefits. Although the raw materials

for inulin production are inexpensive and readily available, commercial production of FOS

from inulin is limited due to inadequate availability of the enzyme source. This study aimed

to identify the fungi capable of producing endo-inulinase based on the in silico analysis of

proteins retrieved from non-redundant protein sequence database. The endo-inulinase of

Aspergillus ficuum was used as reference sequence. The amino acid sequences with >90%

sequence coverage, belonging to different fungi were retrieved from the database and used

for constructing three-dimensional (3D) protein models using SWISS-MODEL and Bagheer-

ath H. The 3D models of comparable quality as that of the reference endo-inulinase were

selected based on QMEAN Z score. The selected models were evaluated and validated for

different structural and functional qualities using Pro-Q, ProSA, PSN-QA, VERIFY-3D,

PROCHECK, PROTSAV metaserver, STRAP, molecular docking, and molecular dynamic

simulation analyses. A total of 230 proteins belonging to 53 fungal species exhibited

sequence coverage >90%. Sixty one protein sequences with >60% sequence identity were

modeled as endo-inulinase with higher QMEAN Z Score. The evaluations and validations of

these 61 selected models for different structural and functional qualities revealed that 60

models belonging to 22 fungal species exhibited native like structure and unique motifs and

residues as that of the reference endo-inulinase. Further, these models also exhibited simi-

lar kind of interaction between the active site around the conserved glutamate residue and

substrate as that of the reference endo-inulinase. In conclusion, based on the current study,

22 fungal species could be identified as endo-inulinase producer. Nevertheless, further bio-

logical assessment of their capability for producing endo-inulinase is imminent if they are to

be used for commercial endo-inulinase production for application in FOS industry.
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Introduction

Fructooligosaccharides (FOS) are the linear short chain oligomers with repeating fructose mol-

ecules linked together by β (2–1) glycosidic bond with a terminal glucose molecule. FOS is one

of the potential prebiotics [1, 2]. It stimulates the growth of bifidobacteria and lactobacilli in

the gut [3,4] and leads to the production of short chain fatty acids which further stimulate the

growth of colorectal mucosal cells, slow down atrophy of the mucosa and reduce the risk of

harmful changes in the colon [5]. FOS is the first approved prebiotic food supplement for

health benefits [6]. The global market of FOS was found to be 134.0 kilo tons in 2015 and is

expected to grow significantly in next few years [5]. Therefore, large scale commercial produc-

tion of high quality FOS will be required to fulfill the increasing demand.

Although, fructooligosaccharides can be produced by acid or enzymatic hydrolysis of inu-

lin, the enzymatic method is mostly preferred as it produces high quality FOS economically

[7]. Fructosyltransferase and endo-inulinase are the primary enzymes that are capable of pro-

ducing FOS by hydrolyzing sucrose and inulin respectively [8]. Nevertheless, FOS production

through fructosyltransferase hydrolysis has disadvantages. In this method, only limited

amount of sucrose can be converted to oilgofructose due to the inhibition of enzymatic activity

by released glucose molecules. Moreover, along with FOS, the higher amount of sucrose and

glucose also remains in the enzyme hydrolysate that is undesirable and requires further purifi-

cation [9]. In contrast, production of FOS by endo-inulinase is a single step process that yields

high quality FOS and excludes any further purification steps [10, 11].

Endo-inulinases are found in plants and microbes. Microbial endo-inulinases are preferred

over plants as they are easy to cultivate on large scale. Moreover, enzyme yield is higher in

microbes than plants. Fungi are the major source of microbial endo-inulinase as they are capa-

ble to produce the enzyme in high quantity as compared to bacteria [10]. Although, endo-inu-

linase activity has been demonstrated in a few fungal species previously [12–20] their potential

for producing FOS suitable for nutraceutical applications is yet to be established. Therefore, it

is necessary to explore the diverse group of fungi capable of producing endo-inulinase that

would help in identifying potential species for large scale production and commercial applica-

tion of this enzyme.

Intensive laboratory screening of a large number of fungi for endo-inulinase would be an

extremely tedious and expensive process. On the other hand, recent progress in the field of

computational biology has made it possible to screen unique microorganisms from a popula-

tion for a particular biological function. Further, the identified organisms can be evaluated at

the laboratory to validate the predicted biological function. Several theories and methodologies

have been developed previously based on computational methods to characterize microbial

enzyme [21] and to study the protein-ligand interactions and drug design through in silico
approaches [22–27]. In recent years application of Molecular dynamic (MD) simulations in

studying the chemical and biological systems is expanded significantly [28]. The huge applica-

tion potential has led to implementations of MD in many software packages. GROMACS is

one of the widely used application package for MD simulations [28]. The objective of the cur-

rent study was to identify different fungi capable of producing endo-inulinase enzyme based

on the in silico analysis of non-redundant protein sequence database.

Results

Retrieval of protein sequences and homology modeling

A total of 230 protein sequences were retrieved from the NCBI non-redundant protein

sequence database that exhibited >90% sequence coverage with the reference endo-inulinase
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protein sequence of Aspergillus ficuum. The list of the retrieved proteins is provided in the S1

Table that included hypothetical proteins (119), invertase (5), levanase (12), glycosyl hydrolase

family 32 proteins (16), β-fructofuranosidase (10), inulinase (25), fructosyltransferase (6), exo-

inulinase (18), endo-inulinase (10) and other proteins (9). The retrieved proteins sequences

were found to be from 53 fungal species belonging to the genera Aspergillus, Fusarium, Penicil-
lium, Talaromyces, Pseudogymnoascus, Stachybotrys, Phytophthora, Pyrenochaeta, Rhizopus,
Mucor, Macrophomina, and Oidiodendron.

The 230 selected proteins were subjected to Swiss homology modeling [29–32] to gener-

ate 3D protein models. The models were constructed based on the experimentally charac-

terized template structure. The reference based homology modeling is more appropriate as

the predicted models were constructed based on the native template structure. The analysis

revealed that out of the 230 selected protein sequences, 100 were modeled as endo-inuli-

nase. Further, it was observed that out of 100, the amino acid sequences of proteins which

showed sequence identity >60% with reference endo-inulinase, were modeled as endo-inu-

linase with good quality QMEAN Z scores [33] of >-3 (Fig 1 & S1 Dataset) The details of

sequence identity and QMEAN Z scores of 61 predicted models were presented in S2

Table).

The native endo-inulinase like model of these 61 protein models were further corroborated

by denovo/abinitio method of protein modeling. The denovo/abinitio protein models were

constructed using Bhageerath H (a webserver for homology/ab-initio mode of protein tertiary

structure prediction) [34]. The denovo protein modeling also revealed that the predicted mod-

els resembles native endo-inulinase like structure (Fig 2. & S2 Dataset). Hence these 61 endo-

inulinase like predicted protein models were selected for analyzing and validating different

protein qualities.

Quality evaluation of predicted 3D protein models

The structural stability and correctness of the 61 predicted protein models selected from

homology modeling was evaluated using different protein stability validation modules like

Pro-Q, PROSA, PSN-QA, Verify 3D and PROCHECK.

Pro-Q [35] evaluates the model structure by checking the residue wise local quality of a

model structure. Pro-Q employs neural network approach which integrates contacts among

atoms and residues, solvent accessible surfaces, and secondary structure statistics. Based on the

structural features, Pro-Q generates LG-Score and MaxSub score. The quality of the predicted

models can be explained based on these scores. Predicted protein model with LG score > 3

and MaxSub score > 0.1 was considered as good quality structures. Pro-Q analysis revealed

that all the 61 models exhibited LG score of>4.24 and MaxSub score of>0.34 that indicated

their good structural quality (S3 Table).

PROSA [36, 37] diagnoses the protein tertiary structure by matching with the statistics of

available experimentally determined structures. This module applies statistics of Cα potentials

of mean force to evaluate the quality of predicted protein structures. This module plots Z-

scores with its residue energies. Z-scores falling within the range of experimentally determined

structures distinguishes native like protein structures from erroneous structures. The ProSA

Z-score plots of 61 predicted protein models revealed that the predicted models were within

the range of experimentally determined native like protein structures (Fig 3 & S3 Dataset and

S3 Table).

PSN-QA [38] is a network based approach for the quality analysis of predicted protein

models. These networks are constructed using non-covalent interactions between the side

chains of the polypeptides. This module assigns a rank to the predicted models based on its
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closeness to its native like protein structure. PSN-QA rank of predicted models beyond 16 rep-

resents native-like conformation and a rank below 10 represents non-native like conformation.

PSN-QA rank was found >16 for all the models indicating their native-like conformation

except for the hypothetical protein V496_07217 (gb|KFY54637.1) from Pseudogymnoascus sp.

where the rank was 15.9 (S3 Table). Verify 3D [39, 40] module evaluates the quality of tertiary

structure of the predicted protein by checking the residue wise compatibility of amino acid to

the whole protein. This module measures 3D-ID profile scores for each residue. The protein

structures are evaluated based on this residue level score for checking the suitability of each

residue to its structural environment, defined by the secondary structure, burial position and

polarity of positions in a structure. 3D-ID profile score of� 0.2 for a residue, makes it suitable

Fig 1. Three-dimensional (3D) models of representative fungal proteins that resembled as endo-inulinase. 3D models were generated from sequences retrieved

from the non-redundant protein sequence database using SWISS-MODEL web server (https://swissmodel.expasy.org/interactive). The model images were created

using USCF-Chimera.

https://doi.org/10.1371/journal.pone.0200607.g001
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to structural environment. If 80% of amino acid residues in a protein are with 3D-ID profile

score� 0.2, then the protein is more likely stable. The analysis of protein tertiary structure of

the models using VERIFY-3D tool revealed that 86.9 to 100% of the residues of the models

exhibited 3D-1D profile score of�0.2 indicating the overall good structural quality of all 61

models (Fig 4 & S4 Dataset and S3 Table).

The secondary structure of predicted protein models and experimentally characterized

endo-inulinase were evaluated by Ramachandran Plot generated through procheck module

[41] of ProtSAV server [42]. The Ramachandran Plot depicts that 81.6 to 85.6% of the total res-

idues of the models were found within the most favored, additionally allowed and allowed

regions and the respective value was found to be 84.8% for reference native endo-inulinase

(Fig 5 & S5 Dataset and S4 Table).

The above protein validation modules emphasizes that the predicted models are good and

reflect native like protein structures.

Fig 2. Three-dimensional (3D) model of representative fungal protein, constructed based on denovo/ab-initio method of protein modeling using Bhageerath H

web server (http://www.scfbio-iitd.res.in/bhageerath/bhageerath_h.jsp). A- Reference endo-inulinase (3SC7); B- Denovo 3D model of predicted protein from

Aspergillus fumigatus resembling native endo-inulinase like structure. The model images were created using USCF-Chimera.

https://doi.org/10.1371/journal.pone.0200607.g002
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In silico validation of 3D protein models as endo-inulinase

The structure based sequence alignment of the 3D protein models with the reference native

endo-inulinase revealed that the conserved (W-M-N-D(E)-P-N-G), loop1 (P-T(A)-

A-N-V-W-G-N) and loop4 (A-V-M-N-S-Y-G-S-N-P) motifs [43] were existed in the respec-

tive positions in all the models with minor modifications in the loop1 and loop4 motifs except

for the inulinase (dbj|GAO81637.1) from Aspergillus udagawae, where the catalytic glutamate

(E43) in the W-M-N-D(E)-P-N-G motif was replaced with aspartate (D) and loop1 motif was

not conserved hence excluded from the docking analysis (S6 Dataset; S5 Table). However, the

specific amino acid residues T-100, G-196, V-234 and D-298 that are unique to endo-inulinase

[43] and critical for its biological activity were found conserved in the positions in all the mod-

els (Fig 6 & S6 Dataset and S5 Table).

Docking of kestopentaose (substrate) with the active site around the catalytic residue

GLU43, revealed that certain residues play an important role in substrate binding and endo

activity of the standard endo-inulinase enzyme from Aspergillus ficuum [43]. In the present

study, docking was performed between all the predicted protein models including endo-inuli-

nase from A. ficcum and substrate kestopentaose. The docking results indicated similar

Fig 3. Plot of residue energies with Z-scores of representative 3D protein models, generated using PROSA web

(https://prosa.services.came.sbg.ac.at/prosa.php). The blue color shaded region in the plot corresponds to Z-scores

of experimentally determined protein structures characterized by NMR analysis; grey color shaded region corresponds

to Z-scores of experimentally determined protein structures characterized by X-Ray diffraction studies. The Z-scores

of predicted 3D models falls within the range of experimentally determined native like protein structures.

https://doi.org/10.1371/journal.pone.0200607.g003
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interaction between kestopentaose and the active site around the conserved glutamate residue

of all the models as described earlier [43]. The information of interacting amino acids and the

number of hydrogen bonds formed between the amino acid residues in the active site and the

substrate, the binding energy of enzyme-substrate complex are provided in the S6 Table and

Fig 7 & S7 Dataset.

Molecular Dynamic (MD) simulations and MMPBSA analysis

Molecular dynamic simulations were performed for 9 predicted endo-inulinase models and a

reference endo-inulinase (3SC7), docked with kestopentaose substrate, using Groningen

Machine for Chemical Simulations (GROMACS) [44, 45] in order to check their stability. The

MD simulation revealed that the root mean square distance (RMSD) of protein backbone of

enzyme substrate complex and enzyme without substrate, was converged after 4ns of simula-

tion and it is stable for the complete simulation run (Fig 8).

Further, it was noticed that there is no considerable variation in the RMSD of protein back-

bone of enzyme substrate complex and enzyme without substrate. (Fig 8).

Radius of gyration (Rg) explains the compactness of the protein. If a protein is stably folded,

it will likely maintain a relatively steady value of Rg. If a protein unfolds, its Rg will change

over time. The MD simulation reveals that Rg of protein backbone of enzyme substrate com-

plex and enzyme without substrate are relatively stable and shows no significant variation (Fig

9).

The last 1ns simulation results revealed that the hydrogen bonding observed between the

kestopentaose and amino acid residues of the catalytic subsites of the predicted endo-inulinase

Fig 4. Plot showing the average 3D-ID score for each residue of A. Aspergillus ficuum reference endo-inulinase and B. Predicted endo-inulinase from Talaromyce s
verruculosus. The plot and scores are generated using VERIFY 3D webserver (http://servicesn.mbi.ucla.edu/Verify3d/).

https://doi.org/10.1371/journal.pone.0200607.g004
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models (S7 Table), was similar to those interactions observed with A. ficuum endo-inulinase

and kestopentaose, reported earlier [43]. The H-bond information of the enzyme substrate

complex of 9 predicted endo-inulinase models and a reference endo-inulinase (3SC7), for first

1ns, last 1ns and for the entire 10ns MD simulation was presented in S8 Dataset.

The trajectories of last 1ns MD simulation were used to calculate the binding free energy of

the enzyme-substrate complex using g_mmpbsa package [46,47]. The MMPBSA analysis

Fig 5. Ramachandran plots of representative proteins that resembled as endo-inulinase. The plots were generated using PROCHECK module of PROTSAV

webserver (http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp).

https://doi.org/10.1371/journal.pone.0200607.g005

In Silico identification of endo-inulinase producing fungi

PLOS ONE | https://doi.org/10.1371/journal.pone.0200607 July 12, 2018 8 / 19

http://www.scfbio-iitd.res.in/software/proteomics/protsav.jsp
https://doi.org/10.1371/journal.pone.0200607.g005
https://doi.org/10.1371/journal.pone.0200607


revealed negative binding energy (S7 Table) of the enzyme substrate complex that indicted the

reaction is spontaneous, favorable and requires less energy (S9 Dataset).

Fig 6. Structure based sequence alignment of reference endo-inulinase from Aspergillus ficuum and the predicted protein

endo-inulinase model from Talaromyces sp. for identifying unique motifs and residues required for endo-activity. The

Sequences are aligned using webserver (http://bioinformatics.org/strap/aa/).

https://doi.org/10.1371/journal.pone.0200607.g006

Fig 7. The Interaction between the active site around the conserved glutamate residue and substrate (kestopentaose) in the three-dimensional protein models of

reference endo-inulinase from Aspergillus ficuum and predicted endo-inulinase from Talaromyces sp. The docking was performed using MGL python tool and

autodock 4. The interactions and hydrogen bonds formed between the substrate and the active site of enzyme was visualized using UCSF Chimera. The hydrogen bonds

formed and their size were indicated in red color.

https://doi.org/10.1371/journal.pone.0200607.g007

In Silico identification of endo-inulinase producing fungi

PLOS ONE | https://doi.org/10.1371/journal.pone.0200607 July 12, 2018 9 / 19

http://bioinformatics.org/strap/aa/
https://doi.org/10.1371/journal.pone.0200607.g006
https://doi.org/10.1371/journal.pone.0200607.g007
https://doi.org/10.1371/journal.pone.0200607


Discussion

Endo-inulinase is the enzyme that degrades inulin into short chain FOS that are established as

potential prebiotics with health promoting benefits. Although the raw materials for inulin pro-

duction are inexpensive and readily available from different plant sources, commercial pro-

duction of FOS from inulin is limited due to inadequate availability of the enzyme [48, 49]. In

the current study, attempt was made to identify fungi capable of producing endo-inulinase

enzyme based on the in silico analysis of non-redundant protein sequence database. The results

indicated the potential of 22 fungal species that can be explored for commercial production of

endo-inulinase.

Until now, only the native endo-inulinase of Aspergillus ficuum has been studied and char-

acterized extensively [43]. Hence, the corresponding sequence was used as a reference for

retrieving the endo-inulinase like sequences from the non-redundant protein sequence data-

base. A total 230 such sequences belonging to 53 different fungal species could be retrieved

Fig 8. RMSD plot of protein backbone of 9 predicted endo-inulinase models and a reference endo-inulinase

(3SC7) after 10ns of MD simulations. The data was generated using gromacs rms function. A. Protein back bone of

enzyme-substrate complex; B. Protein backbone of enzyme without substrate. The plots were made in the work sheet.

https://doi.org/10.1371/journal.pone.0200607.g008
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and 3D protein models were generated using SWISS-MODEL. The homology models were

further confirmed by abinitio/denovo modeling. The structural quality of the generated 3D

models were evaluated on the basis of QMEAN Z score, which is a composite scoring function

based on different geometrical properties and it provides both global and local quality esti-

mates [33]. The score provides an estimate of the ‘degree of nativeness’ of the structural fea-

tures observed in a model and indicates whether the model is of comparable quality to the

reference template structure. The SWISS-MODEL analysis of the retrieved sequences reveled

that only 61 3D models belonging to 23 fungal species conformed to be of good structural

quality and resembled as the endo-inulinase like structure. Therefore, these selected 61 models

were further analyzed and validated for different protein qualities using Pro-Q, ProSA,

PSN-QA, VERIFY-3D and PROCHECK tools.

The quality analyses of the selected 61 3D models using the above tools revealed that all the

models were structurally stable and resembled as native like endo-inulinase.

It is established that the conserved W-M-N-D(E)-P-N-G motif, loop1 motif P-T(A)-

A-N-V-W-G-N, and Loop4 motif A-V-M-N-S-Y-G-S-N-P form an enlarged cavity, which is

Fig 9. Radius of gyration (Rg) plot of protein backbone of 9 predicted endo-inulinase models and a reference

endo-inulinase (3SC7) after 10ns of MD simulations. The data was generated using gromacs gyrate function. A.

Protein back bone of enzyme-substrate complex; B. Protein backbone of enzyme without substrate. The plots were

made in the work sheet.

https://doi.org/10.1371/journal.pone.0200607.g009
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critical for endo-activity of endo-inulinase [43]. In addition to these motifs, the residues gluta-

mate (E) in the conserved WMNEPNG motif, threonine (T-100), glycine (G-196), valine (V-

234) and aspartate (D-298) are found play a critical role in its activity [43]. Therefore, the

selected models were further analyzed using the structure based sequence alignment tool

STRAP [50] for the presence of these unique motifs and residues in the selected 3D protein

models. The unique residues were found to be conserved in all the models. Similarly, the

motifs were found to be conserved in all the models except the inulinase from Aspergillus uda-
gawae. Therefore, it was not included in the further investigation for assessing the likely inter-

action of the models with the substrate.

Based on the STRAP analysis, 60 models belonging to 22 fungal species were selected to assess

the interaction between kestopentaose and the endo-inulinase specific active site through molec-

ular docking. It is reported previously that kestopentaose is a suitable substrate for assessing the

enzyme-substrate interaction of endo-inulinase [43]. The docking study revealed a similar kind

of interaction between the substrate and subsites of the active site around the conserved gluta-

mate residue for the native endo-inulinase and all the selected protein models, as described earlier

for Aspergillus ficuum native endo-inulinase [43]. The stability of the docked complex, the

enzyme-substrate interaction and binding energy calculations of 9 predicted endo-inulinase

models and a reference model was verified by performing the MD simulation using gromacs

[44,45] and MMPBSA analysis using g_mmpbsa package [46,47]. The MD simulation results

substantiated the enzyme-substrate interactions observed between the subsites of the catalytic site

and the kestopentaose of native endo-inulinase described in the earlier study [43]; while the nega-

tive binding energy obtained for enzyme substrate complex using MMPBSA analysis revealed

that the complex formation is spontaneous and most favorable. The results verified the selected

60 proteins as endo-inulinase from 22 fungal species. Among 22 species identified in this study,

endo-inulinase was experimentally studied and characterized in four species (Table 1).

Although, inulinase from Rhizoctonia sp [19], Rhizomucor pusilis [20], Thermomyces lanugi-
nous [59] and endo-type inulinase from Chrysosporum pannorum [15], Rhizopus sp. Strain

TN-96 [16] were identified, their amino acid sequences are not available in the non-redundant

protein database, hence not included in the current study.

In conclusion, based on the results of the current in silico study, 22 different fungal species

belonging to 10 genera could be identified as endo-inulinase producer. Nevertheless, further bio-

logical assessment of their capability for producing endo-inulinase at the laboratory is imminent

if they are to be used for large scale endo-inulinase production for application in FOS industry.

Materials and methods

Retrieval of protein sequences and homology modeling

The amino acid sequence of endo-inulinase protein of Aspergillus ficuum (PDB ID 3SC7)

was used as reference for retrieving the highly similar (>90% sequence coverage) protein

Table 1. Experimentally characterized endo-inulinases from species identified in this study.

Species Name Sequence/GenbankID Enzyme Reference

Talaromyc es cellulolyticus (Penicillium sp. strain TN-88) dbj|GAM42287.1 Inulinase [51,52]

Talaromyc es purpureogenus (Penicillium purpureogenum) dbj|BAA12320.1 endo-inulinase precursor [14, 53]

Penicillium subrubescencs OKP12957.1, OKP07876.1, OKP07872.1 Extracellular endo-inulinase [18, 54]

Aspergillus niger UniProtKB/Swiss-Prot: O74641.1 Inulinase [55]

Aspergillus niger CBS 513.88` ref|XP_001394322.1 Inulinase [56]

Aspergillus fumigatus Z5 gb|KMK58827.1 Inulinase [17, 57, 58]

https://doi.org/10.1371/journal.pone.0200607.t001
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sequences belonging to different fungi from the NCBI non-redundant protein sequence data-

base using pBLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) [60]

Three-dimensional (3D) protein models of the retrieved sequences were generated using

SWISS-MODEL [29–32]. The proteins modeled as endo-inulinase with QMEAN Z score of>-3

were selected for further validation [33]. The models were also generated by denovo/abinitio

method using online webserver called Bhageerath H [34] and visualized using UCSF chimera [61].

Protein quality evaluation

The selected 3D models were analyzed and validated for different protein qualities using the

tools Pro-Q (residue-wise local quality) [35], ProSA (tertiary structure) [36, 37], PSN-QA

(native like structure) [38], VERIFY-3D (amino acid compatibility) [39, 40] and PROCHECK

(secondary structure) [41] on PROTSAV server [42].

Structure based sequence alignment and Autodocking analysis

Endo-inulinase contains unique residues and motifs, which confer endo-hydrolysis activity to

the enzyme [43]. Therefore, the selected 3D models were validated for the presence or absence

of those consensus motifs and residues by using the structure based sequence alignment tool

STRAP [50]. Further, the selected endo-inulinase 3D models were docked with kestopentaose

(substrate) in the active site around catalytic E-43 residue to assess the likely interaction of the

models with the substrate with minimum binding energy. The docking was performed using

the methods of AutoDock4 [62, 63].

Molecular dynamic simulations

The docked complexes were subjected to molecular dynamics simulations using the GRO-

ningen Machine for Chemical Simulations V4.5.4 (GROMACS) [44,45]. The GROMACS MD

simulations was performed based on the methodlogy adopted from Bevans Lab [64] GRO-

MOS96 43a1 force field was applied on 10 docked enzyme-substrate complexes and 10

enzymes without substrate, were placed in the centre of the dodecahedron box solvated in

water. Topology files and other force field parameter files for the ligands were created using

PRODRG2 server [65]. The docked complex and enzyme were immersed in dodecahedron

water box of SPC216 water model. Total negative charges on the docked and enzyme struc-

tures were balanced by suitable number of Na+ ions to make the whole system neutral using

genion program of GROMACS. The system was initially energy minimized by steepest descent

minimization for 50,000 steps. After adding ions the system was again energy minimized by

steepest descent minimization retaining the same parameters. The V-rescale, a modified

Berendsen thermostat, temperature coupling [66] and Parrinello-Rahman pressure coupling

[67] methods were used to keep the system stable at 323 K temperature and pressure of 1 bar.

The Particle Mesh Ewald (PME) method [68] was selected to compute long range electrostatic

interactions. A cut off distance of 14 Å was set for both Coulombic and van der Waals interac-

tions. Rotational constraint was applied to bonds by LINCS algorithm [69].

MMPBSA anlysis and binding energy calculation

MMPBSA analysis of last 1ns trajectories was performed using g_mmpbsa package (46, 47).

The method involves calculation of three energy components: viz., Calculation of potential

energy in vacuum, Calculation of polar solvation energy and Calculation of non-polar solva-

tion energy. After calculating the three energy components, the binding energy of the complex

can be calculated using a python function.
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