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Abstract 
Preeclampsia is a severe obstetrical syndrome which contributes to 10-15% of all maternal deaths. 
Although the mechanisms underlying systemic damage in preeclampsia—such as impaired 
placentation, endothelial dysfunction, and immune dysregulation—are well studied, the initial triggers 
of the condition remain largely unknown. Furthermore, although the pathogenesis of preeclampsia 
begins early in pregnancy, there are no early diagnostics for this life-threatening syndrome, which is 
typically diagnosed much later, after systemic damage has already manifested. Here, we performed 
deep metagenomic sequencing and multiplex immunoassays of vaginal samples collected during the 
first trimester from 124 pregnant individuals, including 62 who developed preeclampsia with severe 
features. We identified multiple significant associations between vaginal immune factors, microbes, 
clinical factors, and the early pathogenesis of preeclampsia. These associations vary with BMI, and 
stratification revealed strong associations between preeclampsia and Bifidobacterium spp., Prevotella 
timonensis, and Sneathia vaginalis. Finally, we developed machine learning models that predict the 
development of preeclampsia using this first trimester data, collected ~5.7 months prior to clinical 
diagnosis, with an auROC of 0.78. We validated our models using data from an independent cohort 
(MOMS-PI), achieving an auROC of 0.80. Our findings highlight robust associations among the vaginal 
microbiome, local host immunity, and early pathogenic processes of preeclampsia, paving the way for 
early detection, prevention and intervention for this devastating condition. 

 

Introduction 
Preeclampsia is a multi-system hypertensive disorder that complicates approximately 5% of all 
pregnancies, leading to 10-15% of maternal deaths and up to 25% of neonatal deaths1–3. It also increases 
the risk for additional adverse outcomes such as intrauterine growth restriction and preterm delivery4. 
The pathogenesis of preeclampsia begins early in pregnancy, as the placental vasculature fails to 
remodel properly, leading to poor placental perfusion4. This is followed later in pregnancy by the 
release of circulating factors from the placenta, which trigger systemic endothelial dysfunction, and 
increase the risk for maternal morbidities such as seizures, stroke, and hemorrhage4.  

 

The identification of individuals early in pregnancy who are at high risk for developing preeclampsia 
would enable researchers to more effectively study the early pathogenesis of this syndrome, improve 
utilization of existing preventative therapies5, and facilitate the development of novel treatments6. 
However, although the pathology of preeclampsia begins in the first trimester, it is currently diagnosed 
only late in pregnancy. This is, by definition, as diagnosis is currently based on the presence of 
maternal hypertension after 20 weeks of gestation combined with additional symptoms such as 
proteinuria, vision changes, headaches, and elevated transaminase levels4,7, which manifest late in the 
disease and indicate impending organ failure. This delayed diagnosis severely limits opportunities for 
early intervention. Several recent efforts have been made to improve the early diagnosis of 
preeclampsia. For example, a diagnostic test based on the ratio of serum soluble fms-like tyrosine 
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kinase 1 (sFlt-1) and placental growth factor (PlGF) has achieved an area under the receiver operating 
characteristic curve (auROC) of 0.82 for predicting a preeclampsia diagnosis within 4 weeks in 
individuals already identified as high-risk for the syndrome8. Similar efforts have been made to 
develop a diagnostic test for preeclampsia based on cell-free RNA levels in maternal serum in the 
second trimester, also achieving an auROC of 0.829.  

 

Maternal immune dysregulation, which has been repeatedly observed in individuals with 
preeclampsia10, offers both a potential avenue for the development of novel diagnostics and a window 
into the pathogenesis of preeclampsia early in pregnancy. A systemic increase in serum CD4+ T cells11, 
circulating proinflammatory cytokines12, and a decrease in regulatory T cells13,14 are all associated with 
preeclampsia. Other studies have found cytokine levels15,16 and immune cell populations17 to be altered 
in the placentas of individuals with preeclampsia, albeit with measurements taken postpartum. 
Altogether, these studies suggest that both local and systemic immune dysregulation may be 
implicated in the pathogenesis of preeclampsia. 

 

The involvement of a microbial trigger in the pathogenesis of preeclampsia has been suggested 
previously18,19 and specifically for periodontal and urinary tract infections20. Another potential trigger is 
the vaginal microbiome, which has been highlighted as a source of ascending infection during 
pregnancy21, was shown to promote inflammation in the reproductive tract22–24, disrupt the 
cervicovaginal epithelial barrier23, and was associated with other adverse pregnancy outcomes, such as 
preterm premature rupture of membranes25,26. Two recent studies have found associations between 
preeclampsia and the vaginal microbiome sampled in the third trimester, after preeclampsia was 
diagnosed27,28. However, studies that investigate the vaginal microbiome early in pregnancy are still 
needed to advance our understanding of the role of this ecosystem during the early pathogenesis of 
preeclampsia, and to evaluate the potential for early diagnostics.  

 

Here, we investigate the early pregnancy (6+0-13+6 weeks+days of gestation) vaginal microbiome and 
host immunity and their interaction with preeclampsia with severe features and related clinical factors 
in 124 individuals. We identified several associations between the composition of the vaginal 
microbiome, levels of vaginal immune factors, and the development of preeclampsia, and 
demonstrated that some of these associations are impacted by maternal BMI. We then developed 
predictive models for preeclampsia using this data, which we validated in an independent pregnancy 
cohort. The performance and generalizability of our models demonstrate a strong association of the 
early pregnancy vaginal microbiome and local immunity with the development of preeclampsia.  
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Figure 1 | Study overview. 

 

Results 
Vaginal microbiota, immune factors, and clinical data from a multi-center pregnancy cohort  

To study the interaction of the vaginal microbiome and immune system with the development of 
preeclampsia we compiled a subcohort of the nuMoM2b cohort29, a large multi-center observational 
study of nulliparous pregnant individuals with singleton gestations (Fig. 1; Methods). As preeclampsia 
with severe features (sPEC) accounts for over one third of all cases of preeclampsia30 and a majority of 
preeclampsia related morbidity and mortality31,32, we focused our investigation on this more extreme 
phenotype, and randomly selected 62 individuals who developed sPEC and 62 who were not 
diagnosed with sPEC, but could have other hypertensive disorders, including mild preeclampsia 
(Table 1; Methods; hereafter termed “non-sPEC”). Both groups were frequency matched on maternal 
age, race, and clinical enrollment site (Methods). The nuMoM2b study collected extensive clinical data 
and medical history, including first trimester maternal BMI, age, hypertension status29. Consistent with 
prior research33,34, individuals who developed sPEC had higher BMI (Mann-Whitney U p=0.03), higher 
first trimester blood pressure (p=5.8x10-5), and gave birth earlier in pregnancy (p=0.0006; Table 1).  
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We analyzed vaginal swabs which were self-collected between 6.4 – 13.9 weeks of gestation (mean±sd 
11.9±1.6) of pregnancy, 2.4–7.6 months before sPEC diagnosis (mean±sd 5.7±1.0 months). We performed 
multiplex immunoassays (Luminex) to measure the levels of 20 pro- and anti-inflammatory immune 
factors: EGF, Flt-3L, G-CSF, IFNα2, IFN-γ, IL-10, IL-18, IL-1RA, IL-1α, IL-1β, IL-27, IL-4, IL-6, IL-8, 
MCP-1, RANTES, TGFα, TNFα, VEGF, and sCD40L (Methods). We selected these based on the ability 
to obtain measurements in our samples as well as review of existing literature regarding vaginal 
immune factors in pregnancy35–39. We also profiled the vaginal microbiome via shotgun metagenomic 
sequencing to a mean±sd depth of 43.23±23.4 million reads, yielding an average of 5.83±7.6 million 
microbial reads after processing and discarding reads classified as human DNA (Methods).  

 

  sPEC non-sPEC 
Difference 
(p value) 

   N 62 62   
   Race / ethnicity (N (%))     0.92 
         Non-Hispanic Black 15 (24.2) 15 (24.2) 1.00 
         Non-Hispanic White 26 (41.9) 26 (41.9) 1.00 
         Hispanic 12 (19.4) 10 (16.1) 0.81 
         Asian 4 (6.5) 3 (4.8) 1.00 
         Other 5 (8.1) 8 (12.9) 0.56 
  Mean arterial blood pressure at 
first trimester (mean mmHg ±sd) 

87±10 80±8 5.8x10-5 

  GA at delivery (median weeks 
[range]) 

38.3 
[24.4-42.1] 

39.5 
[21.1-41.9] 

0.0006 

  BMI at first trimester (median 
kg/m2  [IQR]) 

28.2 
[24.6-34.1] 

25.8 [22.2-
30.7] 

0.029 

   Age (mean years±sd) 26.6±5.9 25.9±5.9 0.58 
  GA at sPEC diagnosis (median 
weeks [range]) 

38.0 
[23.9-1 week 
postpartum] 

-- -- 

  Other hypertensive disorders (N 
(%)) 

      

         Antepartum hypertension   3 (4.8)   
         Intra or postpartum 

hypertension 
  4 (6.5)   

         Mild preeclampsia   2 (3.2)   
Table 1 | Cohort characteristics. sPEC, preeclampsia with severe features; BMI, body mass index; GA, 
gestational age; p - Fisher’s exact or Mann-Whitney U test, as appropriate. 

  

Early pregnancy vaginal immune factors are associated with sPEC 

To determine whether the vaginal immune profile in early pregnancy is associated with the 
development of sPEC, we compared the overall profile of individuals who developed sPEC to those 
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who did not. We found that overall immune factor levels were weakly associated with the 
development of sPEC (PERMANOVA p=0.029; Fig. 2a), driven by their first principal component (PC1), 
which captured 32% of the variance (Mann-Whitney U p=0.013; Fig. 2b). No individual immune factor 
dominated the composition of this first principal component, with all immune factors having 
coefficients between 0.13 and 0.33, except EGF which had a negative coefficient (Fig. S1). These results 
demonstrate that the association of the immune system with the early pathogenesis of sPEC is 
attributable to variation in multiple immune factors.  

 

Intriguingly, we found a significant reduction in the total concentration of immune factors measured in 
this group (Mann-Whiteny U p=0.005, Fig. 2c). When next investigating the associations of specific 
immune factors with sPEC, we found that this pattern was consistent across most immune factors, as 
nearly all had lower levels in individuals who developed sPEC (17 out of 20; Fig. 2d). Similar 
reductions in both pro- and anti-inflammatory immune factors in PEC were previously reported in the 
placenta16, and a similar observation of lower levels was also reported in the vaginal ecosystem for 
other adverse outcomes, such as spontaneous preterm birth40. Therefore, our results suggest a 
phenomenon of reduced local immune factor concentrations in sPEC and potentially other pathologies. 

 

We identified three specific immune factors which were significantly reduced in individuals who 
subsequently developed sPEC (t-test p<0.05, q<0.2; Fig. 2d): Flt-3L (p=0.0087, q=0.095; Fig. 2e), a pro-
inflammatory cytokine that activates dendritic cells in response to infection41,42; EGF (p=0.024, q=0.16, 
Fig. 2f), a growth factor that stimulates the proliferation of epithelial cells and fibroblasts43,44; and IL-
1RA (p=0.0095, q=0.095; Fig. 2g), a competitive inhibitor of the IL-1 receptor with a powerful anti-
inflammatory effect45,46. While it has similarly been reported that placental EGF is depleted in 
individuals with PEC47, in the serum, levels of IL-1RA and Flt-3L late in pregnancy have previously 
been shown to be positively associated with PEC48,49, suggesting that associations between immune 
factors and sPEC may be influenced by gestational age or biological niche. Overall, our results suggest 
that the local immune system in the vagina may be dysregulated early in pregnancy, months before 
symptoms become evident, among individuals who develop sPEC.  
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Figure 2 | Vaginal immune factors are associated with sPEC. a, PCA of immune factor profiles colored 
by future sPEC status (PERMANOVA p=0.029). b, Box and swarm plot demonstrating a significant 
association between immune factor PC1 and sPEC (Mann-Whitney U p=0.013). c, Box and swarm plot 
demonstrating a significant association between the total concentration of the 20 immune factors that we 
measured and sPEC (Mann-Whitney U p=0.005). d, Significance (y-axis; two-sided t-test) and effect size 
(x-axis; Cohen’s d) for associations between individual immune factors and sPEC. Most immune factors 
tested have lower vaginal levels in individuals who developed sPEC, consistent with studies of placental 
immune factors in PEC16 and vaginal immune factors in preterm birth40. e-g, Box and swarm plots of Flt-
3L (e), EGF (f) and IL-1RA (g), all of which were significantly depleted in the vaginal ecosystem of 
individuals who developed sPEC (q=0.09, 0.16, 0.09, respectively). Box, IQR; line, median; whiskers, 
nearest point to 1.5*IQR. 

 

  

The early pregnancy vaginal microbiome is associated with the development of sPEC 

We next investigated the association of vaginal microbes in early pregnancy with the development of 
sPEC. To this end, we quantified strain level abundances (ANI=99%) using a reference derived from a 

Effect size
-0.4 0-0.2

0.1

1

p

d. 

non-sPEC sPEC

50 10

PC
2 

(E
V=

10
%

)
a. 

-20

0

-40

60

6

PC
1 

(E
V=

32
%

)

non-sPEC sPEC

2

-2

10

b. 

PC1 (EV = 32%)

4

0

-4

c. 

0.01

Specific vaginal immune factors are associated with sPEC

Host vaginal immune factor profile is associated with sPEC

non-sPEC

sPEC

8

FDR=0.2

Permanova
p = 0.029

non-sPEC sPEC

2

0

EG
F 

(s
.d

.)

f. 

4

6

EGF 
p = 0.024

non-sPEC sPEC

1

2

3

4

0

-2

Fl
t-

3L
 (s

.d
.)

e. Flt-3L
p = 0.0087

p = 0.013

FDR=0.1

EGF

IL-1Ra
FLT3L

0.2 non-sPEC sPEC

0

1

-2

IL
-1

RA
 (s

.d
.)

g. 

2

-1

IL-1RA
p = 0.0095

p = 0.005

non-sPEC sPEC

104

103

102

105

 T
ot

al
 v

ag
in

al
 im

m
un

e 
fa

ct
or

co
nc

en
tr

ati
on

 (p
g/

m
l)

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 2, 2024. ; https://doi.org/10.1101/2024.12.01.626267doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.01.626267
http://creativecommons.org/licenses/by-nc/4.0/


 
recent large-scale assembly effort50 (Methods). Similarly to our analysis of immune factors, we first 
used robust principal component analysis51 to examine the difference between the entire microbiome 
profiles of our cohort (Methods). However, we did not detect a significant association between the 
vaginal microbiome and sPEC (PERMANOVA p=0.12; Fig. 3a) or between the first microbiome robust 
principal component (RPC1) and sPEC (Mann-Whitney U p=0.21; Fig. 3b). As BMI is associated with 
both PEC risk4,33 and the vaginal microbiome52, we examined microbiome-sPEC associations stratified 
by first trimester BMI. We identified a relatively stronger association between the vaginal microbiome 
and sPEC in individuals with higher BMI (BMI≥25; N=67, N sPEC=37), both when examining the entire 
microbiome profile (PERMANOVA p=0.01; Fig. 3a) and when examining only RPC1 (Mann-Whitney U 
p=0.021; Fig. 3b). While we did not detect statistically significant associations in individuals with lower 
BMI (BMI<25; N=43, N sPEC=20; PERMANOVA p = 0.46; Fig. 3a; p=0.39; Fig. 3b), we noted opposite 
trends in the first principal coordinate between the two groups (higher values for sPEC in BMI<25, 
while lower in BMI≥25; Fig. 3b). When examining whether community state types (CSTs), measured as 
dominance with >30% abundance22 (or lack thereof; Methods), we found a weak association between 
Gardnerella dominance and non-sPEC among individuals with BMI≥25 (Fisher’s exact test p=0.03, 
q=0.14), but not in other groups or CSTs (Fig. S2a-b). These different trends suggest that BMI, which is 
associated with metabolic health and systemic inflammation53, may impact the associations between 
vaginal microbes and sPEC. This highlights the need for considering the vaginal microbiome within a 
broader clinical context when investigating its associations with sPEC.  

 

We next investigated associations between specific microbes and the development of sPEC. Once again, 
we only identified weak associations in the full cohort (no taxa with Mann-Whitney U q<0.2; Fig. 3c). 
Additionally, while we did not find any differentially abundant or dominant taxa in individuals with 
BMI<25 (Mann-Whitney U p>0.01, q>0.2 for all taxa; Fig. S2c-d), likely due in part to smaller sample 
size, we identified 24 taxa that were significantly associated with the development of sPEC in the high 
BMI group (Mann-Whitney U p<0.05, q<0.1 for 9 taxa, 0.1<q<0.2 for 15; Fig. 3d). The top three taxa with 
the most significant associations with sPEC were two G. vaginalis strains (p = 0.0007 overall, p = 0.0018 
within BMI≥25 for VMGC50 strain SGB020 and p=0.0027 overall, p=0.0014 within BMI≥25 for SGB182) 
and an unidentified Bifidobacterium species (p=0.0014 overall, p=0.0016 within BMI≥25; VMGC strain 
SGB065 Fig. 2e-g), which were all negatively associated with sPEC. Consistent with these associations, 
it has been previously shown that during pregnancy, gut Bifidobacterium levels are also negatively 
associated with the development of preeclampsia54,55.  
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Figure 3 | Abundance of early pregnancy vaginal microbes are associated with sPEC development. a, 
Scatterplot of the first two robust principal components51 of the vaginal microbiome, colored by 
subsequent sPEC diagnosis; ellipses, covariance error. b, Box and swarm plots of the first principal 
component of the vaginal microbiome, stratified by BMI group and sPEC. An association between the 
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vaginal microbiome and sPEC is observed only in individuals with higher BMI, as there are opposite 
trends between the BMI groups. c, Significance (y-axis; two-sided Mann-Whitney U test of CLR-
transformed values) and effect size (x-axis; difference in mean) for associations between specific vaginal 
strains (Methods). d, Similar to c, but evaluated within individuals with BMI≥25. Dashed red lines 
indicate FDR thresholds of 0.2 and 0.1. e-g, Box and swarm plots of the three vaginal taxa with the most 
significant associations with sPEC within individuals with BMI≥25, stratified by BMI group and sPEC. 
Box, IQR; line, median; whiskers, nearest point to 1.5*IQR; p, Mann-Whitney U test. 

 

 

We observed that the majority of taxa strongly associated with lower sPEC risk in this group belong to 
the species Gardnerella vaginalis (8 of 20, 0.001<p<0.012, 0.06<q<0.16; Fig. 3c), which has been frequently 
associated with bacterial vaginosis56, or to the genus Bifidobacterium (7 of 20, 0.002<p<0.017, 0.06<q<0.16; 
Fig. 3c), a Gram positive anaerobe that has various immunomodulatory effects57,58 and is the genus 
most closely related to G. vaginalis59. We next observed that 3 of the 4 taxa positively associated with the 
development of sPEC among individuals with higher BMI belong to the species Prevotella timonensis 
(0.005<p<0.016; 0.11<q<0.16). Prevotella species were previously shown to be associated with preterm 
birth60 and are major producers of sialidases61,62. Together, our results and these prior reports suggest 
that G. vaginalis, Bifidobacterium, and P. timonensis may play a role in the development of sPEC by 
regulating the inflammatory milieu of the reproductive tract. Examining vaginal immune factors also 
with respect to BMI, we have similarly found stronger and more numerous associations with sPEC in 
individuals with BMI≥25 (Fig. S3).  

 

Complex interactions among vaginal microbes, immune factors, and sPEC 

The vaginal microbiome is associated with immune dysregulation and inflammation, both locally and 
systemically63–66, and we hypothesized that these interactions may be associated with the development 
of sPEC. We therefore investigated the relationships among these factors, starting with comparing the 
principal components of the vaginal immune factors with the robust principal components51 of the 
vaginal microbiome. We identified a significant correlation between microbiome RPC1 and the first 
two immune factor PCs (Pearson R=-0.38, p=4.5x10-5 and R=0.27, p=0.0038; Figs. 4a, S4a), as well as 
between immune factor PC1 and microbiome RPC3 (R=0.26 p=0.0026; Fig. S4a). These results support 
the hypothesis that the vaginal microbiome and local host immune profile in early pregnancy are 
partially associated, although there are independent components to each. 
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Figure 4 | Complex interactions among microbiome, immune factors, and sPEC which vary with BMI. 
a, A scatter plot showing the first immune factors principal component (y-axis) and the first microbiome 
robust principal component (x-axis) for each individual in the cohort (N=110; Pearson R=0.39,        
p=2.4x10-5). b,c DIABLO loadings of the associations identified between immune factors and sPEC in a 
multi-omic analysis, within the BMI<25 (b) and BMI≥25 (c) groups. d,e Network of clinical, microbiome, 
and immune factor features identified via a DIABLO multi-omic analysis, restricted to a correlations 
cutoff of 0.5. Separate plots are shown for individuals with BMI<25 (d) and ≥25 (e). 

 

 

To further investigate these patterns and identify interactions among vaginal microbes, immune 
factors, and sPEC, we ran a sparse discriminant analysis using DIABLO67, an integrative multi-omic 
analysis tool that identifies groups of features across multiple omics datasets that distinguish 
phenotypic groups67. Because we identified differences in associations of sPEC with vaginal microbes 
and immune factors between different BMI groups (Figs. 3, S2, S3), we performed this analysis 
stratified by maternal BMI. Even though DIABLO considers the associations between immune factors 
and sPEC in the context of how these features also relate to the vaginal microbiome and clinical 
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characteristics, this analysis replicates several of our previous findings (Figs. 2e-g, 3e-g). Consistent 
with our previous findings, the majority of immune factors were found to be reduced in individuals 
who developed sPEC (Fig. 4b,c, S3b). While most of these immune factors are secreted by immune 
cells, sCD40L is largely released by platelets68, which often become dysfunctional in preeclampsia, so its 
association with sPEC here may reflect subclinical platelet dysfunction early in pregnancy. DIABLO 
also identified three pro-inflammatory immune factors in individuals with BMI<25, TGFα, MCP-1, and 
RANTES, which were elevated in sPEC (Fig. 4b). MCP-1 and RANTES both recruit immune cells to 
sites of inflammation and to the uterus during pregnancy69, and were shown to be elevated the serum 
of individuals with PEC70,71. These higher levels in sPEC suggest that the vaginal ecosystem in 
individuals with BMI<25 may better reflect the systemic proinflammatory milieu that is characteristic 
of preeclampsia72.  

 

To obtain better insights into the interactions among microbes, immune factors, and clinical features 
associated with sPEC, we next investigated the network of multivariate correlations inferred by 
DIABLO. In individuals with BMI<25, we found four Prevotella strains which were negatively 
associated with blood pressure (Fig. 4d). Conversely, while the role of vaginal Prevotella in 
hypertension is unknown, studies have suggested that high levels of Prevotella in the gut are associated 
with increased risk of developing hypertension73,74, suggesting an intriguing difference between 
Prevotella strains and the niche they occupy. We also found positive correlations between blood 
pressure and the proinflammatory immune factors MCP-1 and RANTES, which have previously been 
associated with hypertension and atherosclerosis75,76. We also observed that anemia was negatively 
correlated with a P. colorans strain and positively correlated with RANTES in this network (Fig. 4d). 
While anemia itself was not associated with sPEC (Fig. S5), its correlations with microbes and immune 
factors that are associated with sPEC may reflect the higher incidence of anemia during pregnancy in 
individuals with BMI<2577, which we also observed in our data (21% of individuals with BMI<25 had 
anemia, compared to 12% in BMI≥25). It may also suggest indirect mechanisms by which anemia may 
be involved in the early pathogenesis of sPEC.  

 

In the DIABLO correlation network for individuals with BMI≥25, we identified several negative 
correlations between blood pressure and vaginal immune factors and microbes. Some of these 
associations, including a Lactobacillus crispatus strain that was positively associated with sPEC (albeit 
with a small coefficient in the DIABLO model; Fig. S5e) and blood pressure, and two Sneathia vaginalis 
strains that were negatively associated with sPEC and blood pressure (Fig. 4e), are surprising in light of 
the view of L. crispatus as a highly protective species78–80 and S. vaginalis as a pathobiont associated with 
chorioamnionitis and preterm birth81,82. We also identified several positive associations between S. 
vaginalis and immune factors that were lower in individuals who developed sPEC, including IL-18, IL-
27, Flt-3L, and sCD40L. The positive associations between S. vaginalis strains and immune factors may 
reflect the highly immunogenic response that S. vaginalis can elicit during pregnancy81. We also 
identified strong correlations in this network between blood pressure and several immune factors, 
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including Flt-3L, sCD40L, and IL-18. This similar involvement of multiple immune factors that 
otherwise belong to different signaling pathways may reflect a single underlying process with broad 
effects on vaginal immunity in sPEC. As before, the stark differences we observed between the 
associations identified in different BMI groups strongly suggest that underlying systemic inflammation 
and metabolic health may exert a strong influence on the vaginal ecosystem in sPEC. Altogether, our 
analysis reveals complex interactions between the vaginal microbiome, immune factors, and clinical 
factors that may reflect or play a role in the pathogenesis of sPEC. 

 

Vaginal immune factors and microbes predict sPEC months before diagnosis 

Preeclampsia is typically not diagnosed until late in pregnancy4. We therefore investigated whether our 
clinical, vaginal microbiome or immune factor data, collected during the first trimester (mean±sd of 
24.7±4.6 weeks prior to sPEC diagnosis), hold potential for improving early sPEC diagnosis. We trained 
logistic regression models and evaluated their performance on held-out samples using nested 
rebalanced83 leave-one-out cross validation, such that model hyperparameters were optimized using 
internal cross-validation within each training set, and a model with these chosen parameters was then 
evaluated once on the held-out test sample, without data leakage (Fig. S6; Methods). Given the 
interactions we observed with BMI for both microbiome and immune associations with sPEC, BMI 
stratification was implemented as a parameter that our models could utilize (Methods).  

 

As a benchmark, we first devised models predicting sPEC using only clinical information, such as pre-
pregnancy history of blood clots, hypertension, and heart disease (Methods). These models obtained 
reasonable accuracy (auROC=0.62, area under the precision-recall curve [auPR]=0.64, Mann-Whitney U 
test vs. a null of random prediction p=0.032, Methods; Fig. 5a,b), on par with previous research84–86. 
Training similar models using microbiome data obtained a stronger performance (auROC=0.71, 
auPR=0.67, p=1.1x10-4; Fig. 5a,b), and similar results were obtained using immune factor levels 
(auROC=0.72, auPR=0.73, p=7.9x10-5; Fig. 5a,b). We observed that 99% of microbiome-based models that 
were ultimately selected by cross validation within the training data (Methods) utilized BMI 
stratification, compared to only 2% of immune factor-based models. These predictive associations, 
which generalized to held-out samples with conservative evaluation, further demonstrate the robust 
association between the development of sPEC and the early pregnancy vaginal microbiome and 
immunity. 

 

When combining the predictions of the different modalities, we obtained additional improvements. 
Combining microbiome and immune factor data achieved an auROC of 0.78 and auPR of 0.76 (Mann-
Whitney U p=5.7x10-7, Methods; Fig. 5a,b). Further incorporating clinical data improved results slightly 
(auROC=0.78, auPR=0.81, p=2.7x10-7; Fig. 5a,b). The performance of our multi-modal models illustrates 
that microbiome and immune factors each add independent information concerning sPEC risk, as 
opposed to clinical data (other than BMI) which does not substantially improve prediction accuracy. 
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Despite being evaluated in a conservative nested cross-validation framework, the final performance of 
our model, with an auROC of 0.78, is superior to models based on blood proteins87. While this 
performance is comparable to models based on other molecular data, such as serum cell-free RNA9 or 
PlGF and sFlt-18, which each achieve an auROC of 0.82, our models notably use data collected 
substantially earlier in pregnancy (first trimester compared to second trimester for cell-free RNA and 
late pregnancy for PlGF and sFlt-1).  

 

 
Figure 5 | The early pregnancy vaginal microbiome and host immunity are predictive of sPEC ~6 
months in advance. a,b Receiver Operating Characteristic (a) and Precision-Recall curves (b) of leave-
one-out nested cross-validation predictions of linear models (Methods). Dashed horizontal line in (b), 
class balance. Results are shown for models considering only the microbiome, immune factor, and 
clinical data, respectively, along with combinations of the microbiome and luminex predictions, and 
those of all three models. 

 

 

sPEC prediction models are accurate in an independent dataset 

To further demonstrate the potential of vaginal microbiome and immune factor data for sPEC 
diagnosis early in pregnancy, we next tested if models trained on data from our cohort can generalize 
to data from an independent external cohort. To this end, we used data from the MOMS-PI study22, 
which generated metagenomic sequencing and immune factor data from samples collected early in 
pregnancy. 33 participants with available early pregnancy data in this cohort self-reported whether 
they developed eclampsia or preeclampsia. While multiple samples were collected per participant in 
the MOMS-PI cohort, we used the earliest sample collected before week 17 of gestation. We processed 
metagenomic sequencing data from this cohort using the same pipeline we used to process data from 
the nuMoM2b cohort, retaining 17 individuals with >500,000 non-human reads (Methods), with 5 of 
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them reporting a positive diagnosis. Of note, these participants differed significantly from our 
nuMoM2b cohort in their BMI (Mann-Whitney U p=0.0091) and parity (p=7.2x10-7), two factors known 
to impact the vaginal ecosystem52,88, as well as in self-identified race (p=3.1x10-6; Table 2). Additionally, 
only 11 of the 20 immune factors measured in nuMoM2b were available for this cohort, and the only 
clinical features available were maternal age, blood pressure, BMI, and weight. We corrected 
processing bias in the microbiome data with DEBIAS-M89, to which we applied models that were 
trained and selected using cross-validation within the nuMoM2b cohort to the MOMS-PI dataset 
without retraining (Fig. 6). 

 

  nuMoM2b MOMS-PI 
Difference 
(p value) 

   N 124 
[62 sPEC] 

17 
[5 PEC or 
eclampsia] 

  

   Race [N (%)]     3.1x10-6 

  Non-Hispanic Black 30 (24.2) 16 (94.1)   
  Non-Hispanic White 52 (41.9 1 (5.9)   
  Other 42 (33.9) 0   
   BMI (median kg/m2 [IQR]) 26.3 

[22.9-32.2] 
34.4 

[28.1-38.9] 
0.0091 

   N total pregnancies 
   (median [range]) 

1 
[1-5] 

3 
[1-9] 

7.2x10-7 

   GA at delivery 
   (median weeks [range]) 

38.8 
[21.1-42.1] 

38.4 
[25.6-41.1] 

0.30 

   Age years (N [%])     0.99 
  <18 4 (3.2) 0   
  18-29 76 (61.3) 11 (64.7)   
  29-38 39 (31.5) 5 (29.4)   
  >38 5 (4.0) 0   
   GA at sample collection 
   (median weeks [range]) 

12 
[6-14] 

11 
[6-15] 

0.021 

Table 2 | MOMS-PI subcohort characteristics. GA, gestational age; p, Mann-Whitney U or Fisher’s 
Exact, as appropriate. Age was missing for one MOMS-PI participant. 

 

 

This is a challenging benchmark, which includes generalization to a new population with different 
characteristics (Table 2), an independent study with different methods and investigators, and 
differences in both measurement techniques and outcome assessment. This is underlined by our 
finding that models based on clinical data did not generalize well between the studies (auROC=0.47, 
auPR=0.32, Fig. 6a,b). Nevertheless, we saw similar predictive performance and successful 
generalization for the microbiome (auROC=0.68, auPR=0.45), and immune factor-based models 
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(auROC=0.77, auPR=0.50; Fig. 6a,b). We also observed similar performance and successful 
generalization when we evaluated the combined models, as our model based on microbiome and 
immune factor data achieved an auROC of 0.80 (auPR=0.67, Fig. 6a,b). These results, demonstrating 
that the association between preeclampsia and the early-pregnancy vaginal microbiome and host 
immunity generalizes across cohorts, underscore the robustness of our analysis and the potential of 
these measurements to improve early diagnosis of sPEC. 

 

 
Figure 6 | Predictions of sPEC ~6 months in advance using early pregnancy vaginal microbiome and 
host immunity generalize to independent cohorts. a,b Similar to Fig. 5a,b, but for models trained on 
data from the nuMoM2b cohort and tested on data from the Multi-Omic Microbiome Study-Pregnancy 
Initiative (MOMS-PI) collected by Fettweis et al22. 

 

 

Discussion 
In this study, we quantified the levels of microbes and immune factors in the vaginal ecosystem using 
samples collected early in pregnancy (first trimester) from 124 pregnant individuals. We found 
significant associations between both vaginal microbes and immune factors and the development of 
sPEC, which differ with maternal BMI, and involve known preeclampsia risk factors such as blood 
pressure and anemia. Integrating immune factor, microbiome and clinical data allows for prediction of 
sPEC with comparable accuracy to previous molecular tests8,90, but much earlier in pregnancy. Finally, 
we demonstrated the robustness and generalizability of the associations we detected by validating our 
predictive models in an independent external cohort22. 
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We identified several immune factors significantly reduced in the vaginal ecosystem of individuals 
who developed sPEC, including IL-1RA, Flt-3L, and EGF. These associations may be due to 
compromised immune function within the vaginal ecosystem and perhaps along the entire 
reproductive tract, as it is known that immune cells are integral to maintaining the protective vaginal 
epithelium91 and play a role in spiral artery remodeling92. This is echoed in recent investigations of 
placentas of women with preeclampsia, which exhibit reduced numbers of macrophages during 
delivery, and lower local expression of innate immune factors93. The reduction in placental immune 
cells is also associated with decreased spiral artery remodeling in mice94. At the same time, some of the 
vaginal immune factors that we found to be reduced in individuals who developed sPEC have been 
positively associated with preeclampsia when measured in serum late in pregnancy48,49. This 
discrepancy suggests that immune factor levels in the local vaginal environment may reflect biological 
processes that do not manifest in systemic circulation, and motivate additional research to understand 
the interplay between local and systemic immunity in preeclampsia.  

 

Our results highlight a potential subgroup effect, which manifested as a strong modification by BMI of 
the relationship between sPEC development, the vaginal microbiome, and immune factors. Our results 
echo those of another study, which showed that the association between adverse pregnancy outcomes 
and the serum sFlt-1/PIGF ratio, a well-studied preeclampsia risk factor8, is significantly weaker in 
obese individuals95. Differences in BMI are associated with metabolic health and systemic 
inflammation, which would likely be related to dysregulation of microbes or immune factors in the 
reproductive tract. As obesity dysregulates many biological pathways, including estrogen, 
progesterone96,97, and vaginal glycogen metabolism98, our findings motivate mechanistic studies to 
determine the directionality and specific mechanisms that may underlie the interaction of BMI with the 
associations of vaginal microbes and immune factors in sPEC that we detected here.  

 

We found several intriguing associations between vaginal microbes and sPEC in individuals with 
BMI≥25. These included several strong associations between sPEC and P. timonensis, a major source of 
sialidases in the vaginal ecosystem, which can degrade the mucin lining of the reproductive tract and 
elevate the risk of preterm birth99,100. A previous study has also found that another Prevotella species, P. 
bivia, was enriched at the time of birth in individuals with preeclampsia101. We also found that several 
Bifidobacteria strains were negatively associated with sPEC. Bifidobacteria can be highly abundant in the 
vaginal microbiomes of healthy reproductive-aged individuals, and were shown to produce lactic acid 
at comparable levels to L. crispatus102, which promotes a healthy vaginal pH and epithelial barrier 
function103. Additional investigations could determine if elevated sialidase activity or lactic acid levels 
underlie these associations with sPEC.  

 

In individuals with BMI≥25 we also found that several G. vaginalis and S. vaginalis strains were 
negatively associated with sPEC, a surprising result given that these taxa are often associated with 
dysbiosis and adverse outcomes22,81,82,104,105. We note, however, that these taxa are often part of diverse 
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vaginal microbiomes, and that our results may indicate that within such diverse ecosystems, low levels 
of these taxa, and thus higher levels of other taxa such as Fannyhessea vaginae, are associated with 
preeclampsia. Alternatively, the protective association of S. vaginalis may be related to its immunogenic 
capacity during pregnancy81, contrasting the reduced levels of immune factors we found in individuals 
who developed sPEC. Additional mechanistic studies are needed to elucidate the role of these microbes 
in the reproductive tract during pregnancy and their interplay with the immune system to determine if 
they are causally implicated in the pathogenesis of sPEC. 

 

Our multi-omic analysis has also identified several associations between vaginal immune factors and 
other clinical features, such as blood pressure and anemia. These include positive correlations between 
blood pressure in individuals with BMI<25 and the proinflammatory cytokines MCP-1 and RANTES, 
which are known to contribute to hypertension and atherosclerosis75,76, as well as an association 
between RANTES and anemia, which while not associated with sPEC in our cohort, has previously 
been reported to increase the risk of developing preeclampsia106 and other adverse pregnancy 
outcomes107. We also identified negative associations between blood pressures and IL-18, sCD40K and 
Flt-3L in individuals with BMI≥25. These associations are discordant with positive associations with 
hypertension that were previously identified when these factors were measured in blood108–110, once 
again highlighting a difference between local and systemic immune factor measurements.  

 

Our predictive modeling approach has several limitations. First, our use of a case-control cohort 
enriched for sPEC limits our ability to assess population-level predictive value, and further validation 
is required in prospective studies. Second, while our predictive models demonstrate accuracy in two 
independent cohorts, both are limited to individuals residing in the United States. Additional studies in 
global populations are needed to further evaluate generalizability and identify robust preeclampsia 
biomarkers. Third, while our use of BMI allowed us to identify a significant interaction affecting the 
relationships among vaginal microbes, immune factors, and sPEC development, BMI alone provides an 
incomplete picture of metabolism111. To better capture metabolic health, future studies may benefit, for 
example, from incorporating serum lipid or blood glucose levels. Finally, integration of other data 
types, such as cell free RNA measurements or sFlt-1 and PlGF, which have shown some promise in 
preeclampsia prediction8,90, may facilitate even stronger predictive signals. 

 

Currently, preeclampsia is diagnosed based on symptoms indicating impending multi-organ damage 
that manifests late in pregnancy. Despite its high prevalence and severe health consequences for both 
mother and child, we lack effective methods for early identification of individuals in which the 
pathogenesis of preeclampsia is already taking place without overt symptoms. The lack of success in 
identifying biomarkers of preeclampsia, including in a large investigation of plasma proteomics112, 
further underscores the difficulty inherent in the study of preeclampsia pathogenesis. Improved 
methods to diagnose preeclampsia during early pregnancy would offer an opportunity to dramatically 
improve outcomes through increased monitoring and earlier interventions. Here, we identified a 
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generalizable signal within the first trimester vaginal ecosystem that predicts the future diagnosis of 
sPEC with comparable accuracy to other tests that are currently being developed8,9, which use data 
collected significantly closer to the typical time of diagnosis. Altogether, our results demonstrate that 
investigating the role of the early pregnancy vaginal ecosystem in preeclampsia may provide an 
improved understanding of preeclampsia pathogenesis and promising leads for identifying prevention 
and treatment strategies. 
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Methods 
Study design and cohort description 

We analyzed samples that were collected as part of the multi-center nuMoM2b study29. This study 
enrolled nulliparous pregnant individuals at the following clinical sites: Case Western University; 
Columbia University; Indiana University; University of Pittsburgh; Northwestern University; 
University of California Irvine; University of Pennsylvania; and University of Utah, and was approved 
by the Institutional Review Board at each participating clinical site. The current analysis was approved 
by the IRB of Columbia University, approval number AAAT7071.  
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Between 2010 and 2015, the nuMoM2b study enrolled 10,038 pregnant participants between 6 and 14 
weeks of gestation. Pregnancy dating was confirmed via ultrasound crown-rump length measurement. 
Study participants answered questionnaires and provided biospecimens during a visit between 6 and 
14 weeks of gestation, in which 2 cervicovaginal swabs were used by each study participant to self-
collect cervicovaginal fluid. One swab, intended for analysis of vaginal proteins and metabolites, was 
suspended in 2 mL cryovial w/1 mL DPBS, and the other swab, intended for analysis of microbial 
DNA, was suspended in a 2 mL cryovial with 1 mL 10 mM Tris-Hcl, 0.1 mM EDTA. 

 

Chart abstraction and preeclampsia definition 

Chart abstractors used data collected at each study visit as well as prenatal records, records from 
antepartum hospitalizations, and records from labor and delivery to determine the baseline 
hypertension and proteinuria status of each study participant and determine whether they developed 
any hypertensive disorders during their pregnancy. The nuMoM2b study employed multiple 
definitions for preeclampsia with and without severe features, one of which was based on the ACOG 
2013 guidelines113, which was the definition used for this study. New onset gestational hypertension 
was defined as systolic blood pressure of 140 mmHg or greater or diastolic blood pressure of 90 mmHg 
or greater on two occasions six hours apart or on one occasion that then prompted antihypertensive 
treatment. Preeclampsia with severe features (sPEC) was defined as new onset gestational 
hypertension plus any of the following symptoms: thrombocytopenia (platelet count < 100,000/µl), 
pulmonary edema, serum creatinine >1.1 mg/dL, severe headache, scotoma, serum aspartate 
aminotransferase (AST) >100 IU/L, epigastric pain, or severe hypertension (systolic blood pressure≥160 
or diastolic blood pressure≥110 on 2 occasions ≥6 hours apart or on 1 occasion requiring 
antihypertensive therapy and excluding blood pressure readings during the second stage of labor). 

 

Identifying clinical features for association and prediction 

nuMoM2b study participants provided extensive sociodemographic and clinical data at a screening 
visit that occurred between 6 and 14 weeks of pregnancy. To construct a dataset of clinical features for 
multi-omic association analysis as well as for prediction, we relied on previous work that used clinical 
data to predict sPEC in the nuMoM2b cohort86 as well as ACOG guidelines regarding PEC risk 
factors114. We used the following variables in our multi-omic association analysis with DIABLO: history 
of liver disease, gallbladder disease, diabetes prior to pregnancy, autoimmune disease, endocrine 
disease, blood clots or thromboembolic disease, heart disease, kidney disease, anemia, or hypertension, 
as well as first trimester blood pressure readings, maternal age, maternal BMI, maternal education level 
and maternal socioeconomic status. For predictive modeling we used the following variables: history of 
liver disease, gallbladder disease, diabetes prior to pregnancy, autoimmune disease, endocrine disease, 
blood clots or thromboembolic disease, heart disease, kidney disease, anemia, or hypertension, as well 
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as first trimester blood pressure readings, maternal age, and maternal BMI. All clinical data was 
ascertained or measured at first trimester visits.  

 

Subject and sample selection for immune factor and microbiome profiling 

62 individuals who developed sPEC were randomly chosen for immune factor and vaginal microbiome 
profiling. These 62 cases were matched with 62 participants who did not develop sPEC, eclampsia, or 
superimposed preeclampsia, during their pregnancy, although these individuals may have developed 
gestational hypertension or mild preeclampsia. These individuals were frequency matched based on a 
combination of maternal age and self-identified race, as well as enrollment site. 

 

Immune factor profiling 

The levels of the following immune factors were quantified in 150 ul aliquots of the samples intended 
for protein and metabolite analysis via a multiplexed Luminex assay (Luminex Corporation) using 
Millipore kits (HCYTA-60K-PX48 and HCYTA-60K): EGF, Flt-3L, G-CSF, IFNα2, IFN-γ, IL-10, IL-18, IL-
1RA, IL-1α, IL-1β, IL-27, IL-4, IL-6, IL-8, MCP-1, RANTES, TGFα, TNFα, VEGF, and sCD40L. All 
measurements were obtained in duplicate and data were in units of pg/ml. Immune factor profiles for 
the 124 participants were obtained on two separate days, with 84 samples profiled (42 sPEC cases, 42 
controls) on one day, and 40 samples (20 sPEC cases, 20 controls) on another. There was no 
confounding association between processing batch and sPEC (Fisher’s Exact p=1.0). To account for 
technical variation between batches, data was batch-standardized by subtracting the mean and 
dividing by the standard deviation of each feature in each batch. Concentrations and limits of detection 
were determined following the construction of a standard curve for each analyte. Values below the 
limit of detection were imputed with the limit of detection specific to each immune factor of the 
corresponding batch, and divided by √2. Values that were obtained with a high coefficient of variation 
(>20%) were replaced and imputed with the mean value of the corresponding batch for each immune 
factor. 

 

Microbiome profiling 

Microbial DNA was extracted from 200 ul aliquots of the sample collected for microbial DNA analysis 
using the QIAcube HT and either the QIAmp 96 Virus QIAcube HT kit (Cat. No. 57731) or the Qiagen 
DNeasy PowerSoil HTP 96 kit (Cat. No. 12955-4-5D). The former kit was used to extract DNA from 27 
sPEC cases and 27 controls, while the latter kit was used to extract DNA from all other samples. 
Extracted DNA was then prepared for sequencing via the Nextera DNA Library Prep Kit (Cat. No. 
20060059). Metagenomic sequencing data was generated for each sample via paired end sequencing 
(2x100bp) using a NovaSeq 6000 to a mean±std depth of 43.23 ± 23.4 million reads. Samples were 
processed in batches, which were explicitly balanced with respect to sPEC, clinical enrollment site, 
small for gestational age, maternal BMI, maternal age, maternal self-identified race, smoking status, 
maternal socioeconomic status, spontaneity of birth, chorioamnionitis, short cervix, cesarean birth, fetal 
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sex, hypertensive disorders, live birth, gestational age, and prelabor membrane rupture, to ensure a 
lack of batch confounding. Therefore there was no association between study group and kit or batch 
status in our experimental design (Fisher’s exact p=1.0 for kit, p=0.99 for batch). 

 

Metagenomic sequencing reads from each sample were quality filtered using Trimmomatic115 (v0.39) in 
order to remove reads containing Illumina adapter sequences, bases with quality scores below 25, and 
reads shorter than 50 bases. Metagenomic reads were then aligned to the human genome and PhiX 
genome via Bowtie2116. Any reads where either end mapped were subsequently removed117. Following 
the removal of host DNA, all samples were subsampled to a consistent depth of 500,000 microbial reads 
to normalize the data across our dataset. Any sample with less than 500,000 reads was discarded from 
further analysis, leaving 110 samples (N sPEC = 57). Microbial abundances were then estimated using 
Kraken2 (v2.1.3)118 followed by Bracken (v2.9)119. In order to ensure the most accurate and relevant 
results, we utilized the Human Vaginal Microbiome Genome Collection (VMGC)50 as the reference 
database, which is specifically curated to include a comprehensive and diverse array of vaginal 
microbial genomes. As the VMGC classified G. vaginalis, G. piotii, G. leopoldii, and G. swidsinskii as 
species within the genus Bifidobacterium, we reclassified these species as members of the Gardnerella 
genus. All unmapped reads were accounted for in the final read count matrix in an ‘unmapped’ 
column. For all analyses, the microbiome data was preprocessed by converting to relative abundances 
followed by a center log transform with a pseudocount of 10 to the power of the smallest whole 
number that keeps the pseudocount below the smallest observed relative abundance value across the 
dataset.  

 

Association of immune factors and microbes with sPEC 

To evaluate associations between the microbiome data and sPEC, we performed two-sided Mann-
Whitney U tests comparing the relative abundance of each microbe with a minimum of 10 detected 
reads in a minimum of 10 samples per group between the sPEC and non-sPEC groups, among samples 
within which a given microbe was detected. Additionally, we performed a robust principal component 
analysis51 to compare the entire microbial communities between the two groups. We investigated the 
relationships among microbes, immune factors, sPEC, and BMI via DIABLO67. We performed the 
analysis for 1) the entire cohort; 2) the 43 individuals with a BMI<25; and 3) the 67 individuals with a 
BMI≥25. Because nonrestrictive presence thresholds produced a high stochastic variation in results, we 
ensured consistency for the DIABLO analysis by reducing the number of features; only the microbes 
present in abundance of 10-3 in a minimum of 5% of samples were considered. The relevance network 
for the fitted DIABLO models were plotted using a `cutoff` parameter of 0.5.  

 

Predicting risk of preeclampsia 

To determine whether first trimester immune factor, microbiome, and clinical data is predictive of later 
diagnosis of sPEC, we trained and evaluated models using L2 regularized logistic regression. All 
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predictive model pipelines were evaluated using a rebalanced leave-one-out cross-validation scheme83, 
with an inner (nested) 5-fold cross-validation to tune hyperparameters (Fig. S6). The hyperparameters 
tuned in this analysis were the number of features to select via ANOVA F-value ([2, 5, 10]), 
implemented via scikit-learn’s120 `SelectKBest`, and the L2 regularization strength in the linear model 
which followed scikit-learn’s default cross-validation range from 1 to 108. The nested tuning also 
considered models stratified by BMI above and below 25, which, like other hyperparameters, was 
performed only on the inner folds. To apply the rebalanced leave-one-out approach with stratification 
for BMI, the additional held-out point83 was randomly selected from the same BMI group as the held-
out test point. Combined models were constructed by averaging the predictions of each individual 
predictor across the three data types – microbiome, immune factor, and clinical. To determine the 
statistical significance of our models’ auROCs vs. a random null, we used the Mann-Whitney U test to 
compare the predictions made for sPEC and non-sPEC121.  

 

Assessing generalizability of microbiome, immune factor, and clinical models 

To assess the ability of our models to generalize to data from the Multi-Omic Microbiome Study-
Pregnancy Initiative (MOMS-PI) cohort22, raw microbial reads and immune factor measurements were 
downloaded from dbGaP, study no. 20280 (accession ID phs001523.v1.p1). MOMS-PI samples were 
included from study participants who responded either yes or no during their delivery visit as to 
whether they experienced preeclampsia or eclampsia during pregnancy. Metagenomics data was 
processed as described above, and microbial abundances were also estimated using the VMGC 
reference database50. Prior to validation, the two microbiome datasets were preprocessed using log-
additive DEBIAS-M89 with default parameters, while only observing metadata from the nuMoM2b 
samples. Models based on clinical and immune factors data were trained and evaluated using only 
features shared by both cohorts. For the clinical models, this included only maternal age, BMI, weight, 
systolic blood pressure, diastolic blood pressure, and mean arterial pressure. For the immune factors, 
this included only 11 immune factors: IL-8, IL-4, IL-10, RANTES, TNFα, IL-6 , IL-1β, IL-1RA, MCP-1, G-
CSF, and IFNγ. A single validation model was selected from within nuMoM by Rebalanced Leave-
One-Out cross-validation to tune the same set of hyperparameters listed above. Prior to validation, the 
immune factor and clinical measurements from the MOMS-PI cohort were standardized using scikit-
learn’s StandardScaler class. When combining multiple models together, we first standardized each 
model’s predictions using StandardScaler.  
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Supplementary Figures 

 
Figure S1 | The association of immune factor PC1 with sPEC is driven by multiple immune factors. 
Barplot of the coefficients of the immune factors PC1. 
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Figure S2 | Weak associations between vaginal microbes and sPEC in dominance analysis and in 
individuals with BMI<25. a,b, Bar plots showing the fraction of individuals with and without sPEC, 
separated by vaginal microbiome dominance. Dominance was defined as >30% relative abundance, 
following previous studies22. None, no microbiome with >30% abundance; p, Fisher’s exact. c, Similar to 
Fig. 3c,d, but for individuals with first trimester BMI<25. d, Same as (b) for individuals with first trimester 
BMI<25. 
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Figure S3 | Vaginal immune factors are more strongly associated with sPEC in individuals with 
BMI≥25. a,b, Same as Fig. 2d, stratified by BMI. 
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Figure S4 | Associations between vaginal microbiome and immune factors in the context of sPEC. a. 
Pearson correlations of the first three microbiome RPCs and the first three immune factors PCs. b. Similar 
to Fig. 4d,e, but for a DIABLO analysis which included all individuals regardless of BMI.  
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Figure S5 | Associations of microbes, immune factors, and clinical covariates with sPEC in a sparse 
multivariate model. a-c, Coefficients of fitted DIABLO model’s associations with the first principal 
component of each data modality when trained on individuals with BMI<25, for microbes (a), immune 
factors (b), and clinical data (c). Colors of the bar denote the sPEC status that each variable is associated 
with. d-f, Same as a-c, but for a DIABLO model fitted using data from individuals with BMI≥25. 
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Figure S6 | Description of our nested cross-validation pipeline. The scheme used to evaluate predictive 
performance within the nuMoM2b dataset, using an inner 5-fold cross-validation structure to identify 
optimal hyperparameters, as described in Methods, with the ‘Best hyperparameters’ used to train a 
model which implements a prediction for its corresponding outer fold left-out point.  
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