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High-throughput sequencing data sets are usually deposited in public repositories (e.g., the European Nucleotide Archive)
to ensure reproducibility. As the amount of data has reached petabyte scale, repositories do not allow one to perform on-
line sequence searches, yet, such a feature would be highly useful to investigators. Toward this goal, in the last few years
several computational approaches have been introduced to index and query large collections of data sets. Here, we propose
an accessible survey of these approaches, which are generally based on representing data sets as sets of k-mers. We review
their properties, introduce a classification, and present their general intuition. We summarize their performance and high-

light their current strengths and limitations.
[Supplemental material is available for this article.]

Over the past decade, the cost of sequencing has decreased dramat-
ically, making the generation of sequence data more accessible.
This has led to increasingly ambitious sequencing projects. For ex-
ample, the 1000 Genomes Project, which began in 2008 and was
completed in 2012 (Clarke et al. 2012), led to the 100,000
Genomes Project, which began in 2014 and was completed
in 2018 (Turnbull et al. 2018). There are dozens of other large-
scale sequencing projects completed or underway, including
GEUVADIS (Lappalainen et al. 2013), GenomeTrakr (Timme
et al. 2018), and MetaSUB (The MetaSUB International Consor-
tium 2016). An overwhelming amount of public data is now avail-
able at EBI’s European Nucleotide Archive (ENA) (Cook et al. 2019)
and NCBI's Sequence Read Archive (SRA) (Leinonen et al. 2011).
The possibility of analyzing these collections of data sets, alone
or in combination, creates vast opportunities for scientific discov-
ery, exceeding the capabilities of traditional laboratory experi-
ments. For this reason, there has been a substantial amount of
work in developing methods to store and compress collections of
high-throughput sequencing data sets in a manner that supports
various queries.

In this paper, we use the term “data set” to refer to a set of
reads resulting from sequencing an individual sample (e.g., DNA-
seq, or RNA-seq, or metagenome sequencing). Sequencing is rou-
tinely performed not only on a single sample but on a collection
of samples, resulting in a collection of data sets. For instance,
100,000 human genomes were sequenced for the 100,000
Genomes Project and over 300,000 bacterial strains were se-
quenced for GenomeTrakr. One basic query that is fundamental
to many different types of analyses of such collections of data
sets can be formulated as follows: given a sequence, identify all
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data sets in which this sequence is found. For example, consider
the problem of finding a RNA transcript within a collection of
RNA-seq data sets. Similarly, we can ask to find which data sets
contain a specific DNA sequence, such as a gene or a noncoding el-
ement, in a collection of bacterial strain genomes. In this paper, we
present an overview of recent bioinformatics methods (Fig. 1) cre-
ated to handle these types of queries.

Given the size of many collections and data sets, several dif-
ferent paradigms for storing them so that they can be efficiently
queried have been developed many of which continue to be ex-
tended and explored. One paradigm is to store and index data
sets as sets of k-length substrings, which are referred to as
“k-mers.” We will refer to collections of data sets as “sets of k-
mer sets.” The methods that use this paradigm build an index of
all k-mer sets and support the basic query described above by split-
ting the query sequence into k-mers and determining their pres-
ence or absence in the index.

As we will discuss in this survey, this paradigm has proven to
be useful in several ways. First, sets of k-mers are a more concise
representation of the set of sequences of the samples, as they ab-
stract some of the redundancy inherent in high sequencing cover-
age. Second, genetic variation and sequencing errors can be dealt
with in a more efficient, albeit less accurate way than using se-
quence alignment. Instead of performing inexact pattern match-
ing, as aligners do, k-mer-based methods can simply examine the
fraction of matching k-mers within the query sequence. Since their
initial development, k-mer-based analysis approaches have been
widely adopted in the bioinformatics community due to their
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Figure 1. Timeline, main relationships, and application highlights for the methods covered in this

survey.

efficiency and ability to accurately summarize and compare large
data sets. Hence, the methods we describe in this survey were im-
perative to a large number of biological analyses; from elucidating
the evolutionary dynamics between substrains of Staphylococcus
aureus (Young et al. 2012) to identification of recombination hot-
spots in bird species (Singhal et al. 2015) or enabling the search of
over 400,000 viral and bacterial species (Bradley et al. 2019).

Even though k-mer-based methods have been popular, there
do exist some trade-offs. More specifically, storing data using a k-
mer index comes with some loss of information because it only
gives information for each constituent k-mer of a sequence, rather
than about the entire sequence. Hence, in most cases, a k-mer in-
dex does not provide exact answers for queries of longer sequences
(e.g., whole transcript or entire gene) but instead provides a reason-
able approximation.

Data structures for indexing a set of k-mers have been studied
in depth (Chikhi et al. 2019). Here, we consider the problem of
storing a set of k-mer sets. A naive approach would be to use
such an index separately for each k-mer set in the collection.
However, a key aspect is that sequencing experiments that are an-
alyzed collectively typically share a large fraction of k-mers.
Therefore, significant space savings can be achieved by the identi-
fication and clever storage of this redundant information. Here, we
focus on the methods underlying the different building blocks of
sets of k-mer sets structures. We review the different properties,
the types of queries, and the computational performance that
they offer. We highlight similarities of methods based on com-
monalities between building blocks where it is appropriate.

Biological applications
RNA-seq studies

Transcriptomics was one of the first areas of application of the re-
viewed methods. Solomon and Kingsford (2016) gathered more
than 2500 samples of human RNA-seq, consisting of blood, brain,
and breast tissue samples from SRA. This led to the possibility of
identifying conditions which express isoforms by associating tran-
scripts to tissues. Similar to tissue-specific associations, one can en-
vision the numerous benefits of comparing patient cohorts in
order to understand differences in pathologies or impact of medi-
cation. For instance, using RNA-seq for functional alterations pro-
filing has become more frequent in cancer research (Byron et al.
2016). Thus, vast programs such as The Cancer Genome Atlas
(TCGA) (Tomczak et al. 2015) provide RNA-seq data from a variety
of cancer types. The authors of SeqOthello (Yu et al. 2018) showed

B firmed some fusions and reported some
coBS novel ones. Fusion transcripts provide in-
RAMBO teresting targets for cancer immunother-
apies because they are prone to exhibit
tumor-specific markers.

One of the data structures covered
in this survey, the colored de Bruijn
graph, has also been used for rapid, align-
ment-free quantification of RNA-seq
data. Tools such as Sailfish (Patro et al. 2014), Salmon (Patro
et al. 2017), and Kkallisto (Bray et al. 2016) rely on a colored de
Bruijn graph (implemented using a hash table) to represent and
quantify sets of transcripts per genes.

100,000 Salmonella strains
>460,000 microbial samples

Microbial genomics

Cortex (Igbal et al. 2012), which introduced the concept of colored
de Bruijn graphs, was used to study the host diversity and dynam-
ics of Staphylococcus aureus substrains using whole-genome se-
quencing (Young et al. 2012). Then, several papers demonstrated
how sets of k-mer sets could be used to mine and analyze collec-
tions of microbial samples or genomes, whether they be strains
of the same genera (e.g., 16,000 strains of Salmonella) using
VARI-Merge (Muggli et al. 2019), microbiomes (e.g., 286,997 ge-
nomes from the human microbiome), or more extensive microbial
data (e.g., 469,654 bacterial, viral, and parasitic data sets from the
ENA) using BIGSI (Bradley et al. 2019). For example, GenomeTrakr
(Timme et al. 2018) was developed to coordinate international ef-
forts in sequencing whole genomes of foodborne pathogens.
Indexing and querying this and other databases could lead to im-
proved surveillance of pathogenic bacteria and thus elucidate the
effectiveness of interventions that attempt to control them.

Subsequently, k-mer indices have been used to follow the
spread of antimicrobial resistance (AMR) genes and plasmids
across bacterial populations. The BIGSI authors also searched for
plasmid sequences bearing AMR and initiated a study in an index
containing a variety of microbial genomes. They identified some
of these plasmids spread across different genera. Other AMRs,
such as SNPs associated with fluoroquine resistance, were studied
across 100,000 Salmonella genomes with Bifrost (Luhmann et al.
2020).

Lastly, an effort was proposed to build a comprehensive hu-
man gut microbiome resource with the help of a set of k-mer set
structure. Cultured genomes and metagenomes assembled from
metagenomics data were combined in a BIGSI index to create the
Unified Human Gastrointestinal Genome index (Almeida et al.
2020). This resource aims at exploration and enables looking for
contigs sequences, genes, or genetic variants.

Genome dynamics

In a study of fine-scale recombination landscape in birds, Cortex
was used to de novo call variants in zebra finch raw data sets, by-
passing the low-quality state of current genome resources
(Singhal et al. 2015). Recently, a novel phylogeny approach was in-
troduced by building a colored de Bruijn graph (Wittler 2020)
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(using Bifrost) on a set of genomes (assembled or reads) and tra-
verses the structure to extract phylogenetic signal. This approach
bypasses the usual multiple genome alignment step.

As an aside, tools like Mash (Ondov et al. 2016) perform
sketching of data sets (i.e., construct small sets of short k-mers
that constitute signatures of data sets), in order to compute ecolog-
ical distances between data sets. Because sketching uses specific
techniques that do not rely on the entire k-mer sets (see a related
review: Marcais et al. 2019), we consider them outside the scope
of this study.

Finally, beyond these applications, other topics are starting to
be explored: integrated variant calling across large-scale gene, plas-
mid, and transposon searches (Blackwell et al. 2019; Bradley et al.
2019; Miller et al. 2020), bacterial pan-genome indexation (Muggli
et al. 2019), and gene fusion and pan-cancer analysis (Yu et al.
2018).

Query model

Here, we describe the types of queries that are supported by the sur-
veyed methods.

Let D be a collection of n data sets. Let S be a nucleic sequence
of arbitrary length such as a gene or a transcript. Note that S can, in
principle, be as short as a single k-mer, but in practice, it is often a
sequence longer than k. The aim is to determine the presence of §
in each data set of D.

The most elementary type of queries supported by all meth-
ods in this survey consist in reporting every data set D; € D which
contains a query k-mer. It can be naturally extended to a longer
query sequence S by querying each element of the set Q of all k-
mers present in S. One can see that, if S is present in a data set,
then every element of Q is present as well. However the converse
is not true: k-mers in Q may possibly correspond to different se-
quences within a data set and S may actually be absent. Consider
the two k-mers ACT and CTG (k=3) and assume they are present
in two different reads within a single
data set. A query sequence ACTG would
then be reported as present in that data
set, regardless of whether the sequence

is truly found as part of a single read. method name

aggregation
technique

Building blocks

We view the storage of a set of k-mer sets as having four possible
components. These components are: the underlying data struc-
ture used to represent a single set; the strategy used to aggregate
k-mers across different sets; the data structure used to store this
aggregation; and the compression strategy used. See Figure 2 for
an illustration of this view. Most of the novelty in the methods
comes in the aggregation strategy and in the data structure
used to support it. The other two components are used more as
building blocks. In this section, we will cover these two building
blocks.

k-mer set data structures

A set of k-mers is a collection of k-mers that are deduplicated and
unordered. It will be enough to consider them as black boxes
that support all or a subset of the following operations:

e membership, that is, testing whether a k-mer is in the set;
¢ insertion and/or deletion of a k-mer.

However, methods to represent k-mer sets are not all equiva-
lent in terms of features and performance. We briefly review their
main characteristics in the rest of this section but refer the reader to
the recent survey by Chikhi et al. (2019) for further details.

Most methods rely on bit vectors to store the presence or ab-
sence of k-mers in data sets. A bit vector is an array of bits; for ex-
ample, 00101 represents a bit vector of length 5. A 0 is used to
indicate that the k-mer is absent, and a 1 indicates that it is present.
A bit vector could be used to record the data sets in which a given k-
mer appears or, alternatively, all the k-mers that are contained in a
given data set. However, with a growing number of data sets and k-
mers, using plain bit vectors is generally too simplistic, and often
compression or other tricks are also incorporated. One example
is the Bloom filter (Bloom 1970), which is a way to store a set as

k-mer set data
structure

aggregation

compression
data structure

Despite this potential shortcoming, this
is widely considered to be a reasonable
approximation, due to k being long Bifrost
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hashing techique
hybrid technique
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This query model is motivated by events
such as sequencing errors and variants,
which reduce the number of common
k-mers between a query and a target.
Thus, it is interesting and often necessary
to report when only a fraction of the k-
mers from a query sequence are present
in a data set. Typically, 6 is set between
0.7 and 0.9 (Solomon and Kingsford
2016). Also, the typical k-mer size range
seen in applications is 21-31.
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Figure 2. Overview of set of k-mer sets building blocks. We classified strategies in color-aggregative
approaches and k-mer aggregative approaches (second column). The top row of the figure indicates
the general categories of components of each method: the type of k-mer set; the way multiple sets
are combined together; and an optional compression scheme. Each next row describes one of the sur-
veyed methods. The cells in this figure are methodological choice, potentially common across methods;
hence many cells are joined.
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a bit vector using many fewer bits than the naive approach (see
Box 1).

Some methods view a k-mer set as a de Bruijn graph (DBG)
(see Box 1). These two views, k-mer sets and DBGs, are (in some
sense) equivalent as they intrinsically represent the same
information.

Data structures for representing k-mer sets (DBG or not) can
further be divided into two categories: membership data structures
and associative data structures. The first category only informs
about the presence or absence of k-mers, for example, as in the
case of a Bloom filter (BF). The second category associates pieces
of information to k-mers, akin to how dictionaries link words to
their definitions. Some examples of associative data structures in-
clude hash tables and counting quotient filters (CQF) (Box 1;
Bender et al. 2012; Pandey et al. 2017; Almodaresi et al. 2019).

Some data structures (e.g., CQFs, BOSS) can represent sets in
an exact way, whereas others (e.g., Bloom filters) represent them
in a probabilistic way, meaning that the structures can return false
positives (i.e., meaning that a k-mer is sometimes falsely reported
as present in the set when in fact it is absent). These false positives
lead to an overestimation in the number of k-mers detected as pre-
sent in a set. Although this is an undesirable effect, it can be partly
mitigated as we will see in section, “Background and method
intuition.”

The main reason such advanced data structures are consid-
ered, instead of those provided in the standard libraries of pro-
gramming languages, is space efficiency. Bloom filters and CQFs

Box 1. Technical definitions

approximately require a byte for each element in the set, that is,
less than the size of the element itself. Similarly, optimized repre-
sentations of DBGs (Bowe et al. 2012; Chikhi and Rizk 2013;
Boucher et al. 2015), which are also representations of k-mer
sets, aim for near-optimal space efficiency. Exact and probabilistic
data structures offer a trade-off between space and accuracy. This is
a crucial aspect, as the volume of data typically exceeds what can
be processed using unoptimized data structures.

Compression

To further optimize space usage, different compression techniques
have been applied to sets of k-mer sets. Bloom filters and bit vectors
are amenable to a number of compression techniques because they
are represented in bits. They can be sparse (i.e., when most of the
bits are 0’s) or dense (i.e., when most of the bits are 1’s).
Compression methods exploit these properties.

Bit vector compression

Bit vectors can be efficiently stored using bit-encoding techniques
that exploit their sparseness or redundancy. The most prevalent of
the methods in this survey are RRR (Raman et al. 2002) or Elias-
Fano (EF) (Fano 1971; Elias 1974; Ottaviano and Venturini
2014). The principle behind these is to find runs of 0’s and to en-
code them in a more efficient manner, reducing the size of the
original vectors. Other techniques such as Roaring bitmaps
(Lemire et al. 2016) adjust different strategies to subparts of the

Hashing, hash functions. Mathematical functions that are used to associate elements (e.g., k-mers) to numbers (e.g., positions in an array).
Bloom filters (BFs). Bit vectors that record the presence or absence of elements within a set, with some approximation, using hashing.
Counting quotient filters (CQFs). Similar in nature to Bloom filters but differ by their hashing strategy. CQFs support membership queries of

elements in a set, and also counting elements in a multiset.

Minimal perfect hash functions (MPHFs). Functions that associate a fixed set of elements to the range of consecutive integers from 0 to the

number of elements, in a highly space-efficient way.

See Supplemental Box S1 for detailed illustrations of BF, CQF, and a hashing method inspired by MPHF techniques called Othello.
Burrows-Wheeler transform (BWT). A text transformation algorithm. Given an arbitrary text, such as a DNA sequence, BWT rearranges it in a
way that enhances its compression and permits indexing. The transformation is reversible, allowing the text to be efficiently recovered.

Graph definitions

A graph (see A in the figure below) is a pair of two sets V and E. Elements of V are nodes (in blue), and elements of E are pairs of related nodes

called edges (in orange and red).

A path in a graph is a sequence of edges that connects a sequence of distinct nodes (the example shows a path drawn between nodes 1, 2, 3,

and 4 through red edges).

A tree (B in the figure below) is a particular graph in which any two nodes are connected by exactly one path. A forest is a disjoint union of
trees (C in the figure below). A subtree (circled in gray in B) is a subset G’ and E’ of a tree T=(G, E).

A B

Cc

A trie is a tree that allows to efficiently store and query a set of words. Wavelet tries (Grossi and Ottaviano 2012) are designed to store
compressed sequences.

A de Bruijn graph (DBG) is a graph where nodes are k-mers and there exists a directed edge from vertex u to v if the last k—1 characters of u are
the same as the first k—1 characters of v. A compacted de Bruijn graph is a different graph than the DBG, which, however, represents the same
k-mer information by merging unambiguous paths.

See Supplemental Box S2 for an example of DBG and compacted DBG.
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vectors. Wavelet trees (Grossi et al. 2003) generalized compression
of vectors on larger alphabets (i.e., not just 0's and 1’s but, e.g., a’s,
b’s, ¢’s, etc.). More advanced techniques deriving from the same
concept were also proposed specifically for sets of k-mer sets
(Karasikov et al. 2019).

Delta-based encoding

When two sets share many elements, it may be more advantageous
to store only one along with the differences with the other. For in-
stance, rather than storing two (possibly compressed) bit vectors,
one can only store the first bit vector explicitly along with a list
of positions that need to be inverted to obtain the second vector.

This list of positions can itself be encoded as a bit vector, with
a bit set to 1 if and only if the bit is at the location of a difference
between the two vectors. This bit vector is expected to be more
sparse than the original encoding, allowing better compression.
Such a scheme is usually called “delta-based encoding” in the
literature.

Hybrid techniques

In hybrid approaches, a collection of bit vectors is split into differ-
ent buckets, where each bucket contains bit vectors with similar
features. Compression within each bucket is performed using a
suitable technique selected from a pool of feature-specific ones.
An illustration of these techniques is provided in Supplemental
Box S4.

Color-aggregative methods

The methods that we will survey are split into two categories.
Color-aggregative methods index the union set of k-mers, which
is the joint set of all k-mers that appear in all the data sets.

Instead, k-mer aggregative methods index each data set separately,
then build an aggregation data structure to distribute queries. A
few methods that escape this categorization will be presented
separately.

Color-aggregative methods gather and index the union set of
k-mers, then associate information to each k-mer to record its data
set(s) of origin. A practical advantage of color-aggregative methods
is that a k-mer that appears in many samples will appear only once
in the union set. This greatly reduces redundancy in the represen-
tation of k-mers but introduces the need to store additional color
information. In this subsection, we give a brief background and
history of the methods that fall into this category.

Color matrix

A color of a given k-mer is frequently used in the literature to iden-
tify a data set containing the k-mer, assuming each data set is given
a unique color. A color set is the set of colors associated with a k-
mer. It is convenient to represent a color set using a bit vector.
Here, fixing an ordering of the data sets, a 1 at position i in the
bit vector indicates the presence of the k-mer in the ith data set
and 0 its absence. Given n k-mers and ¢ data sets, the color matrix
is an n x ¢ matrix of bits which describe the presence or absence of
each k-mer (in the rows) in each data set (in the columns). For an
example, see Box 2.

Background

The first color-aggregative method was proposed by Igbal et al.
(2012) in the Cortex software. It implements a relatively straight-
forward associative data structure that maps k-mers to colors. A col-
ored DBG is a DBG of the union set of k-mers, where each vertex is
labeled with the color set of the corresponding k-mer. Igbal et al.
used a colored DBG built on a set of individuals from a population

Box 2. Representation of colors in color-aggregative methods

union
k-mer set

w7

color strategy| CAT

color matrix

ACA
CAT

i

color classes matrix

L — "

ATC ACA
CAT ATA
GAG

L k-mer to matrix row association

— . /

| R

el

several color matrices

| /

compression

A color matrix represents the presence of n k-mers across c¢ data sets (in the above figure, n=5, c=3). Different schemes have been
introduced to encode such matrices. In particular, a color class is a set of colors that is common to one or more k-mers. In other words, in the
color matrix, there may be identical rows, then the corresponding k-mers belong to the same color class. One may “deduplicate” the n rows of
the color matrix into m<n color classes (here, m=4). Then, color class identifiers are introduced as intermediaries between k-mers and color
classes. (To go further, frequently used color classes can be referenced using fewer bits by using small integers as identifiers.)

Color-aggregative methods are generally composed of three parts. First, a set of all k-mers, built using either a DBG or an ad hoc
representation. Second, a correspondence between k-mers and colors in the form of a color matrix (left, “color strategy” row), color classes
(middle), or several color matrices (right). Finally, k-mer sets and/or colors may be further compressed. In the two first columns’ strategies,
compression is based on one of the techniques from the section, “Compression.” In the third column, different techniques may be used for

different matrices.
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to detect SNPs and other short variants; such events are reflected in
the graph by a pair of short paths that share their start and end
nodes. This enabled detection of genetic variation in a population
without the use of a reference genome. Cortex consumes an inor-
dinate amount of RAM when the total number of distinct k-mers
exceeds tens of billions. This main drawback motivated more re-
cent works improving the efficiency of the colored DBG.

We note that, later in this survey, we will not restrict the term
colored DBG to the original work from Igbal et al. but will extend it
to any explicit DBG implementation that associates color sets to
k-mers. Colored DBGs are only implemented in the class of col-
or-aggregative methods. Conversely, as we will see later, some
color-aggregative methods do not implement a colored DBG.

Later methods

The first color-aggregative methods that improved upon the mem-
ory- and time-efficiency of Cortex were Bloom filter trie (BFT)
(Holley et al. 2016) and Vari (Muggli et al. 2017). These methods
achieved a significant reduction in representation size via different
strategies. After the introduction of these methods, subsequent im-
provements were made with the development of Rainbowfish
(Almodaresi et al. 2017), Multi-BRWT (Karasikov et al. 2019),
Mantis (Pandey et al. 2018), SeqOthello (Yu et al. 2018),
Mantis + MST (Almodaresi et al. 2019), and Vari-Merge (Muggli
etal. 2019). Most of these recent techniques rely on a more careful
encoding of the colors of each k-mer, which takes advantage of re-
dundancy in the data.

A summary of the main features of color-aggregative methods
is presented in Table 1. Their methodological strategies are present-
ed in more detail in Supplemental Box S6.

Methods based on a color matrix

The representation of the DBG used by Vari (Muggli etal. 2017) isa
BWT implementation referred to as BOSS (Boucher et al. 2015). We

will not go into the technical details here (see Supplemental Files
and Supplemental Box S3 for more information); it is sufficient
to see BOSS as a rearrangement of the original data that enables in-
dexing and compression. In order to add color information in Vari,
a compressed color matrix is constructed row-by-row.

Later, Vari-Merge (Muggli et al. 2019) was introduced to con-
struct colored DBGs for very large data sets, which can also be up-
dated with new data. Two other methods, Pufferfish (Almodaresi
et al. 2018) and BLight (Marchet et al. 2020b) put emphasis on
the k-mer indexing technique in order to efficiently store DBGs
in memory and use a simple color matrix to represent the colored
DBG. Itis worth noting that BLight shares similarities with Kraken
(Wood and Salzberg 2014), a taxonomic classifier. Indeed, it can be
seen as a colored de Bruijn graph of k-mers with labels to their ge-
nome of origin.

Methods based on color classes

In many applications, such as human RNA-seq indexing (Solomon
and Kingsford 2016), it is expected that many data sets share a
large number of k-mers. This redundancy can be exploited to re-
duce the color encoding size, through color classes. When colors
are seen as bit vectors, the color classes are defined simply as dedu-
plicated bit vectors. Thus, two k-mers having the same color sets
are associated with a single color class instead of two identical
bit vectors (see Box 2). Compression may be achieved by represent-
ing the color matrix as a compressed bit vector.

Bloom Filter Trie (Holley et al. 2016) uses a different approach
to storing the DBG than Vari but also aims at representing a DBG.
BFT introduced the idea of color classes, and a more detailed de-
scription of its inner workings is provided in Supplemental Box
S5. Rainbowfish (Almodaresi et al. 2017) mixes ideas from Vari
and BFT. Mantis (Pandey et al. 2018) introduces another strategy
(the CQF) (see Box 1) for storing the DBG in a space-efficient man-
ner. Initially, CQFs were introduced to record counts associated
with k-mers, but in Mantis, the structure instead stores color sets.

Table 1. Summary of the existing color-aggregative methods and some of their features

Method. Description Nav. Add Exact Remarks

VARI A BWT-based index on k-mers interfaced with a color matrix Y N Y Supports short variant discovery
compressed with RRR

VARI-Merge A divide-and-conquer approach to building VARI on large data sets Y Y Y

BFT A tree that records k-mers, using Bloom filters, and their compressed Y N Y First scalable color- aggregative
color classes method

Rainbowfish Similar to VARI for the k-mers, similar to BFT for the colors Y N Y

Mantis A tweaked CQF that records k-mers and color classes, which are Y N Y/N Can switch to probabilistic queries
compressed with RRR to save space

Mantis+MST  Similar to Mantis with more efficient delta-encoding color compression

SeqOthello MPHF (Othello) that maps k-mers to their color sets grouped and N N N Most memory-efficient among
compressed by similarity using hybrid bit-vector compression color-aggregative methods

Pufferfish, A MPHF-based hash table associating k-mers (in a DBG) to colors N Y

BLight

Bifros? A hash table associating k-mers to several color matrices (similarly to Y Y Y
Mantis + MST) with adapted compression strategy

Metannot A hash table storing k-mers and nearly optimal compressed colors with N Y Y Can delete data sets
wavelet tries and RRR

Multi-BRWT A hash table storing k-mers with a color matrix compressed in both N Y Y Can delete data sets
dimensions simultaneously

REINDEER A MPHF-based hash table associating k-mers to counts N N Y Only method that allows storing of

counts

(Nav.) Indicates if it is possible to navigate in the DBG (i.e., going from one k-mer to the following ones and conversely). Such a navigation allows, for in-
stance, performance of variant-calling. We note that these two aspects should be technically possible in all colored DBG tools; (Add) indicates if new
data sets can be added to the index. Although it is conceptually possible that new data can be added to Vari, Rainbowfish (by rebuilding), and Mantis,
this feature is currently not implemented; (Exact) indicates if the index provides exact results (Y) or if there may be false positives (N).
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Mantis+ MST (Almodaresi et al. 2019), an extension of Mantis,
takes advantage of the insight that many color classes are frequent-
ly similar to each other, because many k-mers occur in relatively
similar sets of sequences. Thus, it proposes a more efficient encod-
ing of colors.

Methods based on several matrices

SeqOthello (Yu et al. 2018) does not explicitly represent a DBG but
rather stores a probabilistic set of k-mers using a hashing method
inspired by MPHF techniques called Othello (see Supplemental
Box S1). SeqOthello proposes to group similar color profiles,
then uses a suitable compression technique depending on the
sparsity of each group. It may wrongly associate a data set to an
alien k-mer, instead of correctly returning that such k-mer belongs
to no data set. For a query that consists of many k-mers (such as
genes or transcripts), errors can be mitigated because false positives
are unlikely to all point to the same data set(s). This property will
also be used in k-mer aggregative structures and will be further dis-
cussed in the section, “Background and method intuition.”
Recently, another construction strategy for color-aggregation
was proposed in Bifrost (Holley and Melsted 2020). As in BLight
and Pufferfish, Bifrost uses a compacted DBG (introduced in,
e.g., Chikhi et al. 2016; Minkin et al. 2016; see Supplemental
Box S2) to more efficiently represent the sequences than a set of in-
dividual k-mers. In addition, we note these methods are similar to
Mantis and SeqOthello in terms of the underlying hash-based
strategies, and the differences are detailed in Supplemental Box S6.

Other methods

Some techniques evade the above categorization and have focused
on specific aspects of color-aggregative methods memory optimi-
zation. The growing number of colors (or classes) motivated works
to further reduce space through lossy compression. In Metannot
(Mustafa et al. 2019) and Multi-BRWT (Karasikov et al. 2019),
the main contribution is not the data structure used to store the
graph but the one used to store colors. Metannot explores two
strategies for color compression. One of them is probabilistic: in or-
der to reduce false positives, color sets queries are corrected by tak-
ing the intersection with other color sets from neighboring k-mers
in the DBG. Multi-BRWT improves upon standard bit-encoding
representation (such as RRR, EF).

Colored DBGs have been used to perform RNA-seq quantifi-
cation (Patro et al. 2014, 2017; Bray et al. 2016) by associating col-
ors to individual genes as opposed to data sets. Yet, such methods

still require a pseudo-alignment step to recover abundance infor-
mation from the reads. Recently, REINDEER (Marchet et al.
2020a) proposed a color-aggregative index which also records
abundance, bypassing the need to align reads in order to recover
abundances. It relies on BLight, to which it adds novel features
in indexing and a more advanced color matrix with color classes
and compression.

Queries

Given that current implementations use k-mers that fit within (ex-
tended) computer words (~21-63), the query time bottleneck
comes mainly from random memory accesses, neglecting the
time taken to calculate and hash the k-mers. Hash-based methods
perform very fast color queries: retrieving information relative to a
single k-mer requires only a constant number of memory accesses.
The methods whose underlying DBG is BOSS (e.g., Vari,
Rainbowfish, Vari-Merge) are expected to show a lower through-
put. Indeed, the retrieval of a k-mer requires on the order of k mem-
ory accesses.

k-mer aggregative methods

We now turn to a completely different class of data structures.
Unlike previously mentioned methods, k-mer aggregative meth-
ods do not pool k-mers from all data sets in order to build an index.
Rather, they first process data sets separately and then aggregate
them in different ways. A summary of these methods’ features ap-
pears in Table 2.

Background and method intuition

All the k-mer aggregative methods surveyed work by storing the k-
mers of each data set in a separate Bloom filter, that is, using one BF
per data set. A BF is a probabilistic data structure that sometimes
returns false positives; that is, the BF may report that a k-mer be-
longs to a certain data set when it really does not. In the query
model that we defined in the section, “Query model,” the 6 param-
eter allows to partially mitigate this problem by considering the re-
sults of multiple k-mer queries. Indeed, the false-positive rate for a
sequence decreases exponentially with the number of k-mer que-
ries (Solomon and Kingsford 2016; Bingmann et al. 2019). For
the values of O used in practice, the false-positive rate of an individ-
ual BF can be set as high as 50% without degradation of query per-
formance on sequences that are much longer than k (Solomon and
Kingsford 2016).

Table 2. Summary of the existing k-mer aggregative methods and some of their features

Method Description Add Exact PRQ Remarks

SBT A tree of RRR-compressed BFs with each data set stored in a leaf N N Y

SSBT A tree similar to SBT but with more fine-grained BFs N? N Y  Redundancy removal

AllSomeSBT A tree similar to SSBT but with a hierarchical clustering of data sets to save N? N Y compared to SBT
space and query/construction time

HowDeSBT  Similar to AllSomeSBT but with additional BF optimizations N N Y Small index

BIGSI A matrix of BFs where each column corresponds to a data set Y N N

COBS Similar to BIGSI with BFs of variable lengths to adapt for varying data set sizes N N Y Fast construction

RAMBO A matrix of BFs where each BF corresponds to a union of several data sets Y N N

(Add) Indicates if new data sets can be added to the index; (Exact) indicates if the index provides exact results (Y) or if there may be false positives (N);
(PRQ) partial RAM query, indicates if the query can be performed by loading only a small part of the index in RAM. This is much less space-consuming
but potentially less time-efficient. Comparatively, all color-aggregative methods need to load the whole index in memory when querying. However,
contrary to some color-aggregative methods, no k-mer aggregative method offers navigation operations.

“These methods’ papers propose a data set addition algorithm though it is not implemented.
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Prior to construction, unlike color-aggregative methods, most
k-mer aggregative methods (except COBS) need to know in ad-
vance how large is the largest data set, in terms of the number of
distinct k-mers, to ensure that BFs are appropriately sized. The
common BF size is chosen according to a desired false-positive rate.

k-mer aggregative methods summary

Sequence Bloom Trees (SBTs)

These are a family of related techniques detailed across multiple
publications (Solomon and Kingsford 2016, 2018; Sun et al.
2017; Harris and Medvedev 2020), adapted to bioinformatics
from a previously known hierarchical structure of BFs (Bloofi)
(Crainiceanu and Lemire 2015). The tree structure represents a hi-
erarchical clustering of the data sets, for example, one obtained us-
ing k-mer similarity across data sets. In the original SBT (Solomon
and Kingsford 2016), each leaf corresponds to an individual data
set, and each internal node is a BF that represents all the k-mers
of the data sets descendant from it. Split-Sequence Bloom Trees
(SSBT) (Solomon and Kingsford 2018) and AllSomeSBT (Sun
et al. 2017) simultaneously proposed to instead store two BFs per
internal node, each one separately containing the k-mers present
in (or, respectively, absent from) all the descendants. HowDeSBT
(Harris and Medvedev 2020) further improved the space utilization
and provided the first analytical analysis of the running time and
memory usage of the various SBT approaches. These recent im-
provements (Sun et al. 2017; Solomon and Kingsford 2018;
Harris and Medvedev 2020) greatly reduced the space and query
time compared to the original SBT (see Supplemental Box S8 for
a comparison of SBT flavors).

Matrix strategies

An orthogonal approach was proposed in BIGSI (Box 3B; Bradley
etal. 2019). As a first approximation, BIGSI can be seen as the con-
catenation of many BFs, forming a color matrix. The matrix is
stored in row-major order, that is, row-by-row, so that each row ap-
pears as a consecutive block and can be efficiently queried. A close-
ly related work is presented as a part of DREAM-Yara (Dadi et al.
2018), where BFs are interleaved in order to efficiently retrieve
the same position of several BFs (see Supplemental Box S8).
BIGSI was later improved, speed- and memory-wise, by COBS
(Bingmann et al. 2019).

Detailed examples can be found in Supplemental Box S7.
RAMBO (Yan et al. 2019) appears, at first glance, related to
BIGS], as it is also a matrix of BFs. However, RAMBO is actually
closer to SBTs: each BF in the RAMBO matrix represents several
data sets but not in a hierarchical fashion. More details are provid-
ed in the Supplemental Files and Supplemental Box S8.

Queries

In SBTs, a query containing several k-mers Q starts at the root and
propagates down the tree. At any node, the information stored at
that node is used to determine which k-mers of Q are determined
in all descendants of the node. Depending on the SBT flavor, a de-
termined k-mer may be for sure present, or for sure absent, in all
descendants. The k-mers which are determined are discarded
from Q as the query propagates down the tree (see Box 3). When
enough k-mers become determined, the search can be pruned,
that is, not carried further down the tree.

In matrix approaches, a k-mer query extracts a bit vector indi-
cating its presence across D (see Box 3). For a set of k-mers Q, the bit

vector for each k-mer in Q is constructed, and bitwise operations
on these vectors are performed to answer the whole query.

Other schemes

Other unpublished tools have considered different techniques for
storing and indexing sets of k-mer sets. kamix (https://github.com/
jaudoux/kamix) uses SAMtools’s BGZF library (block-compressed
gzip) to store and index a k-mer matrix. From the same author,
kad (https://github.com/jaudoux/kad) uses a RocksDB database
to store a list of k-mers and counts.

BEETL (Cox et al. 2012) is a technique that stores inside a
BWT all sequences (i.e., not k-mers, but the original data) from a
sequencing data set. BEETL was able to compress and index 135
GB of raw sequencing data into an 8.2-GB space (on disk for stor-
age, or in memory for queries). A variant, BEETL-fastq (Janin et al.
2014), also enabled the performance of efficient sequences search-
es and was also applied to the representation of multiple data sets.

Population BWT (Dolle et al. 2017) is also a scheme based on
BWT geared toward the indexing of thousands of raw sequencing
data sets. The BWT allows querying k-mers of any length and addi-
tionally gives access to the position of each k-mer occurrence with-
in the original reads (note, however, that reads need to be error-
corrected).

Recently, compressed structures able to compress full-text
were proposed as proofs-of-concept for indexing and querying col-
lections of biological data sets (Cobas et al. 2020) for presence/ab-
sence and abundance. However, at the time of this writing, such
indices have been tested on a few dozens of close bacterial strains,
not yet on raw reads data.

Performances overview

Index construction on human RNA-seq samples

Indexing data sets of a similar type, such as RNA-seq samples from
the same species, was one of the first applications proposed in the
literature of sets of k-mer sets and remains one of the main bench-
marks for these tools. Table 3, based on Supplemental Tables S1
and S2, reports the performance of most of the recent tools on a
collection of human RNA-seq data sets (2652 RNA-seqs from the
original SBT article [https://www.cs.cmu.edu/~ckingsf/software/
bloomtree/srr-list.txt]). This table was constructed by gathering re-
sults from three recent articles (Yu et al. 2018; Bradley et al. 2019;
Harris and Medvedev 2020). As the articles use different hardware
and slightly different parameters, a direct comparison of the tools
is challenging. Instead, Table 3 presents a summary of the best pos-
sible performance that can be currently achieved on the given data
sets. Supplemental Table S3 also presents a summary of the meth-
ods’ time complexities.

The data processing time column refers to the time necessary
to convert the original sequence files to the k-mer set indices
(Bloom filters/Othello). The maximum external memory column
corresponds to the peak disk usage when building the index. The
time column is the time required to build the set of k-mer
sets index (on one processor). The index size column is the final in-
dex size.

The data processing phase, where the k-mer sets are construct-
ed and initialized, often takes significant time across all methods.
It is usually not presented as a bottleneck because it is viewed that
this step can be computed while downloading the samples.

Regarding query times, each method has used different exper-
imental setups, making comparisons difficult, for example, using
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Box 3. Techniques for k-mer aggregation

Data structures

In k-mer aggregative strategies, Bloom filters representing each of the data sets are organized in either a tree or a matrix structure. In the
example below, there are four data sets (red, blue, green, and yellow), and the gray rectangles represent Bloom filters.

(A) Tree strategy. A search tree is constructed, where each leaf is a data set and internal nodes represent groups of data sets. Data sets with
similar BFs can be clustered to reside in the same subtree. In the original SBT approach (Solomon and Kingsford 2016), each node stores
exactly one BF, containing all the k-mers present in the data sets of its subtree. For a leaf, this is simply the k-mers in the corresponding data
set. Later versions of SBTs (Sun et al. 2017; Solomon and Kingsford 2018; Harris and Medvedev 2020) store more sophisticated data at

each node, though they still rely on BFs.

(B) Matrix strategy. The BFs from all the data sets are concatenated column-wise to obtain a matrix similar to a color matrix. A row in the
matrix roughly corresponds to a k-mer (more precisely, to the position indicated by the hash value of a k-mer). In the original BIGSI
approach (Bradley et al. 2019), all BFs have exactly the same size. In COBS (Bingmann et al. 2019), data sets of comparable cardinality are

grouped into bins, leading to a collection of matrices of different sizes.

A

Queries

Consider an example query composed of three k-mers with a threshold 6=2/3, where, for simplicity, each k-mer corresponds to a single

location in the BF.

(A) Tree strategy. Conceptually, one starts at the root node and then explores down the tree, always checking all the children of a node
before moving to another node (breadth-first strategy). A counter of k-mers that have been determined to be present or absent is
maintained for the query as it propagates down the tree. If either of the counters exceeds a certain threshold, the search does not
propagate further down the subtree of that node. For example, in panel A below, black bars in the BF represent the presence of three
queried k-mers. Considering that 6=2/3 of the k-mers should be present, the query is pruned at the yellow/green nodes because not
enough present k-mers are found. Only the red data set is returned as containing the query.

(B) Matrix strategy. In BIGSI, each k-mer corresponds to a single row in the matrix, which is then extracted and summed column by column
to obtain a vector where each element contains the number of k-mers occurring in the corresponding data set. Again, in panel B below,
black bars in the BF represent the presence of three queried k-mers. The red data set will be the only one returned as containing the query.

' I\ll |€

transcript batches of different sizes (100—10,000). We refer the
reader to the experimental benchmark in Harris and Medvedev
(2020), which compares the average query times for randomly se-
lected batches, effects of warming the cache, and maximum peak
memory for queries. Finally, we note that the information output
by a query can vary from one implementation to another and that
the maximum supported value for k-mer size is also implementa-
tion-dependent.

Indexing bacterial genomes

We now turn to the indexing of large collections of bacterial data
sets. Table 3 summarizes the benchmark published in the COBS ar-
ticle (Bingmann et al. 2019). Methods that were reported to per-
form the best in the previous section remain the most efficient,
and most recent methods tend to show the best performance.
BIGSI, AllSomeSBT, and COBS queries are fast. We note that
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Table 3. Overview of the best achievable performance in terms of space and time requirements to build indices

Data processing

Time (h, wallclock) Peak RAM (GB) Index size (GB)

Data set time (d) Max. ext. memory (GB)
Human RNA-seq 2.5 (Harris and 30 (Harris and
(2652 data sets) Medvedev 2020) Medvedev 2020)
(HowDeSBT) (HowDeSBT)

Bacterial genomes
(1000 data sets)

Not reported Not reported

2 (Yu et al. 2018) 5 (Yuetal. 2018) 15 (Harris and

(SeqOthello) (SSBT) Medvedev 2020)
(HowDeSBT)
0.01 (Bingmann 1.5 (Bingmann 1.9 (Bingmann et al.
et al. 2019) et al. 2019) 2019) (HowDeSBT)
(COBS) (SSBT)

COBS construction time is very low (< 1 min), in part because it has
been run using 80 threads. SSBT and COBS also have low RAM con-
sumption. An advantage of HowDeSBT is the small size of the in-
dex on disk. This demonstrates that highly diverse data sets, in
terms of k-mer contents, can also be efficiently stored in variants
of SBTs.

Indexing human genome sequencing data

To the best of our knowledge, only two methods (BEETL-fastq and
Population BWT) have been applied to the representation of full
read information from cohorts of whole human genomes.
BEETL-fastq represented 6.6 TB of human reads in FASTQ format
in 1.7 TB of indexed files. Population BWT managed to index (in
a lossy way) 87 Tbp of data, corresponding to 922 billion reads
from the 1000 Genomes Project. After read correction and trim-
ming, the authors obtained a set of 53 billion distinct reads (4.9
Tbp) and indexed it with a BWT stored with 464 GB on disk (re-
quiring 561 GB of main memory for query). Metadata (e.g., sample
information for each read) was stored in a 4.75-TB database.

Given the apparent difficulty of constructing large-scale indi-
ces on human sequencing data sets, we conclude that this is not
yet a mature operation. Therefore, we did not provide a detailed
comparison with other indexing techniques.

Discussion

General observations can be derived from the comparison we have
presented in this survey.

SBT approaches were designed for collections with high k-mer
redundancy, such as human RNA-seq. In contrast, BIGSI and
COBS focused on indexing heterogeneous k-mer sets, such as k-
mers originating from various bacteria. Experiments in
Bingmann et al. (2019) demonstrated that SBTs like HowDeSBT
could also perform well on this type of data. A trade-off exists be-
tween the construction time in favor of COBS and index size in fa-
vor of the SBTs. As shown in the COBS paper, resizing BFs allows
saving memory, but the latest SBT flavors also have a lightweight
memory footprint because compressing BFs can achieve a similar
effect as resizing. Smaller BFs also increased the false-positive rate
of COBS in comparison to other BF-based techniques (Bingmann
et al. 2019).

It is also important to note that, for many methods, queries
are approximate, although a number of color-aggregative methods
support exact queries. Some colored DBG implementations (Vari
and Vari-Merge) support additional features such as SNP and short
variant discovery and graph traversal. New query types should also
be considered. For instance, recording k-mer counts (with
REINDEER) instead of presence or absence is likely to assist gene
expression studies.

Color-aggregative methods and BIGSI/COBS seem better suit-
ed to query large sequences. Indeed, in these methods, the bottle-
neck for a single query is loading the index into memory. Then,
the rest of the query consists in hashing k-mers, roughly in con-
stant time per each k-mer. Henceforward, once the index is loaded
in memory, batches of queries or large queries can be answered
very rapidly. Query speeds depend on the method and its imple-
mentation. For instance, in some data structures such as the CQF
in Mantis, consecutive k-mers are likely to appear nearby in mem-
ory, thus reducing the number of cache misses during a query. A
drawback is that these structures are usually more memory-con-
suming than SBTs. Moreover, in the case of SBTs, BIGSI, and
COBS, large queries allow mitigation of the underlying BF false-
positive rate. SBTs and COBS do not need to load the entirety of
the index into memory at query time because the query iteratively
prunes irrelevant data sets. That is why SBTs are more suitable for
short queries, whereas for large queries, k-mer look-ups become a
bottleneck. For very large queries (e.g., the k-mers from a whole se-
quencing experiment), only AllSomeSBT (Sun et al. 2017) has an
efficient specialized algorithm. The type of queries proposed by
Solomon and Kingsford (2016), which has been widely adopted
across SBT flavors, relies on the threshold 6 to determine if a se-
quence matches a data set. This threshold controls the sensitivity
of matches with respect to sequence identity and sequencing er-
rors. It would benefit from being further explored from a biological
point of view. For instance, a single substitution in a base is cov-
ered by k different k-mers. If the indexed sequences differ from
the query on that substitution, these k-mers will not be found in
the structure, and if the value of 6 is too high, the match could
be missed.

Although there have been extensive empirical benchmarks to
compare the performance of the different methods, analytical
comparisons of their performance have been limited (see Harris
and Medvedev 2020 for an example, though it is limited to only
SBTs). The difficulty in using worst-case analysis to analyze perfor-
mance in this case is that the methods are really designed to ex-
ploit the properties of real collections, and worst-case analysis is
therefore not helpful. Progress can be made by coming up with ap-
propriate models to capture the essential properties of real data and
analyzing the methods using those models.

We note that there are several issues that lie outside this sur-
vey but merit mention the selection of k and the presence of se-
quencing errors. The value of k is well-known to control
sensitivity and specificity of the methods. Too small of a value of
k decreases the sensitivity and too large of a value of k decreases
the specificity. Automatically selecting the best k value was studied
in the context of genome assembly (Chikhi and Medvedev 2014)
but, to the best of our knowledge, not yet for indexing collections
of read data sets. An additional issue related to this survey is the
presence or absence of sequencing errors, which result in k-mers
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that have a low number of occurrences. To address this issue, some
methods (such as Cortex) filter k-mers with a low frequency by de-
fault, whereas others require user intervention.

The data structures surveyed in this paper should be seen as
initial attempts from the community toward being able to routine-
ly query the hundreds of thousands of samples deposited in public
repositories (e.g., SRA) or private ones. An essential next step
would be to have user-friendly tools. User friendliness can be
seen from different perspectives. First, one may try to cast more
concrete biological questions into simplified k-mer queries that
can then be asked to the indices. Second, the results of queries
could be presented in a manner that is more suitable to biologists
rather than their current form, consisting mainly of the output of
k-mer queries. For instance, a list of reads contained in the indexed
data sets could be output for further investigation. However, in-
dexing reads is more challenging, and this direction would require
new developments for the structures to scale. Third, special atten-
tion given to user interfaces could help broaden the usage of these
methods. Web interfaces are challenging to maintain in the long
run (the group maintaining BIGSI proposed one: http:/www
.bigsi.io/); thus, another solution could be to provide offline pre-
computed indices. This way, users would only download some
chunks of interest from the index for further investigation.
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