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Abstract

We report a study of genome-wide, dense SNP (~900K) and copy humber polymorphism
data of indigenous southern Africans. We demonstrate the genetic contribution to southern
and eastern African populations, which involved admixture between indigenous San, Niger-
Congo-speaking and populations of Eurasian ancestry. This finding illustrates the need to
account for stratification in genome-wide association studies, and that admixture mapping
would likely be a successful approach in these populations. We developed a strategy to de-
tect the signature of selection prior to and following putative admixture events. Several ge-
nomic regions show an unusual excess of Niger-Kordofanian, and unusual deficiency of
both San and Eurasian ancestry, which were considered the footprints of selection after
population admixture. Several SNPs with strong allele frequency differences were observed
predominantly between the admixed indigenous southern African populations, and their an-
cestral Eurasian populations. Interestingly, many candidate genes, which were identified
within the genomic regions showing signals for selection, were associated with southern Af-
rican-specific high-risk, mostly communicable diseases, such as malaria, influenza, tuber-
culosis, and human immunodeficiency virus/AIDs. This observation suggests a potentially
important role that these genes might have played in adapting to the environment. Addition-
ally, our analyses of haplotype structure, linkage disequilibrium, recombination, copy num-
ber variation and genome-wide admixture highlight, and support the unique position of San
relative to both African and non-African populations. This study contributes to a better un-
derstanding of population ancestry and selection in south-eastern African populations; and
the data and results obtained will support research into the genetic contributions to infec-
tious as well as non-communicable diseases in the region.
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Author Summary

Genome-wide analysis of human populations is useful in shedding light on the evolution-
ary history of the human genome, with a wide range of applications from reconstructing
past associations between different population histories to disease mapping. In this manu-
script we report on the application of genome-wide data to southern African populations
and the identification of genome-wide signatures of selection pre- and post-admixture.
Several signals of selection, before and after admixture, were identified, some of which in-
volved loci associated with human diseases, including malaria, influenza, tuberculosis and
HIV/AIDS. These results may reflect adaptations of southern African populations to infec-
tious diseases. Consistent with previous studies, this study highlights the significance of
the San in the genetics of human populations, as they are distinct from the other popula-
tions in many respects i.e. haplotype structure, locations of recombination hotspots, copy
number and population structure. Furthermore, our study demonstrates the admixture of
the San, Bantu-speaking populations and populations of Eurasian ancestry in some of the
southern and eastern African populations. It illustrates the value in correcting for this
stratification in future genome-wide association studies, and suggests that a future admix-
ture mapping in these populations would likely be warranted and successful.

Introduction

The analysis of high-throughput genotype data has revealed global patterns of human haplo-
type variation, casting light on the pre-history of human populations [1, 2, 3, 4, 5]. The Interna-
tional HapMap consortium [1,5]) and Human Genome Diversity Project (HGDP) [6], among
others, have facilitated the analysis of human genome-wide variation, and linkage disequilibri-
um in disease association studies [1, 4, 5] and also helped refine estimates of recombination
rates [7]. Comparative genome-wide genotype data among humans, Neanderthals and Chim-
panzees have also shown that selection has played a significant role in human adaptation to the
environment [8, 9, 10, 11]. These data have provided additional support for the African origin
of modern humans [12,13] and highlight the effects of migration both within Africa and out of
Africa. In general, African populations exhibit less linkage disequilibrium between adjacent
markers than their non-African counterparts, consistent with a migratory bottleneck in the lat-
ter [1, 2, 5]. Such differences in the extent of linkage disequilibrium have a profound effect on
the power of case-control association studies, since these studies depend largely on linkage dis-
equilibrium between disease variants and genotyped single nucleotide polymorphisms (SNPs).
Substantially more SNPs are required to capture genomic variation in African populations
than populations of European ancestry [1, 5]. In addition, African populations are character-
ized by higher levels of genetic diversity [13, 14, 15, 16] and considerable population substruc-
ture [17, 18, 19], probably the combined result of several migration events, effective population
size changes, population differentiation through genetic drift and local selective forces operat-
ing in ecologically diverse environments [18].

Hypotheses of migration within Africa based on mitochondrial DNA (mtDNA) suggest
that at least three major migration events are plausible that could account for the patterns of
mtDNA variation within Africa [17]; (1) the divergence of southern African San and east Afri-
can populations who share the ancestral mtDNA haplogroup (L0d) and associated lineages in
their maternal gene pool from an ancestral parental population circa 200 kya, (2) the establish-
ment of west African maternal haplogroups (L1’5 & L0abf) from an east African source (circa
100 kya), and (3) the Bantu expansion from the Niger-Congo region into central, eastern and
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southern Africa (< 5 kya). Although a southern African versus east African origin of modern
humans cannot be fully evaluated with current data, multiple lines of evidence from mtDNA
[16], Y chromosomes [20], Alu insertions [21], and autosomal SNPs [3] place the divergence of
the San at the root of modern humans with at least 100 ky of isolation from other non-San Af-
rican populations [17, 22], and relatively recent (< 5 kya) admixture with Bantu-speaking pop-
ulations [16, 23, 24, 25, 26, 27], followed by subsequent admixture (< 5 kya) in the region [16,
28,29, 30]. Given this relative isolation of present-day San in southern Africa, it is expected
that many SNPs ascertained in HapMap populations may not necessarily be polymorphic in
San, unless the polymorphisms arose well before the divergence of these populations. Southern
Africa was occupied exclusively by the San prior to the arrival of Bantu-speaking populations
within the past 1,500 years, a consequence of the Bantu-expansion out of west Africa some
5000 years ago [16, 23, 24, 25, 26, 27, 31]. Migrations across equatorial central Africa to the re-
gion of the Great Lakes in east Africa, followed by southern African migrations [16, 25] estab-
lished the eastern and southeastern Bantu-speaking groups, respectively. Migrations along the
west coast of Africa contributed to western and southwestern Bantu-speaking groups, the lat-
ter, currently extending to Namibia [16, 25, 26, 27, 28, 29]. According to our findings, the label
“Khoe-San” represent populations resulting from the mixture of predominately San, Eurasian
and Bantu-speaking populations. Over hundreds of years, indigenous San and Khoe-San com-
munities have undergone a sharp decline in population size, largely due to warfare and diseases
such as smallpox which arrived with colonialists [29, 32]. It is estimated that the population de-
cline (i.e. 90 percent) of both San and Khoe-San populations was due to smallpox [31, 32]. Re-
cently, Lachance et al. [33] used the whole-genome sequences of five individuals in each of
three different hunter-gatherer populations, including Pygmies from Cameroon, Khoe-San-
speaking Hadza and Sandawe from Tanzania, and identified several genomic regions with evi-
dence of archaic introgression in the hunter-gatherers. In addition, Lachance et al. [33] demon-
strated that distribution of the time to the most recent common ancestors for these regions was
similar to that observed for introgressed regions in Europeans [33]. Ancient and relatively re-
cent contact between immigrants from Europe, Asia and Indonesia with sub-Saharan Africans
[24, 26, 34] have resulted in varying degrees of admixture between these populations. Further-
more, a recent study by Gurdasani et al. [35] presented a broad survey of polymorphisms in a
novel array genotyping data set of ~ 1,481 individuals from 18 self-identified ethnic/linguistic
and low coverage whole genome sequencing data set of 320 individuals from 7 self-identified
ethnic/linguistic in Sub-Saharan Africa, and suggested that Eurasian back migrations to Africa
and contributions to ancestry has a substantial impact on differentiation among some sub-Sa-
haran African populations. These mixtures have also contributed to shaping the gene pool of
the derived populations in south-eastern Africa [28, 35]. Other disciplines, such as archaeology,
history and anthropology, have given us clues about the prehistory of African populations. The
study by Pickrell et al. [16] convincingly demonstrated waves of two-way admixture between
Niger-Congo-speaking African and west Eurasian (European or Middle Eastern) populations
to form eastern and southern African (admixed) populations. However, the role of native in-
digenous San in the south-eastern African region and the genetic contribution of this popula-
tion to the southern and eastern African admixed populations has not been elucidated. The
present study makes use of genetic markers to investigate which factors, and to what extent,
they have contributed in shaping the gene pools of extant southern and eastern African popula-
tions. More specifically, we used the Affymetrix Genome-Wide Human SNP Array 6.0, to ex-
amine ~ 900K SNPs and copy number variants in five indigenous populations comprising 25
JuVhoansi San from Namibia (KHS), southeastern Bantu-speakers [25 Sotho-Tswana (STS), 36
Xhosa (XHS), 25 Zulu (ZUL)] as well as 25 Herero (HER), a southwestern Bantu-speaking
group from Namibia. These data were used in conjunction with other published data to
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examine the genetic origins of southern African populations. Importantly, our study demon-
strates the admixture of the indigenous San, Niger-Congo-speaking populations and popula-
tions of Eurasian ancestry in southern and eastern African populations. We have also
developed two complementary approaches to identify signatures of selection prior to and fol-
lowing putative admixture events in the southern African populations.

Results
Sampling and Genotyping

The sample consisted of unrelated individuals belonging to the following five self-identified
ethnic/linguistic populations of southern Africa: southeastern Bantu-speaking [25 Sotho-Tswa-
na (STS), 25 Zulu (ZUL) and 36 Xhosa (XHS)], southwestern Bantu-speaking [25 Herero
(HER)], and 25 JuVhoansi San (KHS). The Sotho-Tswana and Zulu samples were collected in
Johannesburg, the Xhosa from Khayelitsha in Cape Town, the Herero from Windhoek, and the
JuVhoansi from Tsumkwe [36]. The Blood samples were collected with the subject’s informed
consent, and the use of DNA samples for population genetics research was approved by both
the University of the Witwatersrand and University of Cape Town. DNA samples were shipped
to Affymetrix (http://www.affymetrix.com) for genotyping using the Affymetrix Genome-
Wide Human SNP Array 6.0, containing 906,600 SNPs and more than 946,000 probes for the
detection of copy number variation. These data were used to examine patterns of migrations,
genetic ancestry and effects of selection in this study. Other populations included in this study
are listed in S1 Table.

Admixture Analysis

The separation of Africans from non-Africans is clearly evident (Fig. 1 (A)); this has also been
previously reported with both microsatellite data [37, 38] as well as with other SNP data [2, 3,
5]. From pairwise population genetic distance estimates, we find that there is little genetic dif-
ference among Bantu-speaking populations (S2 Table). In addition, Fig. 1 (A) shows a distinct
separation of San populations (San (SAN) and Ju\’hoansi (KHS) and Khoe-San populations
(Bushmen (BUS), $Khomani (KHO)), consistent with previous studies [16, 26, 33, 39, 40].
This result suggests Khoe-San, and both eastern and southern Bantu-speaking populations
have undergone admixture. Furthermore, this result is consistent with the 3-population test
[39, 40] result displayed in S3 Table, which shows clear evidence of admixture between Yoruba
(YRI) and KHS in the southern Bantu (ZUL, STS, XHS). Furthermore, the $Khomani (KHO),
and eastern Bantu-speaking populations also reflect a three-way admixture of Caucasian
(CEU), Yoruba (YRI) and KHS. The results in Fig. 1 (A and D) suggest that the genetic make-
up of the southeastern Bantu-speaking groups (ZUL, STS, XHS) includes ancestral contribu-
tions from Niger-Congo (26% * 0.3%) and San populations (74% * 0.4%). However, consistent
with previous findings [40], the data in Fig. 1(B-C), suggests Niger-Congo ancestry (17% *
1.2% and 57% + 1.6%), San ancestry (70 + 1.3% and 15% + 0.4%), and notably Eurasian-related
ancestry (13% + 1% and 28% + 2%) in the genetic make-up of $Khomani (KHO) and Sandawe
(SAW), respectively. The admixture observed in the Khoe-San (KHO), and in the eastern Afri-
can populations, (particularly) Sandawe (SAW) reflects the gene flow from Bantu-speaking ag-
riculturalists and/or eastern African pastoralists within the past 1,200 years and sea-borne
immigrants from Europe, Asia and Indonesia [33, 35, 39, 40, 41]. Our observation of Eurasian
ancestry in both eastern (SAW) and southern (KHO) African populations is consistent with ar-
chaeological, genetic, climatological and linguistic data [24, 25, 26, 27, 28, 35]. Furthermore,
Pickrell et al. [16] previously demonstrated multiple waves of population mixture in the history
of many eastern and southern African populations, and that genetic material from Eurasians
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Fig 1. (A) Admixture analysis in southern African and other sub-Saharan African populations compared with Europeans and Asians. From Fig. 1A,
FKhomani (KHO), Xhosa (XHS) and Sandawe (SAW) are 3-way, 2-way and 3-way admixed, respectively consistent with previous results [16, 33, 36]. (B-D)
Admixture analyses using best proxy ancestral populations of each admixed southern African population. (B) For tKhomani (KHO) (C) for Sandawe (SAW)

and (D) for Xhosa (XHS).

doi:10.1371/journal.pgen.1005052.g001

or related populations entered eastern Africa 2,700-3,300 years ago, and southern Africa 900
1,800 years ago [16, 41]. In addition, our study demonstrates the genetic contribution of the
San population to the waves of admixture in the ancestry of the southern and eastern

African populations.

Relationship between Genetic and Geographic Distance

Using the Mantel test with N = 10000 permutations (Materials and Methods), we found a sig-
nificant positive correlation between genetic and geographic distance in the southern African
populations (Pearson’s r = 0.64; p-value = 1.0 x 10~ Fig. 2). To analyse more closely the outli-
er points in Fig. 2, we calculated the perpendicular distance between each point and the regres-
sion line. Analysing the concentration of points around the linear regression, we therefore
defined outliers as points which are greater than 0.05 distance units from the regression line.
When analysing the scatter plot (Fig. 2), there are 10 outlier points, which suggest possible ob-
stacles to migration (S4 Table), assuming that populations have used the shortest path during
their migrations. To assess patterns of migrations and to capture the genetic drift in southern
African populations, we used a maximum likelihood tree and Gaussian approximation to the
genetic drift model; implemented in Treemix [40]. We observed not only a major split between
the African and European continent exhibited on this population tree, but also sub-lineages
within African, and particularly within the southern African populations (S1 Fig.) which is
consistent with previous results [16, 26, 34, 39, 40]. S1 Fig. (B) shows the inferred graph with
three migration events, explaining the model for the relationship of southern and eastern Afri-
cans and non-Africans. This provides evidence for a shared origin for San-and Eurasian- and

PLOS Genetics | DOI:10.1371/journal.pgen.1005052 March 26, 2015 5/28



@’PLOS | GENETICS

Genomic Structure of Southern African Populations

[Te]
N
o
o
N
o
© ]
oS
8 o
£ = B
8 o e
K] 'Y <« "B
o ]
Q ‘e 0
5 < <n
S 5 <
3 o
88 "
| <« <
$ “wYed
< “
T g s "8
o °
S
o
Q o 2000 4000
s

= = (SAN,YRl) <1 <(CEUMKK) & & (ZULYR))
m m (HERYRI) <« «(CEUKHS) ¢ g (ZUL,SAN)
m m (HERSAN) « «(CEULWK) o o (ZylL HER)
= @ (BUSYR) <« < g;ggm) " ~ (ZULBUS)
== iiﬂiﬁéﬁi < Z(STSHER) @ @ (ZULKHS)
- m m (KHS.YRI) <« <«(STSBUS) ¢ @ (ZULMKK)
| (KHS,SAN) <1 <1(STS,KHS) o o (zuL XHS)
. m m (KHSHER) <« «(STS,MKK) (ZUL,LWK)
= m (KHSBUS) <« «(STS,XHS)
(MKK,YR)) <1 < (STS,LWK) @ @ (ZUL.CEU)
<~ > = m (MKK,SAN) <« «(STS,CEU) o o (ZUL,STS)
“ (MKK,HER) < < (KHO,YRI) (ZUL,KHO)
' 5 gmocauy < <0SOSA 0 ausan
= @ (MKKKHS) < < ophe)
- W W (XHS,YR) T < (KHOKHS)
B W (XHS,SAN) < < ’
(XHS, (KHO,MKK)
(XHS,HER) (KHO,XHS)
W W (XHSBUS) < ¥(KHO,LWK)
W W (XHS, KHS) * < («yo cEU)
M W (XHS,MKK) < <(KHO,CEU)
W (LWKYR) < < 5'sTS)
m ®m (LWK,SAN) <« <(SAW,YR|)
® m (LWKHER) < <(5pwsaN)
" ® m (LWKBUS) < <(gaAWHER)
m m (LWKKHS) < < (ganBUS)
m m (LWKMKK) < < (sawKHS)
m m (CEUYR) < <(sawXHS)
= m (CEUSSAN) = < (SAW,LWK)
m-m (CEU,HER) = <(SAW,CEU)
6000 8000 10000 o g (CEUBUS) « <« (SAW,STS)
(CEUKHS) (SAW,KHO)

Geographic Distance

Fig 2. Relationship between genetic distances from southern African populations and their corresponding geographic distances. We identify 10
outlier points (points situated at 0.05 units from the regression line), suggesting possible obstacles to migration (see S4 Table).

doi:10.1371/journal.pgen.1005052.g002

Bantu-related populations in Sandawe (SAW) and $Khomani (KHO). The latter possibility
would be consistent with known south-east African admixture in the Sandawe (SAW) and
tKhomani (KHO). We clearly see four population branches in southern Africa: (i) one formed
from the southern Bantu-speaking populations, which are very distinct from the Niger-Congo
and eastern Bantu-speaking populations, (ii) the second group formed with eastern Bantu-speak-
ing populations, and (iii) the third, and (iv) the fourth group formed with San (KHS+SAN) and
Khoe-San (BUS+KHO), both hunter-gatherers which are quite distinct, and are split into two
distinct groups, including San populations (SAN and Ju\hoansi (KHS)) and Khoe-San popula-
tions (BUS and KHO). This is also consistent with the admixture results shown in Fig. 1, reaf-
firming the concordance between genetic data with geographic origins of populations and their
linguistic affinities.

Haplotypes, Fine-Scale Recombination Rates and Imputation Accuracy

Consistent with previous observations [13], the mean haplotype block lengths are substantially
shorter in African populations than in non-Africans (Fig. 3 (A) and S5 Table). Mean block
lengths are remarkably consistent across the southern African populations in this study and
easily distinguishable from the non-African block lengths. Similarly, decay of linkage disequi-
librium with physical distance along the genome is rapid in southern Africans when compared
with non-Africans (Fig. 3 (B)). Ascertainment biases have been shown to result in faster decay
of linkage disequilibrium compared to a sample of non-ascertained markers [42]. We
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Fig 3. (A) Mean block sizes per chromosome and analysis panel. Error bars are twice the standard error of the mean. (B) Decay of linkage disequilibrium
with physical distance along chromosome 1 for each analysis panel.

doi:10.1371/journal.pgen.1005052.g003

performed coalescent simulations (S1 Text and S2 Text) in order to investigate the effects of as-
certainment bias when markers are ascertained in a population divergent from that in which
they are genotyped. Consistent with previous reports [42], we found the rate of decay of linkage
disequilibrium to be greater with ascertained SNPs (S2 Fig. (A)). Similarly, haplotype block
lengths are similar, irrespective of whether markers were ascertained in the genotyped popula-
tion, or in a divergent population (S2 Fig. (A)). Frequency spectra, however, differ when SNPs
are ascertained in a divergent population (S2 Fig. (A)). Indeed more monomorphic SNPs, and
thus lower overall SNP diversity, are evident when markers are ascertained in a population di-
vergent from that in which they are genotyped. This is further evident in distributions of minor
allele frequencies from empirical data, in which the distribution of minor allele frequencies of
San more closely resembles the theoretical expectation for a non-ascertained sample (S2 Fig.
(B)), mostly due to the abundance of monomorphic SNPs. In addition to differences in demo-
graphic processes, such as bottlenecks, differences in the extent and pattern of linkage disequi-
librium may be the result of differences in the patterns of fine-scale recombination rate. We
assessed the impact of fine-scale recombination events to differences in linkage disequilibrium
patterns using a coalescent-based method [7]. Interestingly, we found that the southern African
Bantu-speaking populations share proportionally more recombination hotspots with both Yor-
uba (YRI) and Europeans (CEU) than with the Ju\V’hoansi (KHS) (Fig. 4, S6 Table), where a
shared hotspot is identified as a region with greater than five times the background recombina-
tion rate within a 10kb window. The proportion of hotspots shared between southern Africans
and both European (CEU) and Yoruba (YRI) samples was generally low (Fig. 4). Our empirical
analyses indicate that few recombination hotspots are shared between southern Africans and
the HapMap populations, with San being the most extreme. More results on recombination
hotspots and the test of whether increased frequency of low frequency and monomorphic
SNPs improves the power to detect recombination hotspots are detailed in S4 Text and S7
Table.

PLOS Genetics | DOI:10.1371/journal.pgen.1005052 March 26, 2015 7128
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Fig 4. Proportion of shared recombination hotpots between the southern African and HapMap
populations (CEU, YRI).

doi:10.1371/journal.pgen.1005052.g004

To assess the accuracy with which missing SNPs in southern African populations can be im-
puted using Yoruba (YRI) or European (CEU) reference populations, we removed SNPs, im-
puted them and checked for correctness in imputation (detail in S1 Text and S3 Text). Our
results show that YRI appears to be useful for imputation, at least for some of the southern
Bantu-speaking groups included in the study, namely Sotho/Tswana (STS), Zulu (ZUL), Here-
ro (HER) and Xhosa (XHS), but less so for the San, for whom imputation accuracy is signifi-
cantly lower than for other African populations (S3 Fig.). Xhosa (XHS) also had lower
imputation accuracy, compared with other Bantu-speaking groups.

Unusual Differentiation in Allele Frequencies

We first developed an approach to select polymorphisms that exhibit large allele frequency dif-
ferences between ancestral populations of Sandawe (SAW), Xhosa (XHS) and $Khomani
(KHO) (see Materials and Methods). We constructed 3 different panels of AIMs [for Sandawe
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(SAW), Xhosa (XHS) and tKhomani (KHO)], where selected SNPs have a certain level of ad-
mixture LD with each other and with at least IMB spacing between adjacent genetic markers
on a chromosome (Materials and Methods). This was to avoid linkage disequilibrium (LD) in
the ancestral population. Such background LD could contribute noise (or bias) to the estima-
tion of ancestral allele frequencies and locus-specific ancestry [43]. Thinning down the SNPs to
a 1Mb spacing may result in a reduction in power to detect cases of deviation in ancestry or al-
lele frequency differences that result from selection. Consequently, our strategy to detect re-
gions of unusual differentiation between the admixed southern African populations and their
source populations, and unusual deviation in local ancestry, is conservative. We evaluated
whether there is an excess of common SNPs with large allele frequency differences (expressed
as a2 (1 d.o.t.) statistic under a model (see Materials and Methods) of neutral genetic drift)
between putative ancestral populations of each admixed southern African population [$Kho-
mani (KHO), Sandawe (SAW) and Xhosa (XHS) (Table 1 and S5 Fig.)]. An unusual extent of
population differentiation can suggest the action of population-specific natural selection. We
observed several SNPs within chromosomal regions (Table 1) for which the evidence of unusu-
al population differentiation was genome-wide significant between the Sandawe (SAW) and
Caucasian (CEU) populations (S5 Fig.), and a small number of SNPs (on chromosome 17q25.1
and 12q24.21) showed unusual genome-wide significant differentiation between SAW and its
two other putative ancestral populations, Yoruba (YRI) and Ju\hoansi (KHS) (S5 Fig.). Chro-
mosome region 3pl1 yielded (to) a genome-wide significance of unusual differentiation be-
tween the Xhosa (XHS) and JuVhoansi (KHS) (p = 9.5e-10, lowest p-value), and between
$Khomani (KHO) and JuVhoansi (KHS) (p = 7.6e-09, lowest p-value). Furthermore, unusual
allele frequency differences between the Yoruba (YRI) and Xhosa (XHS) were identified on
chromosome 1q41. No significant signal of unusual allele frequency differences between Yoru-
ba (YRI) and $Khomani (KHO) were observed, which may be explained by the fact that the
Niger-Congo contribution to admixture in the Khoe-San groups, in particular the $Khomani
(KHO) (Khoe-San population) occurred too recently for it to have a significant impact on their
allele frequencies. All these identified candidate SNPs of unusual allele frequency differences lie
in or near known genes (Table 1). Their biological functions in the GeneCards database [44],
are putatively linked with diseases of high prevalence in southern Africa; their detailed annota-
tions are presented in Table 1.

Local Ancestry in XHS, SAW and KHO

We selected the best proxy parental populations of Xhosa (XHS) based on a pool of Click-speak-
ing and Bantu-speaking populations using PROXYANC [45]. Yoruba (YRI) and JuVhoansi
(KHS) were chosen as best proxy ancestral populations for Xhosa (XHS). Similarly, among the
populations in the study, Yoruba (YRI), European (CEU) and JuVhoansi (KHS) were chosen as
best non-San, European and San proxy ancestral populations for both $Khomani (KHO) and
Sandawe (SAW) (Materials and Methods). Using AIMs panels, LAMP-LD [46] was employed to
estimate the distribution of genetic contributions of ancestry across the genome (Materials and
Methods) to provide additional reassurance from our data that we obtain unbiased results in the
absence of possible background LD. The average locus-specific Ju\Vhoansi (KHS) and Yoruba
(YRI) ancestry proportions across the Xhosa (XHS) samples were estimated to be 27% + 3.1%
and 73% + 3.1% (mean * SD), respectively. We obtained 12% + 0.8%, 77% + 1.1% and 11% +
0.9% (mean + SD) locus-specific Yoruba (YRI), JuVhoansi (KHS) and Caucasian (CEU) average
ancestry contributions, respectively along the genome of the $Khomani (KHO). For the Sandawe
(SAW), the locus-specific ancestry proportions were 12% + 0.9%, 70% + 0.7% and 18% + 1.0%
for Yoruba (YRI), JuV'hoansi (KHS) and Caucasian (CEU) average ancestry, respectively. The
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Table 1. List of SNPs whose unusual differentiation between pair-wise indigenous southern African populations are genome-wide significant.

CHR SNP A1/ P Gene Pathway
A2  values

Yoruba and Xhosa

1941 rs11118642 C/A 1.1e- HLX Metabolic
13

Yoruba and Sandawe

17925.1  rs2279053 C/A 5.5e- QRICH2 Metabolic
10

12924.21 rs4767374 C/A  1.3e- MED13L Obesity/Transposition-
09 of-Great-Arteries

European (CEU) and Sandawe

12p11 rs3816834 C/A 2.9e- ITPR2 Long term depression
08

11g22.1 rs1943760 C/A  4.0e- PGR Immune response
09 MIF-JAB1 signalling,

Oocyte meiosis

21922.3 rs2839439 C/A 9.6e- C21orf121 Metabolic
09

2p21 rs4588165 A/C 1.5e- CRIM1 MAPK signalling
09 pathway

6922.2 rs2049923 C/A 9.3e- MARCKS Fc gamma R-mediated
10 phagocytosis

7921 rs4730838 C/A 2.5e- MAGI2 Tight junction
10

6925.1 rs9384458 A/C 2.9e- ARID1B Drug metabolism and
08 other enzymes

12p13.3 rs11062658 C/A 1.6e- PRMT8 Drug metabolism other
09 enzymes

6023.2 rs9478984 A/C  3.5e- RPS12 Ribosome
08

3021.2 rs1373606 A/C 2.9e- KALRN Drug metabolism and
08 other enzymes

4q934.3 rs1567475 C/A  1.3e- AGA Glycan degradation
08

2g21.2 rs1561019 C/A  9.6e- 0.23 0.04 LRP1B Metabolic
09

9g31.2 rs7039618 C/A  9.6e- 0.23 0.04 TMEM38B Metabolic
09

7931.1 rs2037048 C/A 2.9e- 0.23 0.04 C7orf66 -
08

14921 rs2054492 C/A 5.2e- 0.23 0.04 PELI2 Metabolic
08

5q11.2 rs1075420 C/A 9.6e- 0.23 0.04 MAP3K1 GnRH signaling
09

12924.32 rs10773557 A/C 9.6e- 0.23 0.04 TMEM132C -
09

JuVhoansi and $tKhomani

3pii rs4858960 A/C 7.6e- 0.25 0.04 POU1F1 Metabolic
09

JuVhoansi and Sandawe

Associated Disease

Fryns syndrome, Hernia, acute myeloid leukemia

Drug metabolism other enzymes
Drug metabolism other enzymes
Amyotrophic lateral Sclerosis, arrhythmia,

rheumatism, Alzheimer's disease, hypertension,
liver cancer, hepatitis b and pancreatitis

Thyroiditis, breast carcinoma, tumors, carcinoma
ductal and Breast cancer
Choroiditis and Down Syndrome

Neuronitis, ataxia and macular degeneration

Hepatitis, malignant syringoma, bipolar disorder,
brain disease, Alzheimer's disease, asthma, and
colorectal cancer

Ulcerative and Colitis-and-Crohn's-Disease
Coffin-Siris and Syndrome

Malaria, peripheral primitive neuroectodermal
tumor, primitive neuroectodermal tumor, and
neuroectodermal tumors

Malaria, Carcinoma and Tuberculosis
Neuronitis Human Immunodeficiency Virus
Infectious disease

Influenza and Aspartylglucosaminuria

Cholesterol Thyroiditis

Cleft Lip

Ataxia

Breast Cancer

Combined Pituitary Hormone deficiency, growth
hormone deficiency

(Continued)
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Table 1. (Continued)

CHR SNP

14921.1 rs10148725

3pi1 rs4858960
1925 rs234654
3028 rs260559

14913.2  rs10132268

JuVhoansi and Xhosa
3pi1 rs4858960

3013.32  rs1521293

At/
A2

C/A

A/C

C/A

A/C

C/A

A/C

C/A

P
values

1.8e-
08

5.3e-
10
1.8e-
08

1.8e-
08

1.8e-
08

9.5e-
10

3.2e-
08

0.24 0.04 POU1F1 Metabolic

0.25 0.04 POU1F1 Metabolic

Gene Pathway Associated Disease

0.24 0.04 FBXO33 Metabolic Osteoporosis

Combined Pituitary Hormone deficiency, growth
hormone deficiency

0.24 0.04 FAM129A Metabolic Carcinoma
0.24 0.04 TPRG1 Metabolic Parkinson's Disease
0.24 0.04 INSM2 Metabolic Insulinoma

Combined Pituitary Hormone deficiency, growth
hormone deficiency

0.25 0.05 IGSF11 Metabolic Carcinoma

We obtained the associated disease genes using the MalaCards Database, an integrate compendium for diseases and their annotations [44, 53].

doi:10.1371/journal.pgen.1005052.t001

above estimates of average locus-specific ancestry are all consistent with the related genome-
wide average proportion estimates in the admixture analysis section, indicating that there is no
evidence of systematic distortion in our local ancestry estimates. The plots of these average locus-
specific ancestries of these admixed southern African populations, namely Xhosa (XHS), +Kho-
mani (KHO) and Sandawe (SAW) are in S6 Fig.. In the next two sections, we examined signals
of selection, consisting of unusual deficiency or excess of ancestry in the admixed southern
Xhosa (XHS), Sandawe (SAW) and $Khomani (KHO) populations. Such regions in admixed
populations have served in previous studies as signatures of natural selection that occurred after
admixture [43, 47, 48, 49, 50, 51]. Here, we considered not only the regions of strong deviation
from ancestry, but we also implemented an approach that is now incorporated in PROXYANC
[45] to test for unusual deficiency or excess ancestry using the inferred locus-specific ancestry
across the genomes of admixed populations. The loci showing unusual ancestry patterns, i.e. four
standard deviations above (excess ancestry) or below (reduced ancestry) the genome-wide aver-
age, were identified as candidates of post-admixture natural selection (Materials and Methods).

Identification of Regions of Unusual Excess or Reduced Ancestry in the
Xhosa (XHS) population

Examining the genome-wide distribution of ancestry in Xhosa (XHS), we detected the natural
selection events post-admixture (Table 2). We identified a region on chromosome 3p11 (chr3:
size: 17,184 (bp), p = 1.4e-10) with strongly reduced Ju\’hoansi (KHS) ancestry in Xhosa
(XHS) (Table 2). This region yielded a genome-wide significance with an unusual difference of
ancestry, suggesting a signal of selection after admixture. The SNP in the 3p11 region with the
lowest p-value, rs4858960, is associated with POUIF1, which in turn interacts with five other
genes [52], including ETS1, NR3C1, JUN, NR113 and MEDI. These genes are known to play a
role in a metabolic pathway that positively affects growth traits and hormone deficiency [53].
Furthermore, the 3p11 region showed strong differences in allele frequencies between Xhosa
(XHS) and JuV’hoansi (KHS) (p = 9.5e-10) (Table 1). Since San and Khoe-San communities
have undergone a sharp population decline in their history, this differentiation suggests an
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Table 2. Four regions showing excess of YRI ancestry and three regions of reduced CEU and KHS ancestry in tKhomani.

Region SNPs Position
120241 4 112,842,994—
112,856,642
139143 2 58,513,521—
58,515,045
18p11.23 12 6,729,821—
6,915,715
18p11.31 18 5,954,705~
6,414,910
Region SNPs Position
12p13.31 1 7,864,050—
7,870,155
149132 14 36,007,558—
36,278,510
149133 7 36,985,602—
36,990,354

Size Excess
(bp) Ancestry
13,649 YRI
1,525 YRI
185,895 YRI
460,206 YRI

Size Deficient
(bp) Ancestry
6,106 KHS

270,953 KHS,CEU

4,753 KHS,CEU

Lowest
P value

4.2e-9

3.1e-08

2.2e-08

2.9e-08

Lowest
P value

3.7e-08

3.4.e-09

1.1e-08

Genes

RPL6,RPL11,RPSS3,
RPS15A,RPL4,RPL7

IHNRNPA1,HNRNPA1L2,

LAMA1,ARHGAP28,
ITGA1,ITGA2,C3,LAMB1,
PLAT

L3MBTL4,LOC100130480

Genes

DPPAS,IPO5

GARNL1,BRMS1L,
RALGAPA1,NFKBIA,
INSM2,NFKB1,PTCSCS3,
KIAA0391,RELA,CHUK,
IKBKB,IKBKG,TCF3,MYC,
ZSCAN1,SAP30,BRMS1,
RBBP4,RBBP7,ING2

NKX2-1,NKX2-8,
PTCSC3,SFTAS,
CCDC59,NCK1,MAPK1,
NCOA2,RARA

Pathway

Ribosome

Spliceosome

Signalling by Rho
GTPases,Signal
Transduction,
Pathways in
cancer,Focal
adhesion

Pathway

Toll-Like
Receptors
Pathway

Molecular
Mechanisms of
Cancer
NF-kappa B
Activation by
Viruses, Itk and
Tcr Signalling

Cell adhesion Tight

junctions

We obtained the associated disease genes using the MalaCards database [44, 53] (Materials and Methods).

doi:10.1371/journal.pgen.1005052.t002

Associated Disease

Malaria, Noonan syndrome,
t-cell leukemia, colorectal
cancer, gastric cancer,
carcinoma, lupus
erythematosus

Malaria

Meningioma, Lung cancer,
Congenital muscular
dystrophy, Neuromuscula,
Alzheimer's and
Hirschsprung's diseases

Parkinson's disease, Breast
cancer

Associated Disease

Seminoma, Testicular germ
cell tumor, Teratocarcinoma,
Germ cell tumor,Carcinoma

Tuberous sclerosis, Prader-
Willi syndrome, Breast
cancer, Lung cancer,
Tumors inflammation,
Leukemia T-cell, Diabetes
mellitus, Parkinson's
disease

Chorea benign Hereditary,
Hepatocellular carcinoma,
Lung cancer,
Adenocarcinoma lung

environmental pressure that the San ancestors of the Xhosa (XHS) may have experienced be-
fore population admixture, and we speculate a possible adaptation of Xhosa (XHS) to the local
environment. Mutations in the POUIF1/PIT1 gene, a pituitary-specific transcription factor, af-
fect the development and function of the anterior pituitary and lead to combined pituitary hor-

mone deficiency [53].

Identification of Regions of Highly Unusual Excessive or Reduced
Ancestry in the Sandawe (SAW) and $Khomani (KHO) Populations
In spite of slight predominance of Ju\’hoansi (KHS), San ancestry in $Khomani (KHO) com-

pared to Sandawe (SAW), and European (CEU) related ancestry in Sandawe (SAW) compared
to tKhomani (KHO), consistent with previous findings [16, 26, 34, 40], our results from both

PLOS Genetics | DOI:10.1371/journal.pgen.1005052 March 26, 2015
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Table 3. Three regions showing excess of YRI ancestry and other three showing deficiency of CEU and KHS ancestry in Sandawe.

Region SNPs Position
120241 4 112,842,994—
112,856,642
18p11.31 30 5,954,705—
6,414,910
18p11.23 13 6,941,743—
7,117,813
Region SNPs Position
12p13.31 1 7,864,050—
7,870,155
149132 11 36,007,558—
36,278,510
149133 5 36,985,602—
36,990,354

Size
(bp)
13,649

460,206

176,071

Size
(bp)
6,106

270,953

4,753

Excess
Ancestry

YRI

YRI

YRI

Reduced
Ancestry

KHS,CEU

KHS,CEU

KHS,CEU

Lowest
P value

1.4e-10

1.9e-13

2.0e-12

Lowest
P value

3.3e-08

1.4.e-10

2.3e-08

Genes

RPL6,RPL11,RPS3,
RPS15A,RPL4,RPL7

LOC645355,L3MBTL4,
MIR3976,ARHGAP28,
LOC100130480

LAMA1

Genes

DPPAS, IPO5

GARNL1,BRMS1L,
RALGAPA1,NFKBIA,
INSM2,NFKB1,PTCSCS3,
KIAA0391,RELA,CHUK,
IKBKB,IKBKG, TCF3,
MYC,ZSCAN1,SAP30,
BRMS1,RBBP4,RBBP7,
ING2

NKX2-1,NKX2-8,
PTCSC3,SFTAS,
CCDC59,NCK1,MAPK1,
NCOA2,RARA

Pathway

Ribosome

Signalling by Rho
GTPases, Signal
Transduction

Cell adhesion
Endothelial cell
contacts by non-
junctional
mechanisms and
Cytoskeleton
remodelling Integrin
outside-in signalling

Pathway

Toll-Like Receptors
Pathway

Molecular
Mechanisms of
Cancer

NF-kappa B
Activation by Viruses
ITK and TCR
Signalling

RANK Pathway

Cell adhesion Tight
junctions

We obtained the associated disease genes using the MalaCards Database [44, 53] (Materials and Methods).

doi:10.1371/journal.pgen.1005052.t003

Associated Disease

Malaria, Noonan syndrome,
t-cell leukemia, colorectal
cancer, gastric cancer,
carcinoma, lupus
erythematosus

Benign meningioma,
Meningioma, Parkinson's
disease, Hamartoma,
Retinitis, Acute myeloid
leukemia

Muscular dystrophy,
Myopia, Choriocarcinoma,
Congenital muscular
dystrophy, Alport
syndrome, Hirschsprung
and Alzheimer's disease

Associated Disease

Seminoma, Testicular germ
cell tumor,
Teratocarcinoma, Germ cell
tumor, Carcinoma

Tuberous sclerosis, Prader-
Willi syndrome, Breast
cancer, Lung cancer,
Tumours inflammation,
Leukemia T-cell, Diabetes
mellitus, Parkinson's
disease

Chorea (Benign
Hereditary), Hepatocellular
carcinoma, Lung cancer,
Adenocarcinoma lung

admixture (Fig. 1) and locus-specific ancestry analyses (S6 Fig.) have shown a potential ances-
tral link between the admixed Sandawe (SAW) and $Khomani (KHO). Three chromosomal re-
gions (12q24.1, 18p11.31 and 18p11.2), each within several SNPs with moderate and
significant p-values, appear with excess of Yoruba (YRI) ancestry in both Sandawe (SAW) and
+Khomani (KHO); an additional region (13q14.3) was also identified as an excess of Yoruba
(YRI) ancestry in $Khomani (KHO), (Tables 2 and 3). These four candidate regions (Tables 2
and 3) showed strong unusual difference of ancestral contributions (p < 1.0 e-08, chi2 test),

PLOS Genetics | DOI:10.1371/journal.pgen.1005052 March 26, 2015
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Table 4. Number of known copy number polymorphisms (of a total of 1130 autosomal CNPs) that are
polymorphic in each analysis panel.

Number of polymorphic CNPs Proportion of CNPs polymorphic
CEU 577 0.63
YRI 837 0.92
STS 486 0.50
XHS 636 0.67
ZUL 561 0.57
HER 482 0.49
KHS 338 0.38

doi:10.1371/journal.pgen.1005052.t004

and have been associated with various important diseases, including malaria, T-cell leukemia,
congenital muscular dystrophy, Noonan syndrome [53], and others listed in Tables 2 and 3.
That some genes in these regions are associated with $Khomani (KHO)- and Sandawe (SAW)-
specific high-risk diseases (such as malaria) [53], suggests a functional role these disease-relat-
ed genes (or other genetic elements in these regions) might have played in their migration and
particularly local adaptation due to such selective pressure resulting from shared gene-culture
co-evolution and cultural practices in Bantu-speaking and Click-speaking populations. Overall,
in the results of genome-wide allele frequency differences between Yoruba (YRI) and these two
admixed populations (Tables 1, 2 and 3), only the 12q24.1 region was replicated significantly
between Yoruba (YRI) and Sandawe (SAW). This may indicate different environmental pres-
sures that the $Khomani (KHO) and Sandawe (SAW) experienced post-population-admixture.

We observed two other regions (12p13.31 and 14q13.2-14q13.3), with significant difference
(Tables 2 and 3) of ancestry (p < 4.8e-08) showing a strong relative reduction of Caucasian
(CEU) and JuVhoansi (KHS) ancestry in both $1Khomani (KHO) and Sandawe (SAW). These
regions were also identified as candidates of the natural selection after admixture (Tables 2 and
3). Importantly, these two regions (Tables 2 and 3) are also associated with some important
diseases such as breast cancer, lung cancer, tumour inflammation, diabetes mellitus, Parkin-
son's and other diseases [44, 53], Although these regions have been associated with diseases,
there is no indication of whether this points to any mechanistic association. However, it is
tempting to speculate that factors such as food, pathogens, and life style, could also be responsi-
ble for such reduction in ancestry and may therefore play a role

Copy Number Variation

Our approach to analyzing copy number variation in southern African populations involved the
detection of known copy number polymorphisms (CNPs) using a Gaussian mixture model, and
the identification of potential novel copy number variants (CNVs) using a Hidden Markov
Model (HMM) (S5 Text). The number of CNPs (S5 Text) in Yoruba (YRI) is greater than that
found in the European (CEU) and the southern African populations (Table 4). The former is
probably the result of bottlenecks in non-Africans and subsequent loss of CNPs of low frequency
[54, 55, 56], whereas the latter is likely the result of ascertainment bias. Given that CNP probes
were ascertained in HapMap populations (including Yoruba (YRI)), lower levels of CNP diversi-
ty for populations that are divergent from ascertained populations is expected. However, south-
ern African populations, which are approximately matched for sample size, show marked
differences in the distribution of the number of CNPs, particularly in the San (JuVhoansi (KHS))
with fewer CNPs than other southern African populations (Table 4). Distributions of derived al-
lele frequencies of CNPs suggest higher purifying selection on duplications (S7 Fig.). In contrast,
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however, there appears to be little difference in the degree of purifying selection on duplications
and deletions in novel CNVs detected with the HMM (S7 Fig. (A)). We detected a total of 1873
CNVs (Table 5), of which 1231 were deletions. Only 137 of the CNV's were singletons, with 87
deletions and 50 duplications (Table 6). A total of 397 were novel with respect to the Database of
Genomic Variants [55, 56, 57, 58]. At least 157 of these were unique CNVs, which occurred in
only one population. The number of CNVs per individual is generally similar between popula-
tions (S7 Fig. (B)), except San which had significantly fewer deletions than other populations
[e.g. Herero (HER) vs JuVhoansi (KHS)]: Student’s T-test, ¢,y = 22.4, P = 1.3e-15). Furthermore,
distributions of derived allele frequencies of CNPs suggest purifying selection on duplications
(S7 Fig. (A)). In contrast, however, there appears to be little difference in the degree of purifying
selection on duplications and deletions in novel CNV's detected with the HMM (S7 Fig. (A)).

Discussion

In this study, we have conducted a systematic population genomics survey and investigated de-
mographic histories of indigenous southern African populations, making it possible to address
questions about the signature of selection prior to and following purported ancient admixture
events. Consistent with previous studies [16, 26, 33, 34, 35, 39, 40], we demonstrated stratifica-
tion among indigenous southern African populations. Both the geographic distribution of ge-
netic variations and the population structure, suggested a complex human population history
generally within the African continent, and specifically in southern and eastern Africa. Incor-
porating the data from other Click-speaking populations from previous studies [16, 26, 33, 34,
39, 40] together with that from our 25 JuV’hoansi (KHS) subjects, it was possible to investigate
the relationship between Click-speaking and southern Bantu-speaking populations thought to
represent an early diverging branch of modern humans.

The admixture analyses, particularly that of southern African populations, lends support of
gene flow between San and Niger-Congo-speaking populations due to their contact following
migrations of Bantu-speaking populations across the continent [17, 18, 26, 27, 33, 34, 35]. Con-
sistent with previous studies [16, 26, 33, 34, 39, 40], our admixture (Fig. 1) and tree-mix analy-
ses (S1 Fig.) suggested a division between south-west (San) and south-east (Khoe-San mostly

Table 5. Copy number variants shared among study populations and with previously reported struc-
tural variants.

CNVs Novel CNVs*
HapMap & Southern African 279 39
African only 315 51
Southern African only 323 51
Southern African Bantu 429 61
Total 1873 397
Private CNVs
CEU 210 65
YRI 145 40
STS 37 11
XHS 69 14
ZUL 32 8
HER 28 11
KHS 47 8

*compared to Database of Genomic Variants

doi:10.1371/journal.pgen.1005052.t005
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Table 6. Number of singleton copy number variants (CNVs) in each population.

Population Singletons Deletions Duplications
CEU 63 63 0
YRI 24 0 24
STS 8 8 0
XHS 23 14 9
ZUL 12 2 10
HER 2 0 2
KHS 5 0 5
137 87 5

doi:10.1371/journal.pgen.1005052.t006

admixed) populations. Our findings confirm an ancient link between San and some eastern Af-
rican populations, including Sandawe, consistent with previous findings [16, 26, 35, 34, 39, 40].
The Eurasian ancestral components in south-east Khoe-San and some eastern Bantu speaking
populations (such as Sandawe, Hadza) may be a consequence of an early Eurasian genetic con-
tribution into Africa [16, 28, 35], Furthermore, the f-3 statistic test (S3 Table) confirms south-
ern Bantu speaking populations, in particular Xhosa (XHS) to be two-way admixed, and both
tKhomani (KHO) and Sandawe (SAW) are at least three-way admixed. The San (KHS) exhibit
higher levels of homozygosity (S9 Table), increased relatedness (S9 Table) and higher propor-
tions of monomorphic SNPs (S8 Table) than other African populations. However, we have
shown that ascertainment of markers in a divergent population results in a reduction of diver-
sity in the genotyped population, probably the result of polymorphisms arising after the diver-
gence of the ascertained and genotyped populations, and the loss of polymorphisms in the
genotyped population through fixation. Improved statistical models are therefore needed for
the comparison of populations that have varying degrees of divergence from the population in
which markers were ascertained.

Our copy number analysis included identification of both known CNPs, which are copy
number loci previously identified in HapMap populations [55, 56, 58], and putatively novel
CNVs. CNPs are highly ascertained, since they have been selected to be polymorphic and seg-
regating at allele frequencies > 1% in HapMap populations [56]. CNVs, however, are less as-
certained and should have more similar levels of polymorphisms in all of the studied
populations [55]. In the case of CN'Vs, deletions are observed more frequently than duplica-
tions. This appears to be inconsistent with the proposal that deletions are under stronger puri-
fying selection [58, 59, 60], which has also been inferred previously based on a lower degree of
overlap between deletions and both genomic regions [59], and disease-related genes [59]. How-
ever, the disparity in the number of deletion and duplication CNVs probably reflects the rela-
tive difficulty of detecting the latter, due to a smaller relative change in copy number (3:2
versus 2:1) [59], rather than stronger purifying selection on duplications. In the southern Afri-
can data, deletions and duplications have similar distributions to that of derived allele frequen-
cies for CNVs, suggesting little difference in the relative degree of purifying selection. The
number of deletion CNVs per individual differs markedly between the San (KHS) and other
African populations. This may be an effect of sample size; however Herero (HER), with a simi-
lar sample size to San (KHS) for copy number calling, have no reduction in the number of dele-
tions. In addition, copy number variants called for the Zulu (ZUL) panel with only 20 samples,
were more than 99.9% concordant at normal, and 81.6% concordant at abnormal copy number
regions, with those called in conjunction with other Bantu populations. Alternatively, some hy-
bridization probes may have lower intensities in the San (KHS) due to probe-target mismatch
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mutations. However, such probe effects are likely to cause increased numbers of deletions in
the San (KHS). Finally, population demographic and selective effects may cause differences in
the number of deletion CNVs. In summary, copy number results suggest San (KHS) to be
unique, although they should ideally be validated using trios, as shown previously [55, 56].

Haplotype blocks show very similar patterns of linkage disequilibrium between African
populations, with this collective group having substantially shorter haplotype blocks, and less
linkage disequilibrium, than Non-African populations. For instance, patterns of linkage dis-
equilibrium surrounding the lactose tolerance (LCT) gene, known to have undergone a selec-
tive sweep in Europeans [7], have strong levels of linkage disequilibrium in Europeans, yet not
in southern African populations (S2 Fig. and S4 Fig.). Khoe-San, however, appear to have in-
creased levels of linkage disequilibrium associated with LCT than the other African popula-
tions [particularly the Sotho/Tswana (STS) and Zulu (ZUL); S2 Fig.]. This may be due to a
weak selective sweep or the result of gene admixture with the San (KHS), a pastoral group from
Namibia known to be lactose tolerant [29].

In addition, it was particularly interesting to examine the signature of selection in the indig-
enous and admixed southern African populations, including +Khomani (KHO), Xhosa (XHS)
and Sandawe (SAW) due to the high mortality of the San population, historically. Following
the recommendation of Bhatia et al. [61], we additionally implemented two strategies to detect
possible evidence of population-specific natural selection in southern African populations. The
first strategy, involved evaluating whether there is an excess of common SNPs with large allele
frequency differences between admixed southern African populations, including $Khomani
(KHO), Sandawe (SAW) and Xhosa (XHS) and their purported parental populations. The
power of this analysis was based on an approach we developed to select three panels of 502
SNPs with at least 1MB spacing between adjacent genetic markers on each individual chromo-
some. Several SNPs on chromosomal regions for which there is evidence of unusual population
differentiation between Sandawe (SAW) and Caucasians (CEU), are displayed in Table 1. Im-
portantly, most of the signals of selection identified through this strategy are linked with specif-
ic high-risk diseases such as malaria, influenza, tuberculosis, and AIDs/HIV, which have a high
prevalence in southern African populations (e.g. in the Sandawe, $Khomani and Xhosa popula-
tions) (Table 1). The allele frequency differences between southern African populations (in-
cluding some putative parental populations) follow the null distribution predicted by neutral
drift as a consequence of the recent origin of southern African population structure. This may
yield a risk of false positive associations due to population stratification in disease association
studies, despite the fact that there are differences between southern African populations [62].

The second strategy to detect possible evidence of population-specific post-admixture selec-
tion involved a signal of unusual excess or deficiency of ancestry in the admixed southern Afri-
can populations [Khomani (KHO), Sandawe (SAW) and Xhosa (XHS)]. The recent studies by
Bhatia et al. [61, 63] showed that loci with significant deviation in local ancestry (from the ge-
nome-wide average) may due to insufficient correction for multiple hypothesis testing and/or
due to possible systematic errors in local ancestry inference. We have employed the minor al-
lele frequencies from the correct proxy ancestral populations of the admixed population to cor-
rect for possible systematic errors on the inferred local ancestry that may lead to false positive
deviations in local ancestry. Moreover our study did not only rely on the deviation (more than
4.0 standard deviations) in local ancestry from the genome-wide average; we additionally used
the distribution of difference in locus-specific ancestry along the genome admixed population
to evaluate the genomic regions showing unusual excessive or reduced ancestry which are likely
to be signatures of natural selection after admixture [43, 48, 49, 50, 51].

Several recent studies have detected excessive or reduced ancestry contributions in admixed
populations as signals of post-admixture selection, using reference ancestral parental
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populations [43, 48, 49, 50, 51]. Our study used selected best proxy ancestral populations and
AIMs panels for our admixed southern African populations, and we extended previous ap-
proaches to test for unusually increased or decreased ancestry contribution along the genome.
We identified three and four regions showing a significant excess of Yoruba (YRI) ancestry in
Sandawe (SAW) and $Khomani (KHO), respectively (Tables 2 and 3). Three other regions
showed unusually reduced Caucasian (CEU) and San (KHS) ancestry in both $Khomani
(KHO) and Sandawe (SAW) (Tables 2 and 3). Since some of the genes in these regions are
linked with specific high-risk diseases such as malaria in the $Khomani (KHO) and Sandawe
(SAW), as has also been noted in the recent study by Gurdasani et al. [35], it is plausible that
these disease-related genes might have played a role in population adaptation historically.
Among the identified genomic regions, the 12q24.1 region was found in both strategies for de-
tecting signals of natural selection, supporting evidence of environmental pressures that the
tKhomani (KHO) and Sandawe (SAW) experienced. Furthermore, two other candidate re-
gions pointing to natural selection were identified in both $Khomani (KHO) and Sandawe
(SAW), showing strong deficiency of European and San ancestry components, and also an un-
usual population differentiation in these regions. These two regions are also linked with some
important diseases such as breast cancer, lung cancer, inflammation, diabetes mellitus and Par-
kinson's disease [53], which are known to occur at a relatively higher prevalence in European
populations, when compared to indigenous southern African populations [59].

African, and particularly southern and eastern African populations, face a heavy burden of
diseases including HIV/AIDs, tuberculosis and malaria, and a growing burden of non-commu-
nicable diseases [17]. Of note, all the reported regions with signals of selection are in admixture
LD and with significant deviation in average local ancestry (or unusual difference in allele fre-
quency). In addition, our constructed AIMs panels for southern and eastern admixed popula-
tions may potentially be utilized for further admixture mapping studies in these populations.
Nevertheless, further investigations are required to reveal the targets and agents of selection
that have played important roles in shaping the admixed gene pool of these southern and east-
ern African admixed populations. With extensive admixture, both between none-San and San
populations, and between African and non-African populations, southern and eastern African
populations have a great potential for the identification of genes which determine susceptibility
to both communicable and non-communicable diseases and to understand the African genetic
variations with response to drugs/treatment variability.

The southern Bantu and Khoe-San populations are 'admixed' and future genome-wide stud-
ies will need to correct for this stratification or may need to use the locus-specific ancestry to
increase power in association studies. Admixture mapping in the African-American and some
other three-way admixed populations (such as Latinos, Puerto) has been successful for some
disease traits [43, 51]. Since the admixed southern African populations have similar admixture
proportions to admixed American populations, we hypothesize that admixture mapping would
likely be a successful approach in many southern Bantu and Khoe-San cohorts, and particularly
in the Xhosa, tKhomani and Sandawe.

A large proportion of the currently active genomic studies being conducted as part of the re-
cently launched H3Africa programme (H3Africa, http://h3africa.org/) and the more recently
described African Genome Variation Project [35], involve genome wide association studies
[64]. A significant number of these studies involve large collections of sub-Saharan African
subjects, and would benefit from this knowledge.
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Materials and Methods
Ethics Statement

This study, investigating the genomic structure of indigenous southern African populations,
was approved by the Research Ethics Committees of the University of Cape Town, and Witwa-
tersrand University (REC Ref 305/2009 for the Project: Genome Wide Microarray Analysis of
southern African Human Populations [65, 66].

Genetic Marker Selection: Relationship between Population
Differentiation and Admixture Linkage Disequilibrium
Consider a pair of populations k and [ from a pool of K ancestral populations of an admixed

population and assume that the minor allele frequencies at SNPs i and j are greater than 0.005.
Similar to Glaubitz et al. [67], we defined the admixture linkage disequilibrium as

Ly =mL;+ (1 — m)L, +m(1 — m)or x 5]'." (a)

Where m is the ancestral proportion, J; and J; are differences in allele frequency at SNPs i and j
in population k and /, respectively. Assuming for each pair of SNPs i and j there is no linkage
disequilibrium in ancestral populations, it thus follows,

L, =m(1—m)o x 5}].‘1 (b)

m(1 —m)ol x 5]'.‘1

L.

Yy

1:

()

At a given pair of SNPs i and j in the admixed population, Equation (c) establishes a relation-
ship between the observed linkage disequilibrium L;; in a recently admixed population and an-
cestral population differentiation. One can expected the ratio (part 2) in Equation c to be closer
to 1 when the two reference ancestral populations contributed to the admixture of the related
admixed population. Equation (c) is a total ancestry content (AC) at a pair of SNPs i and j. Let
I;j denote the ration in Equation c, assuming a uniform ancestral proportion, and summing
Equation (c) over all possible pairs of proxy ancestral populations, we can obtain the ancestry
informativeness I;; of each pair of SNPs i and j as follows,

1 o x (3}’.‘1

I,.]. =—
4K k£ Lij

Let M be the total number of SNPs. For i € {1,.. ., M}, let N; be the total number of pair-wise
LD j with i, where j # i,V j € {1,. . ., M} within SNP i, we obtain the ancestry informativeness at

SNP i as a weighted sum of I

I= EN: i
i = \/M

We applied this method to construct the AIMs panel for Xhosa, $Khomani and Sandawe. This
approach of selecting ancestry informative markers (AIMs) is implemented in the PROX-
YANC program (http://web.cbio.uct.ac.za/proxyanc/).
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Screening for Close Relatives and Admixture Analysis

We estimated the pair-wise genome-wide level of relatedness using a previously described re-
latedness statistic [67] applied to a random selection of 2500 putatively unlinked SNP markers
with minor allele frequencies between 0.3 and 0.5. These SNPs were randomly selected across
each chromosome, with a minimum spacing of 1 MB, to prevent inclusion of SNPs in strong
linkage disequilibrium, which would violate the assumption of marker independence. Principal
Component Analysis (PCA) was performed, using EIGENSOFT [68], on the combined Hap-
Map3, HGDP, other African data from [26, 34, 39, 40] and southern African genotypes, which
included a total of 50K SNPs shared between these different panels. In addition to the PCA
analysis, an Fgr matrix using the smartpca program was generated. Admixture analysis [68, 69]
was performed on combined panels based on 900K SNPs using the ADMIXTURE program
[69]. To evaluate the genetic relationships among the above populations, we used the TreeMix
software [40] to infer the structure of a graph from genome-wide allele frequency data and a
Gaussian approximation to genetic drift. Furthermore, to identify some aspects of ancestry not
captured by the tree, we also examined the residuals of the model’s fit and sequentially added
the migration events to the tree. We also used copy number variants as a population marker in
an additional population structure analysis, but only for HapMap3 and southern African sam-
ples for which the intensity data (CEL files) necessary for copy number calling were publicly
available. Copy number variants, detected with a Hidden Markov model that identifies novel
copy number variation [55], were preferred over previously described copy number polymor-
phisms, since these are affected to a lesser extent by ascertainment bias. We randomly selected
a total of 2869 copy number variable positions, corresponding to 1 marker every 1Mb, across
all chromosomes and specified copy number alleles as either a deletion, normal or duplicated
state dependent on the copy number state called in the Birdseye algorithm [55]. We only select-
ed simple copy number variants consisting of either a deletion or duplication, but not both.

Relationship between Geographic and Genetic Distance

Here, we used all available southern African population data, including HER, SAN, XHS, XHS,
LWK, BUS, ZUL, SAW, a Niger-Congo-speaking population (YRI) and a non-African popula-
tion, which included CEU. We made use of the Haversine formula to compute the geographic
distance (in kilometre) between pairwise populations based on great circle distances using the
way points between continents. The way-points used are Egypt (29.998392, 30.999751) and
Turkey (41.015472, 27.986336). Thus, we computed the correlation between Fgr and Geo-
graphic distance using a linear regression equation as

Fg; = 1.298 x 10~” x Geographic distance + 1.709 x 10~

We analysed the scatter plot of the relationship between Fgr and geographic distance. To ad-
dress this, we computed the perpendicular distance between each point and the regression line.
This enabled us to define outliers as points whose distance to the regression line is greater than
or equal to 0.05 units.

Unusual Difference in Allele Frequency

To minimize deviation from the normality assumption, SNPs with minor allele
frequencies < 0.05 are excluded. Thus, at a given locus i, the difference(pf — p!) between ob-
served variant allele frequencies of two populations, k and /, can be approximated as a normal
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distribution under neutral drift with mean 0 and variance [60]

p(0=p) (2R 4t ) (@
Where Fgris the genetic distance between the population k and 1. To avoid overestimating the
degree of differentiation at single SNPs due to sample size difference, we used the estimator of
Fgr in by Bhatia et al (63). Ny and Nj are total variant allele counts in each population, and p is
the ancestral allele frequency that is commonly approximated as the average of the two ob-
served variant allele frequencies. Similar to [60], we test unusual difference in allele frequency
Uy from population k and 1 as follows t

(et —p)’
p(1=p) (2B + 5+ 1)

UI:I = (e)

k 12
Ulfl _ (Pi __Pi> ) (f)
p(1 —p)
Equations e and f are the % distributed with 1 degree of freedom (d.o.f), and can be applied to
unrelated (Equation b) and related samples (Equation c), respectively. An excess of large values
of the y” statistic indicate deviations from the null model equation (Equation e and f), suggest-
ing the action of natural selection [60]. We applied this method to the data from the Xhosa
population using Ju\’hoansi and Yoruba as ancestral populations. We also applied this method
to KHO and SAW using KHS, CEU and YRI populations. All gene annotations and associated
diseases were obtained using both the GeneCards and MalaCards databases [44, 53].

Locus-specific Ancestry Inference

We used LAMP-LD to infer locus-specific ancestry in admixed populations [46]. The model in
LAMP-LD leverages the structure of linkage disequilibrium in the proxy ancestral populations.
LAMP-LD achieved highest accuracy in both simulation and real data in the study of Puerto
Rico and Mexico populations [43]. Here, we applied LAMP-LD to infer local ancestry in three
potential southern African populations, including KHO, XHS and SAW. Following the popula-
tion structure result and the proxy ancestry selection approach developed in PROXYANC [45],
YRI, KHS and CEU was selected as reference ancestral populations from a pool of Bantu-
speaking, Click-speaking and European populations, respectively. We obtained phased haplo-
type data by running Beagle software [70] on KHS, CEU and YRI data. To estimate the distri-
bution of genetic contributions of ancestries to XHS across the genome, we used haplotypes of
80 YRI and 80 KHS. In addition, the haplotypes of 80 YRI, 80 CEU and 24 KHS were used to
compute the locus-specific genetic contributions to KHO and SAW using the AIMs panel.

Estimating Excess or Deficiency of Ancestry

Admixed populations provide special opportunities for investigating recent selection. Prior to
admixing, the ancestral populations have been isolated geographically, and their genomes may
have evolved in distinct environments. Migration of previously isolated populations may have
brought individuals of the ancestral populations into an unusual environment, and may conse-
quently introduce life-style changes or changes in pathogens they are exposed to. This type of
selection may differ from that faced by stationary populations, for which the local environmen-
tal changes may occur gradually, allowing for rare advantageous alleles to increase in frequency
[43]. Here, we adopted an approach to detect ancestral signatures of selection by looking in an
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admixed population for genomic regions that exhibit unusually large deviations in ancestry
proportions compared with what is typically observed elsewhere in the genome.

Given the genome-wide ancestral proportions, oy, from ancestral populations k € {1, .. ., K}
in N samples of an admixed population, let ¢;" be the estimated locus-specific ancestry of indi-
vidual i at genetic marker m < {1, ..., M}, from the k'™ ancestral population. We computed the
deficiency or excess of ancestry, at each SNP using the estimated admixture proportion as a
baseline. We thus define the deficiency/excess of ancestry from ancestral population k at mark-
er m as,

m 1 im —~m
oy = (ﬁzq)k > T = P T %

where ¢} is the average locus-specific ancestry at SNP m. 9, can be approximated as a normal
distribution under neutral drift with mean 0 and empirical variance, derived from the distribu-
tion of ;" values among the N individuals [43, 51]. We can fit a chi-square on ¢;" as follows,

Y
T var(e)

is a ” with 1 degree of freedom. A large value of the chi2 statistic indicates deviations from the
null model and 4 standard deviations above (excess ancestry) or below (deficiency ancestry)
the genome-wide average, suggests the action of natural selection post-admixture [51]. Sum-
ming-up the equation above over all SNPs assigned to a gene, we obtain the deficiency/excess
of ancestry at the gene level. This allows us to assess the statistical significance of a deficiency/
excess of ancestry at the SNP and gene level. To assess unusual difference in deficiency/excess
of ancestry between a pair of ancestral populations given SNP m < {1, .. ., M} within a gene, we

B ((Sm _ 5m)2
tkl = Z( iAmk l i,m
Vvar(g.") + var(¢;")]/N
Which is a two-sample t-statistic with M — 2 degrees of freedom, assuming equal sample size

N. For a pair of populations, k # [ € {1, . . ., K}, we compute the overall unusual difference in a
deficiency/excess of ancestry,

=5l

var(¢") + var(¢;")l/N

compute

Enrichment Analysis of Scans for Selection

In order to summarize the types of loci and explore the potential adaptive genetic architecture
implicated by our genome-wide selection scans, we identified all protein coding genes within
40 kb downstream or upstream of SNPs showing signatures of selection. To achieve this, we
downloaded genomic coordinates for all genes from the NCBI ftp-server (ftp://ftp.ncbi.nih.
gov/), retaining only entries for the human reference sequence and protein-coding genes. We
updated genomic coordinates to the latest assembly using the Lift-Over tool on GALAXY
(https://main.g2.bx.psu.edu/). We obtained the genomic predicted human genes from the Gen-
eCard database [44]. We investigate the roles of genes and cells in disease processes using the
MalaCard database [44; 53].
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Supporting Information

S1 Fig. (A-B) Maximum likelihood tree of indigenous southern Africa populations, includ-
ing a proxy European ancestral population for southern Africa populations. (C) Residual fit
from the maximum likelihood tree is plotted and the standard error of the entries in the covari-
ance matrix is represented ten times on the scale bar.

(PNG)

S2 Fig. (A) Decay of linkage disequilibrium with physical distance for simulated data in
which SNPs were not ascertained, ascertained in the genotyped (focal) population, or ascer-
tained in a divergent population, where t is the time of population divergence (see Meth-
ods). (B) Frequency spectra in the genotyped population, or in a divergent population,
showing the frequency spectra to differ when SNPs are ascertained in a divergent population.
(TIFF)

$3 Fig. Imputation Accuracy of southern African genotypes using CEU or YRI haplotypes
from 1000 Genomes Project.
(TIFF)

S4 Fig. Power to detect a simulated recombination hotspot (at 250kb) after a population
bottleneck of different sizes (0.5*Ne; 0.7*Ne) at times T = 0.00625, 0.06875 and 0,025 when
markers are ascertained in the genotyped (focal) population, or in a divergent population.
(TIFF)

S5 Fig. Significant unusual differentiation in allele frequency between: (A) Ju\’hoansi and
Sandawe, (B) Ju\’hoansi and Xhosa (C) Yoruba and Xhosa, (D) Ju\’hoansi and :Khomani
(E) Yoruba and Sandawe (F) European and Sandawe.

(TIFF)

S6 Fig. Average locus-specific ancestries of these admixed southern African populations.

Plot (A-C) consist of 47, 864 randomly selected SNPs along the entire genome. (A) Ancestry
segments in Xhosa. (B) Ancestry segments in $Khomani. (C) Ancestry segments in Sandawe.
(TIFF)

S7 Fig. (A) Distributions of derived allele frequencies, deletions and duplications in the
southern African populations. (B) The number of CNVs per individual in each of the south-
ern African populations.

(TIFF)

S1 Table. Populations that were included in population structure analysis of South African
Coloureds (SAC). The southern Bantu-speakers in this study are represented by the Sotho-
Tswana (STS) inhabiting the central plateau of southern Africa; the Nguni, represented by
Zulu (ZUL), Xhosa (XHS) speakers, inhabiting KwaZulu Natal on the east coast and the East-
ern Cape, and the Herero (HER) inhabiting northern Namibia, respectively (S1 Table). The
eastern Bantu-speakers are mostly populations inhabiting the central lake regions and the east
coast of Africa.

(DOC)

S2 Table. Pairwise population genetic distance.
(DOC)

S3 Table. Three-population tests for ‘treeness’: The signal of admixture in the southern Af-
rican populations. Shown are all populations with at least one negative f3 statistic, the names
of the putative mixing populations (populationl and 2, not necessarily the populations that
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actually mixed historically) that give rise to the minimum f3 statistic, the value of the statistic,
and its standard error.
(DOC)

S$4 Table. Outlier points distant from the regression line by 0.05 units in southern Africa
populations, identified from linear regression of genetic and geographic distance between
southern African populations and Bantu-speakers. These outliers show possible obstacles
to migration.

(DOC)

S5 Table. Characteristics of haplotype blocks for all chromosomes in each of the analysis
panels.
(DOC)

S6 Table. Distribution of the number of recombination hotspots in each population, where
recombination rates are identified as regions with a recombination rate greater than 5
times the background chromosomal recombination rate. Values in parentheses indicate the
number of recombination hotspots shared with CEU and YRI respectively, for each of the
southern African populations included in this study.

(DOC)

S$7 Table. Power to recover a recombination hotspot after a population bottleneck when
SNPs have been ascertained in (a) the genotyped population and (b) a population that has
diverged from the genotyped population T generations before the present. Power is estimat-
ed as the proportion of simulated datasets in which a recombination hotspot is inferred with
strength 50 times the background recombination rate, and which lies within 25kb of the
simulated hotspot.

(DOC)

S8 Table. Number of monomorphic SNPs, and proportion of SNPs monomorphic with re-
spect to the total number of SNPs shared (n = 798807) between the HapMap and southern
African datasets.

(DOC)

S9 Table. Pairwise relatedness (r) between individuals and mean per individual homozy-
gosity (h) across all SNP loci for each of the study populations. Values in parentheses are
standard errors.

(DOC)

S1 Text. Haplotype phasing, linkage disequilibrium and imputation.
(DOC)

S$2 Text. Simulations.
(DOC)

$3 Text. Imputation of missing data.
(DOC)

S$4 Text. Fine Scale recombination mapping.
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S5 Text. Genotype and copy number calling.
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