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Epifluorescence‑based 
three‑dimensional traction force 
microscopy
Lauren Hazlett1,5*, Alexander K. Landauer2,5*, Mohak Patel2, Hadley A. Witt3,4, Jin Yang5, 
Jonathan S. Reichner4 & Christian Franck5*

We introduce a novel method to compute three‑dimensional (3D) displacements and both in‑plane 
and out‑of‑plane tractions on nominally planar transparent materials using standard epifluorescence 
microscopy. Despite the importance of out‑of‑plane components to fully understanding cell behavior, 
epifluorescence images are generally not used for 3D traction force microscopy (TFM) experiments due 
to limitations in spatial resolution and measuring out‑of‑plane motion. To extend an epifluorescence‑
based technique to 3D, we employ a topology‑based single particle tracking algorithm to reconstruct 
high spatial‑frequency 3D motion fields from densely seeded single‑particle layer images. Using an 
open‑source finite element (FE) based solver, we then compute the 3D full‑field stress and strain 
and surface traction fields. We demonstrate this technique by measuring tractions generated by 
both single human neutrophils and multicellular monolayers of Madin–Darby canine kidney cells, 
highlighting its acuity in reconstructing both individual and collective cellular tractions. In summary, 
this represents a new, easily accessible method for calculating fully three‑dimensional displacement 
and 3D surface tractions at high spatial frequency from epifluorescence images. We released and 
support the complete technique as a free and open‑source code package.

The production of cellular forces has been shown to regulate many important cellular processes including embry-
ogenesis, cellular homeostasis, and disease and trauma  response1–4. To investigate cellular and inter-cellular 
force generation, traction force microscopy (TFM) has become a well-established technique in mechanobiology 
that quantifies tractions produced during cell–cell or cell–matrix interactions, i.e., cell-imposed forces acting 
on interfaces between a cell or cells and the  microenvironment5–7. TFM has been cast in both two-dimensional 
(2D) and three-dimensional (3D)  variants8–11, from single  cells8–10,12 to multicellular clusters and  sheets13–16. 
While the original development of TFM started with 2D images acquired from phase contrast and epifluores-
cence microscopy and accounted for only small material deformations, most recent TFM approaches have the 
capability to fully reconstruct 3D motion and traction fields in a variety of linear, non-linear, and viscoelastic 
material  systems6,11,17–19 using confocal, multiphoton, or superresolution  techniques17,20–22. Despite the significant 
variations and evolution of TFM, the technique itself consists of three basic steps: reconstructing a cell-induced 
displacement field from microscopy images using either single particle or image correlation based techniques, 
inverting a constitutive relation to connect material displacements to stresses, and computing and visualizing 
traction vector  fields5–7.

Almost all cellular traction field reconstructions rely on accurate measurements of the cell-induced material 
deformation fields, which are typically computed from microscope images of fiducial particles, either embed-
ded in the cell  substrate6,8,11 or micro-patterned onto the substrate  surface23–25, and analyzed with either a single 
particle tracking or image correlation-based method. Digital image correlation (DIC) and particle image veloci-
metry (PIV) are popular correlation-based techniques in 2D; while digital volume correlation and single particle 
tracking algorithms are commonly found in 3D  investigations6,7,26–28. The choice of algorithm often comes down 
to the type of images acquired (e.g., 2D vs. 3D, fluorescent vs. phase contrast, etc.), image content being tracked 
(e.g., individual embedded particles vs. intensity patterns), and the spatial resolution required.
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Once the cell-induced material displacement fields have been determined, the cell-applied stresses, and thus 
tractions, can be computed in a number of ways. In the early days of TFM, most traction reconstructions relied on 
the inverse formulation of the classic linear elasticity solution of a point force applied to an elastic half-space. The 
Boussinesq solution was used to compute tractions initially in real space using the boundary element  method8 
and later in Fourier space (so called Fourier transform traction cytometry, FTTC)12. Methods for computing 
tractions have evolved from these early two-dimensional reconstructions with advancements in imaging modali-
ties and high throughput computing; currently, three-dimensional traction forces can be computed in various 
ways, including direct solution of the governing constitutive  equations10,21, using FTTC 29 or the finite element 
 method9,17,30,31. Finite element method traction force microscopy (FEM-TFM) traditionally imposes the measured 
displacement field onto a pre-defined grid, or mesh, of small elements representing the substrate, and then solves 
for tractions using a system of equations defined by the mesh discretization of the solution  domain6. FEM-TFM 
has greatly expanded the capabilities of 3D-TFM measurements by accounting for complications such as finite 
gel  thickness9 and cells fully embedded in a 3D  matrix17,32,33. It is noteworthy to point out that reconstruction of 
cellular traction fields using any of these techniques invariably relies upon knowledge of matrix material proper-
ties (e.g., Young’s modulus and Poisson’s ratio or shear and bulk moduli) and of the boundary geometry between 
the cell and the extracellular material (e.g., the hydrogel). Material properties can be determined using a variety 
of soft-material mechanical characterization techniques while the boundary geometries need to be supplied by 
the end user either as part of the inverse formulation or through explicit microscopy image segmentation. Sev-
eral reviews exist that compare the various displacement measurement and traction reconstruction techniques, 
including their specific applications and advantages and  disadvantages5–7,11.

Advances in 3D-TFM techniques have revealed that cells produce large deformations into or out of the plane 
of the  substrate21, as well as rotational moments about focal  adhesions34,35. This combination of shear and nor-
mal force information reveals substantial new insight into cellular behavior, including how force production is 
tied to intercellular machinery, how this machinery interfaces with the cell substrate, and how cells turn force 
production into motion: information that would not be readily available from 2D-TFM. Unfortunately, most 
3D-TFM techniques rely upon full-field 3D displacements, which in turn rely upon fully three-dimensional 
imaging modalities such as confocal or multiphoton microscopy. The availability of these more advanced imag-
ing systems is often limited by prohibitively high costs, which constrains many TFM users to epifluorescence 
or phase contrast imaging. Due to the native limitations of these traditionally 2D imaging systems, namely the 
increase in out-of-focus light scattering, those seeking to use these systems for TFM often use a single layer of 
fluorescent microbeads as fiducial markers to limit out-of-focus light from particles randomly dispersed through-
out a  gel36,37. This adaptation results in planar displacement data, which makes reconstructing 3D stresses for 
computing tractions challenging. Del Alamo et al. demonstrated that using a thin top layer of beaded substrate 
to limit out-of-focus light scattering in spinning disk confocal images was sufficient for accurately capturing 
3D displacements and, in conjunction with 3D Fourier TFM methods, fully 3D traction  fields29. Until recently, 
epifluorescence or phase contrast images limited users to in-plane, or two-dimensional, traction information. 
Makarchuk et al. used holographic traction force microscopy to localize and track fiducial particles embedded 
within the substrate from phase contrast  images38. In a similar technique, Hall et al. used epifluorescence along 
with a three-dimensional defocused particle tracking method to reconstruct displacement fields from fluorescent 
fiducial particles embedded in a  substrate39. These techniques were shown to be effective at localizing 3D bead 
displacements with high resolution at low spatial frequencies; however, due to the high degree of light scattering 
native to phase contrast and epifluorescence images, are not able to resolve particles at higher densities and thus 
are unable to acquire high spatial frequency three-dimensional information.

Here we introduce a technique for computing a fully three-dimensional displacement field and both in-plane 
and out-of-plane traction components from epifluorescence images of a single layer of beads using a combination 
of deconvolution, single particle tracking, and finite element analysis. A single layer of fiducial particles limits 
out-of-focus light from the fluorescent fiducial particles, and enables a high in-plane particle density, allowing 
us to obtain high spatial frequency information. Our topology-based single particle tracking (TPT)  algorithm26 
allows us to accurately reconstruct high spatial frequency, three-dimensional displacements from the dense layer 
of fluorescent fiducial particles. The single-plane 3D displacement measurements from the particle tracking 
algorithm are directly used in a finite element analysis to solve for the full-field, 3D volumetric displacement 
and stress field quantities, from which surface tractions are computed. By relaxing imaging requirements for 
3D-TFM to epifluorescence microscopy while maintaining three-dimensional measurements and high spatial 
frequency capabilities of traditional 3D-TFM, we aim to enable a broad segment of cell biologists to investigate 
mechanobiology. To this end, we also provide to the community a new open source, predominately Matlab-based 
implementation of our technique (see https ://githu b.com/Franc kLab) with a detailed discussion of the practical 
aspects of realizing the experiments in the laboratory available in the Supplementary Material.

Results
We present a new method to obtain 3D displacement and surface 3D traction fields from epifluorescence images. 
The complete procedure is outlined in Fig. 1 and the description of the method is broken down in more detail 
in the remainder of this section. To summarize these steps, 3D volumetric image stacks of cells on a planar sub-
strate with a single layer of fluorescent microbeads at the surface are taken on an epifluorescence microscope. 
These are imported to Matlab, where the images are deconvolved, and particles localized and tracked using 
topology-based particle tracking (TPT). The resulting nearly planar layer of measurement locations are used to 
project the displacement onto a planar grid to define a displacement boundary condition before being output to 
the free and open source finite element analysis (FEA) program  FEniCS40,41, where the solution for the full-field 

https://github.com/FranckLab
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displacement and stress information is computed. This full field information is then imported into Matlab for 
final traction computation and visualization.

Single‑layer bead polyacrylamide substrate fabrication. Polyacrylamide gels with a single layer of 
fluorescent microbeads were created using a modified version of the protocol previously described by Knoll et 
al. (2014)36. Briefly, beads were adhered to a poly-l-lysine coated glass coverslip, which was then used to sand-
wich a droplet of polyacrylamide gel solution during polymerization, as originally described by Pelham and 
Wang (1997)42. The bead-coated coverslip was removed, leaving the layer of beads embedded in the gel surface. 
For more information on polyacyrlamide gel preparation, see the “Methods” section. Representative images 
demonstrating limited z-spread of the bead positions, with beads randomly distributed with uniform density 
in x–y (i.e., limited bead clumping, empty regions, or other inhomogeneities) are shown in maximum intensity 
projections in Fig. 2a.
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Figure 1.  The procedure for calculating tractions from epifluorescence imaging. Volumetric epifluorescent 
images of spherical fiducial markers (i.e., fluorescent microbeads) embedded at the surface of a cellular substrate 
medium are imported into Matlab where they are deconvolved and a particle tracking algorithm is employed 
to calculate 3D displacements. The nearly-planar scattered displacements are mapped onto a planar grid with a 
second order lookup-table regularization. These 3D surface displacements are then input into a finite-element 
based solution to the boundary value problem defined by the known and measured displacement fields and 
material properties. From this computation, the stresses and a full-field 3D displacement field in the substrate 
domain are extracted and used to compute in-plane and out-of-plane traction components. The tractions 
may then be used to compute biologically-relevant quantities of interest. The right-hand column provides a 
simplified illustration of the process for images taken at time, t, and after some time, τ.
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Epifluorescence volume image deconvolution. We measure high spatial resolution displacements 
using our single particle tracking algorithm. This technique utilizes densely seeded fluorescent microbeads as 
fiducials in our volumetric images, and requires each bead to be fully resolved at high resolution with Gauss-
ian intensity and a characteristic diameter of approximately three to nine voxels in each direction. To obtain 
volumetric images of the fluorescent microbeads with these characteristics from epifluorescence microscopy, we 
deconvolve the experimental images using the point spread function (PSF) collected from a single microbead 
directly from the experimental images. To do this, we choose an isolated microbead and select a sufficiently large 
region of interest surrounding the bead in all three dimensions to capture the light spread from only the isolated 
bead. An example of a microbead PSF extracted from an experimental image can be seen in the single-bead 
maximum intensity projection in Fig. 2a. Further imaging details are given in the “Methods” section. Under the 
assumption that each microbead is a point-like light source, the single bead image thus describes the transfer 
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Figure 2.  Typical single-layer beaded gel images from epifluorescence microscopy and resultant displacement 
reconstruction accuracy metrics. (a) Maximum intensity projections from both pre- and post-deconvolution 
results for an experimental image using the experimentally-gathered point spread function shown in the center 
column. The deconvolved point spread function is shown in the column on the right. Insets show a closer view 
of the maximum intensity z-projections of experimental images pre- and post-deconvolution. (b) Histograms 
showing the distributions of the reconstructed planarized displacement in x, y and z from a nominally zero-
displacement experimental image pair and resultant x, y and z tractions. Note the zero-centered symmetric 
nature, indicating little bias or skew at the noise floor. (c) Line plot showing the measured mean displacement 
magnitude versus the applied experimental displacement magnitude from three individual rigid body 
displacement experiments, each imposing rigid motion in one of the three principal directions with sequentially 
increasing displacements along the indicated axis. Standard deviation is plotted as a shaded error bar (very 
small); inset shows the shaded error bars in more detail.
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function of light from a point source to the detector. Under these assumptions, we have found a straightforward 
application of the maximum likelihood estimator-based Lucy–Richardson deconvolution  scheme43,44 sufficiently 
repeatable to obtain bead images that admit accurate localization in x-, y-, and z-directions; see Fig. 2b and c. It 
is, however, noteworthy to mention that images should be taken with care to avoid skewness and severe imaging 
artifacts, which substantially degrade reconstruction and subsequent fiducial marker localization and tracking 
performance.

To compute the deconvolution, we use the Lucy–Richardson type scheme that assumes the transfer function 
of the optical system is applied to the true bead image in the presence of shot noise and background fluorescence 
(i.e., additive Poisson and Gaussian noise). The deconvolution proceeds by solving for the pristine image esti-
mate via an iterative inversion approximation of the transfer function plus  noise45. We have employed the more 
sophisticated implementation of this algorithm built into the Matlab Image Processing Toolbox. Pre- and post-
deconvolution volumetric image reconstructions are given in Fig. 2a and show the reduction of apparent particle 
size in the x–y plane, which aids precision, and results in a dramatic reduction in z-spread, which enables suf-
ficient precision and accuracy in the z-direction localization for effective out-of-plane deformation measurement.

3D displacement field from single‑particle tracking. Our topology-based particle tracking (TPT) 
algorithm is used to reconstruct high-spatial frequency, large deformation displacement information from the 
deconvolved images. To begin, the bead centers from deconvolved bead images are localized to determine bead 
positions with subpixel accuracy via the radial symmetry method, described by Liu et al. (2013)46, as imple-
mented in TPT. Then, for each image time point the regional particle location data are used to build a feature 
vector describing each bead in the image. For each bead, TPT links these feature vectors between reference 
(undeformed, t = 0 ) and deformed ( t = t + τ ) images to determine a 3D displacement vector. By employing 
the iterative deformation method, link verification, and displacement outlier removal schemes, a relatively sim-
ple feature vector is used to track large, high spatial frequency displacements and provides a computationally 
efficient means to fully resolve 3D displacements at single particle resolution. For our nominally single-layer gels 
all beads found and successfully linked within the image volume are tracked, including spurious out-of-plane 
beads, resulting in a scattered loci of measured displacement vectors. The subsequent planarization step both 
selects displacement data only on the dominant top single layer of beads and resamples the displacements onto 
a regular grid, see below. In the future, globally-aware tracking and linking, e.g., via an augmented Lagrangian-
type regularizer to guarantee the global kinematic  compatibility28, a mesh-free type  interpolant39, or more com-
putationally demanding feature vector could further improve the quality of tracked 3D displacement fields.

Planarization of 3D TPT data. Displacement data recovered using TPT are located at bead coordinates 
within the volume, and thus are scattered. Outlier beads are rejected from the tracking result using a user-
tuned parameter for the number of standard deviations that an individual bead lies from the overall mean bead 
z-height. Outliers are uncommon using our single layer bead technique and thus are typically isolated and suffer 
from increased noise. In addition, to impose the top-surface Dirichlet-type boundary condition on the initially 
flat computational volume, displacements must reside on a single z-plane. To address this, displacements are 
resampled onto a regular grid located on the best-fit plane of bead locations; this grid is the top surface mesh 
that will be used in subsequent 3D finite element simulations, thus also correcting for any tilt of the stage or 
gel surface with respect to the imaging coordinates. The displacement resampling is performed by a curvature 
regularization scheme of the scattered bead displacements, with user-adjustable smoothing coefficients for the 
regularizer implemented independently between (x-y) and z-displacements. This leads to less noisy and more 
robust displacements ( [ux , uy , uz] ∈ Hilbert space H2 ) for use in determining volumetric stresses and strains via 
a forward solution of the boundary value problem with finite elements. Figure 2b and c show the distribution 
and accuracy of planarized displacement information from a zero-displacement rigid body motion experiment 
and the measured displacements plotted against the applied rigid displacement for three rigid body transla-
tion experiments (one in each of x-, y-, and z-directions), respectively. These demonstrate that this technique 
provides a level of accuracy and precision necessary to compute stress fields for small, low force-producing cells 
such as the human neutrophil.

3D finite element calculations for strain, stress, and traction. We directly solve the volumetric 
boundary value problem defined by known, measured displacements and substrate material properties using the 
finite element method as implemented in FEniCS. A baseline, convergent finite element mesh (tested via a syn-
thetic 6 σ-width Gaussian indentation displacement with amplitude approximately 0.27 μm), consisting of 25,992 
hexahedron mesh elements (i.e., first order Lagrangian  bricks41) is a baseline for all experiments, see Fig. 3a. The 
mesh is automatically pre-refined in the region of the cell according to an adjustable Gaussian decay in element 
density. This initial mesh provides a consistent, high resolution, and high quality starting point on which to apply 
the TPT-based planarized displacement and solve the volumetric boundary value problem. Linear hexahedron 
elements with center nodes are used to avoid locking, given the relatively large Poisson’s ratio of typical hydrogels 
used for TFM. To accommodate varying experimental configurations, the base mesh is uniformly warped to fill 
the image volume, as defined in the output from the Matlab-based pre-processing steps detailed above. Since the 
base mesh is a regular rectangular solid and most imaging domains are similar in shape and aspect ratio to this 
mesh, distortions from this reshaping are typically negligible. As with planarization, more sophisticated meshing 
(e.g., adaptive remeshing) is possible, but we have obtained efficient and robust solutions with acceptable accu-
racy using the straightforward approach described above. Regarding displacement boundary conditions, the left 
face of the computational volume is fixed in the x-direction (i.e., ux = 0 ), the back face is held fixed in the 
y-direction (i.e., uy = 0 ), and the bottom face held fixed in the x, y, and z-directions (i.e., ui = 0 ), thus fully 
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constraining the solution domain. The top surface displacement boundary condition is given by our planarized 
3D cell-imposed displacement vectors output from the preceding analysis steps. The validation of this technique 
(see the “Synthetic validations” section in the “Methods” and Fig. 3) demonstrates that small, subpixel displace-
ments (i.e., those generated by tens of nanonewton cellular forces) and high spatial frequencies (i.e., micrometer-
scale full-width half-magnitude (FWHM) frequency) are observable with signal to noise ( SNR =

|Uncertainty|
|Signalmax|

 ) 
ratios of approximately 300 and 100 for displacement and traction, respectively.

The stored strain energy density function, � , used to define element-wise constitutive relations is given by 
the compressible form for the neo-Hookean hyperelastic solid, i.e.,

where material properties μ and � are the Lamé constants computed from user-input elastic modulus (E) and 
Poisson’s ratio ( ν ) of the hydrogel. The tensor-valued C and scalar-valued J terms represent right Cauchy–Green 
deformation tensor and volume change ratio of a generic finite-strain deformation of the element from a reference 
(undeformed) to deformed configuration and Tr(·) is the trace operator (see, for example, the textbook of  Bower47 
for a complete discussion of large deformations in continua). In short, we take C = F

T
F , where F is the spatial 

deformation gradient of the displacement field and J = det(F) > 0 where det(·) is the determinant operator. 
Stresses are projected on each element in the volume via second-order quadrature of the hexahedron elements.

The traction vector field on the top surface, which is currently assumed to be wholly due to the action of the 
cell, is computed from the deformed configuration of the finite element mesh and true stress projected from 
quadrature point to the deformed nodal coordinates of the mesh. To determine traction at each point on the top 
surface the Cauchy relations are computed via

where n is the surface normal vector, σ is the Cauchy (true) stress, and T is the traction vector. Surface normals 
are determined via a Delauney triangularization of the deformed top surface of the measurement volume and 
the stress field interpolated with a natural neighbor interpolant (C1 continuous except at sample points) onto 
the vertex points in the trangularization (viz. the method of Toyjanova et al. (2014)21).
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Figure 3.  Finite-element set up and uncertainty for a simulated case consisting of images synthesized with 
independently varied traction magnitude and width. (a) The final converged hexahedron mesh in the deformed 
configuration with refinement at the center of the applied Gaussian traction field. Displacement magnitude 
contours are shown on the the deformed mesh, to which a 10× deformation amplification has been applied to 
aid visualization. (Inset) Measured surface traction vector field for this example case plotted on the deformed 
configuration top surface. (b) Displacement uncertainty magnitude for synthetically generated Gaussian-profile 
tractions with varying applied force amplitude and spatial frequency (full-width half-magnitude of the Gaussian 
traction profile, with fixed peak resultant displacements). (c) Traction reconstruction uncertainty projected 
onto the undeformed surface (i.e., normal and two in-plane traction vectors) for the same test cases. The shaded 
regions reflect the pointwise standard error for each case.



7

Vol.:(0123456789)

Scientific RepoRtS |        (2020) 10:16599  | https://doi.org/10.1038/s41598-020-72931-6

www.nature.com/scientificreports/

Computing 3D cell traction fields. We apply this procedure to compute 3D traction fields from two 
cells types to demonstrate its effectiveness in practice. Images of neutrophils and Madin–Darby canine kidney 
(MDCK) cells labeled with Calcein AM fluorescent dye were acquired using epifluorescence and 3D bounda-
ries were segmented using built-in Matlab functions for image thresholding and binarization. Phase contrast 
images of cells could also be segmented and binarized to be used for plotting planar information but are not 
typically sufficient for segmenting and plotting three-dimensional cell boundaries, such as those shown in 
Fig. 4a–d(iii). An example of the fluorescence cell images acquired is shown in  the Supplementary Material. 
First, we examine a single primary human neutrophil. Neutrophils have been shown to exhibit various traction 
patterns using TFM, including concentrated forces in the uropod of the cell, differential tractions on differ-
ent substrate stiffnesses, and large out-of-plane deformations, among  others21,48,49. In addition, neutrophils are 
both small, typically 8–10 μm in diameter, and fast-moving, thus demonstrating the ability of our technique to 
quantify high temporal and spatial frequency displacement and traction information. An example of a three-
dimensional displacement field from a human neutrophil can be seen in Fig. 4a. The 3D displacement magnitude 
is shown in Fig. 4a(i), the x–y displacement of a cropped region is shown in (ii). To more clearly show the meas-
ured three-dimensional deformation for a region of interest within the volume, the displacement distribution is 
shown in (iii) as a projection onto the arbitrary cutting plane x′–z, i.e., a vertical cutting plane selected along a 
vector x′ in the x–y-plane such that the points of interest in the cell are transected. The corresponding traction 
field is shown in Fig. 4c, with the magnitude, x–y, and x′–z tractions shown in (i), (ii), and (iii), respectively. Sec-
ond, we demonstrate that our technique can be used for not only single cells, but also multicellular monolayers 
or two dimensional cell clusters. For this case, we chose MDCK, which are commercially available and have been 
shown to produce quantifiable traction forces during collective migration, and as individual cells or in groups 
or  clusters14,50,51. An example of the three-dimensional displacement and traction fields produced by a cluster of 
approximately 20 MDCK cells can be seen in Fig. 4b and d, respectively, in a layout identical to that described 
for the neutrophil case.
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Figure 4.  Cell-produced 3D displacement and traction fields on the top surface of the hydrogel. Maximum 
intensity projections of the cell bodies are shown in purple. Cone size and color imply displacement or traction 
magnitude, while direction is given by the cone points. (a) The displacement field visualization for an activated 
neutrophil migrating on a fibronectin coated polyacrylamide hydrogel showing localized peak displacements 
toward the cell center and downward into the gel. (b) The displacement field visualized for a multicellular 
cluster of MDCK cells during collective migration along a collagen-I coated polyacrylamide hydrogel displaying 
contractile displacements around the entire cell cluster. (c) The resultant surface traction vector field for the 
neutrophil case computed on the deformed top surface reconstructed in the finite element analysis. The traction 
distribution exhibits a push-pull pattern often associated with amoeboid cell migration. (d) The traction for our 
MDCK cell cluster. Disperse tractions are centered on a downward (into the gel) push near the middle of the 
cluster. For each case, (i) shows the xyz-magnitude, (ii) shows a magnified view of the xy-magnitude of the area 
within the white box shown in (i), and (iii) shows the xz-vector of the displacement or traction field projected 
onto the x′ –z cutting plane, i.e., a cutting plane view of the vertical slice made by the white line shown in (ii).
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Discussion
The procedure described in this paper represents a new technique for calculating three-dimensional displace-
ment, stress and surface traction fields from epifluorescence images of fluorescent fiducial particles embedded in 
a two-dimensional surface layer and acted upon by an external force, such as a cell or cell cluster. Using decon-
volution with an experimentally determined point spread function, the particle centers are accurately localized 
in the z-direction. The deformation is reconstructed with a single particle tracking algorithm (TPT) that excels 
at reconstructing high-spatial frequency motions in high particle density environments. The tracked particle 
displacements are then resampled onto the best-fit plane of the initial bead locations. This planarized single-layer 
displacement information is then applied as a surface Dirichlet-type boundary condition in the FEniCS finite 
element solver. With user input material properties (elastic modulus and Poisson’s ratio) given for the substrate, 
the full 3D displacement and state of stress of the substrate volume is directly solved assuming a hyperelastic neo-
Hookean material model. The resultant top-surface tractions are computed using finite deformation continuum 
 principles21 and, finally, complete visualizations of displacement and traction fields are rendered.

We validated and tested this protocol using a number of synthetic and experimental cases to probe the accu-
racy and precision of the reconstructed displacement and traction fields, and to examine its capacity to recon-
struct high spatial frequency motion fields. We also demonstrate the technique on two cellular cases. To assess 
the accuracy and precision of the process for measuring displacements in real experiments, rigid body motions 
with displacements ranging from 1 μm to 15 μm were imposed and reconstructed. Spatial frequency, amplitude, 
and traction field reconstruction was validated using synthetic Gaussian tractions, which demonstrates the ability 
of our algorithm to accurately resolve tractions at cell-relevant scales. Finally, we compute traction fields from 
two cellular examples to represent two different types of data that are commonly analyzed using traction force 
microscopy: a single cell and a multicellular cluster. This suit of tests demonstrates the ability of our algorithm 
to reconstruct displacements and quantify tractions from a variety of cell-produced substrate deformations. We 
chose to compute traction from a cell cluster in our example case, rather than tractions from fully confluent 
monolayers, to preserve a zero-displacement edge  condition13–15,51,52, though the technique could be readily 
extended to compute intercellular stresses of a confluent monolayer of cells, e.g., Serrano et al. (2019)15.

Our displacement and traction example cases showcase some of the information that is only accessible with 
three-dimensional TFM analysis. A visual comparison between Fig. 4a–d (ii) with (i) and (iii) shows that the 
out-of-plane displacement and traction produced often match or exceed the in-plane values. In addition, the 
three-dimensional analysis highlights the rotational behavior of cell displacement and traction forces concen-
trated at the edges of the cell or cell cluster initially described by Legant et al.34. These observations carry across 
our two very different cell examples, and highlight the importance of using three-dimensional traction force 
microscopy techniques to make complete observations about cell behavior.

In principle, epifluorescence imaging can be used for three-dimensional traction force microscopy without the 
need to use a single layer of beads and hence finite element methods for analysis. However, the spatial resolution 
of the resulting displacement and traction information will be limited by the ability to resolve and adequately 
localize bead spread in the z-direction39. That determination will ultimately depend on the reconstructed 3D 
image quality and the quality of the optical system. Here, a single layer of microbeads allows us to use a high 
seeding density, and thus resolve higher spatial frequency information without having to directly contend with 
light scattering from epifluorescence inhibiting our ability to accurately localize out-of-plane microbeads. It 
is also noteworthy to mention that we have used an inverted microscope to maximize bead image quality and 
subsequent localization: in upright microscopy, light scattering through the cell or cell layer may result in addi-
tional degradation of image quality and therefore localization accuracy. As in the fully 3D volumetric case, 
mean deformation  metrics18 of the cell, e.g., mean contractility in the principal directions, could be extracted 
from reconstructed motion estimates if cell-scale constitutive relations for a substrate material are unavailable. 
Considerations for viscoelastic or alternative non-linear material model formulations could be straightforwardly 
incorporated via implementation of the strain energy density function in FEniCS, further increasing the potential 
applications of this protocol.

The complete Matlab and FEniCS-based implementation of the workflow are packaged with a user manual 
and are available for download as free and open-source software (see https ://githu b.com/Franc kLab). By enabling 
users to implement an inexpensive and readily available imaging modality to acquire the necessary data, and by 
releasing a straightforward, documented protocol with example data and all algorithms required for computation 
and plotting included, we seek to lower the threshold for users to probe three-dimensional cellular mechanics.

Methods
In this section, we begin by detailing the method for validation and verification of the technique. We then 
briefly discuss the setup and data collection for experimental error assessment via rigid-body translations of 
a representative cell-free specimen. Finally, we describe the complete preparation and imaging process for the 
neutrophil and MDCK cell test cases.

Synthetic validations. To vet the accuracy of the algorithm with known imposed fields, synthetic images 
were generated with Gaussian indentation-like traction distributions. In this way, we test the algorithm while 
independently and self-consistently varying the spatial frequency and amplitude content of the displacement 
signal over a range of synthesized experiments.

A previously described bead seeding  algorithm26,27 that places bead images into an image volume at subpixel 
locations and with minimal interpolation was employed. Undeformed configuration images were generated in 
a four step process. First, a representative real image of a bead was extracted from an experimental image (see 
the “Cell preparation and imaging” section). Second, bead center positions were seeded in the volume with 

https://github.com/FranckLab
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random non-overlapping coordinates at the approximate density and spatial distribution observed in experi-
ments. Third, bead images were added to the image volume at the predefined locations, and, fourth, the final 
images were corrupted with a Gaussian white noise profile and dynamic range adjusted to match measurements 
from our experimental test cases. To then generate the deformed images the displacements for each seed loca-
tion were sampled from the analytical solution for Gaussian z-traction indentation of an elastic half-space with 
material properties corresponding to typical experimental parameters ( E = 1500 Pa and ν = 0.45 ) for a series 
of increasing spatial frequencies, controlled via the full-width half-magnitude (FWHM) of the signal ranging 
from W = 7.68 μm to W = 76.8 μm in steps of 7.68 μm at a fixed 0.32 μm peak displacement amplitude and force 
amplitudes from F = 40 nN to F = 400 nN in steps of 40 nN at W = 10.24 μm. The frequency and amplitude 
ranges were selected to encompass typical experimental observations, for example those found in Toyjanova et 
al.53. For each case, the analytical solution for displacements and tractions are based on a convolutional Fourier-
space Boussinesq solution that are simultaneously computed at each measurement point.

The synthetic volume images were propagated through the complete analysis workflow of Fig. 1, and uncer-
tainties were computed for displacements and tractions. Figure 3 shows the mean uncertainty magnitude (see 
Eq. 3) of TPT displacement, post-finite element solved displacements, and traction magnitude. The finite element 
mesh with color contours of measured displacement in the deformed configuration (10× warping factor for 
visualization) is shown in Fig. 3. The uncertainty quantification between the analytically solved and measured 
synthetic fields is computed using the mean of the pointwise error between reconstructed and imposed ground 
truth via

where n are the measurement points (e.g., quadrature points or mesh vertices on the top surface), χ is a field 
quantity (e.g., displacement or traction), and N is the total number of measurement points for the quantity. The 
results from this uncertainty formulation, which describes an approximate non-parametric confidence interval-
type uncertainty for a given measurement point in its base units, are plotted independently as functions of signal 
magnitude or spatial frequency in Fig. 3b and c with the standard error of the measurement shown as shaded area.

Experimental validation and live‑cell experiments. Polyacrylamide gel preparation. Glass cover-
slips were cleaned using ethanol and dried. 0.1% w/v Poly-l-lysine (PLL) was coated onto the surface of the 
coverslips and allowed to sit for 1 h. Suspended 0.5 μm carboxylate modified polystyrene beads (Thermo Fisher 
Scientific) were vortexed for 30 s to 1 min prior to dilution to a final ratio of 1:100 in deionized water. Poly-l-
lysine was blown off of the surface of the glass coverslips using air, and the treated surfaces were then coated with 
the 1:100 bead solution and allowed to sit for 30 min before being blown dry again. Glass coverslips were hydro-
philically treated using amino 0.5% (v/v) 3-aminopropyltrimethoxysilane in ethanol, followed by 0.5% glutaral-
dehyde in deionized water. Finally, polyacrylamide gels were fabricated using the method originally described 
by Pelham and Wang  199742, where polyacrylamide gels are polymerized between two glass coverslips; in this 
case a hydrophilic coverslip on the bottom and a bead coated coverslip on the top. Gels of two stiffnesses were 
fabricated at two relative concentrations of acrylamide and bis-acrylamide (Bio-Rad), namely 8%/0.08% and 
3%/0.2%, to produce nearly incompressible gels with Young’s moduli of 8.3 kPa ± 0.2 kPa and 1.5 kPa ± 0.1 kPa, 
respectively. Stiffnesses for this procedure were measured by Toyjanova et al.53 via an established uniaxial com-
pression  technique10,54. Crosslinking was initiated with the addition of ammonium persulfate (Sigma-Aldrich) 
and N, N, N, N-tetramethylethylenediamine (Sigma-Aldrich). MDCK cell experiments used 8.3 kPa gels, where-
as neutrophil and all other experiments used the 1.5 kPa gels. Gels were given 15 min to polymerize before being 
immersed in deionized water, and allowed to swell for 45 min. The PLL-coated coverslip was peeled off, leaving 
the layer of beads embedded in the gel.

Single‑layer gel imaging parameters. Polyacrylamide gels with a single layer of fluorescent beads were imaged 
on a Nikon TI-2 epifluorescence microscope using a 40 ×/0.6 NA air objective with an aligned correction collar. 
A three-dimensional stack of epifluorescence images were taken around the beads, with a μm-per-pixel ratio of 
0.16 and a z-step size of 0.3 μm (or 1.0 μm for MDCK cells), per the recommended Nyquist sampling rate for the 
chosen objective and system. Raw images of 2560 voxels × 2156 voxels × 101 voxels are typical for our imaging 
system (pco.edge 5.5, PCO AG) and can be used at full resolution in the algorithm on a workstation computer 
with 64GB RAM, but are cropped to 1024 voxels × 1024 voxels × 101 voxels (see Supplementary Material) to 
reduce computational resources required when the cells of interest reside in a subset of the image, as was the case 
for our neutrophil and MDCK cell test data shown in Fig. 4.

Rigid body displacement validation. To assess the ability of our algorithm to accurately localize and track dis-
placements from epifluorescence images and to create a planar displacement field that matches a known dis-
placement condition, we performed a series of rigid body displacement experiments. This experimental image 
set was captured by taking an initial image stack with the single layer of beads centered in z and imposing a 
known incremental stage motion in x-, y-, or z-directions before acquiring a new image stack. The stage motion 
setpoints were 0.0 μm, 1.0 μm, 2.0 μm, 3.0 μm, 5.0 μm, 10.0 μm, and 15.0 μm, and images were captured of the 
microbeads after the prescribed stage motion in each of the three orthogonal directions. We then interrogate the 
accuracy and precision with which our method resolves known displacements based upon the read out from the 
stage encoder (Nikon Instruments, positioning accuracy ± 0.1 μm). We plot the distribution of the reconstructed 
displacements for a zero rigid body motion case in Fig. 2b, as well as the measured versus applied displacement, 
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for all of the rigid body motion cases, as shown in Fig. 2c. The positional accuracy of the stage encoder is much 
smaller than imposed rigid motions, (± 0.1 μm vs. minimum 1 μm), and does not appear to be a significant error 
source based on this displacement analysis.

Cell preparation and imaging. For cellular experiments, polyacrylamide (PA) gels were treated with the 
crosslinker N-sulfosuccinimidyl-6-(4 ′-azido-2 ′-nitrophenylamino) hexanoate (Sulfo-Sanpah, Thermo Fisher 
Scientific Pierce), for two, 15 min increments under UV light, washed with 1 × PBS, and then coated overnight 
with either 0.2 mg/mL fibronectin (neutrophils) or 0.2 mg/mL collagen-I (MDCK cells), following established 
 protocols21. Excess protein solution was washed off using PBS before the PA gels were incubated at 37 ◦C in 
imaging media prior to the addition of cells.

Blood was taken from healthy volunteers with written informed consent through a protocol approved by 
the University of Wisconsin Internal Review Board and in accordance to the guidelines and regulations thereof. 
Primary human neutrophils were isolated by negative antibody selection using the MACSxpress Neutrophil Isola-
tion and MACSxpress Erthryocyte Depletion kits (Miltenyi Biotec, Inc.). Cells were labeled by 8 min incubation 
in 2 μM Calcein AM in Hank’s Balanced Salt Solution, without calcium, magnesium, or phenol red. Cells were 
seeded onto fibronectin-coated PA gels in Leibowitz’s L-15 media with 2 mg/mL glucose added, and allowed to 
adhere for 20 min at 37 ◦C prior to imaging. Neutrophil images were taken with the same 40 ×/0.6 NA air objec-
tive as all other images, but with the Nikon TI-2 1.5 × optical zoom lens in place to help resolve the smaller cells.

Madin–Darby canine kidney type II cells (Sigma Aldrich) were cultured in low glucose Dulbecco’s modi-
fied eagle medium (DMEM, Fisher Scientific) and fetal bovine serum until nearly confluent. MDCK cells were 
removed from culture dishes by incubation with Trypsin-EDTA (Thermo Fisher Scientific) and then seeded onto 
PA gels coated with collagen-I. The cells were allowed to adhere and proliferate for 24 h, until nearly confluent, 
prior to staining with 8 μM Calcien AM for 20 min in media, and then imaging.

All live-cell experiments were conducted in a custom-built temperature control chamber at 37 ◦C . Three-
dimensional z-stacks of fluorescent microbeads in the substrate and fluorescently labeled cells on the substrate 
surface were taken simultaneously to capture displacement information. Following acquisition of images of both 
types of cells, cells were removed from the PA gels using 5% sodium dodecyl sulfate (SDS). A final volumetric 
image stack for the reference condition was acquired 15 min after the addition of the SDS, when all of the cells 
had detached from the gels.

Computational requirements. Cell image stacks were taken at 2560  px ×  2156  px by 101 slices and 
cropped to 1024 voxels × 1024 voxels ×  40 voxels around the cell border for analysis on a desktop PC with 32 GB 
of RAM. Deconvolution, the most memory-intensive step of the process, requires approximately 64 GB RAM 
for full-size images, which may take several hours per image, but both time and memory usage is significantly 
reduced for the cropped images. Regarding processing time (Intel i7-4790 at 4 GHz, 32 GB DDR3 at 1600 MHz, 
NVME M.2 solid state storage drive, synthetic validation test case), deconvolution of the cropped images takes 
approximately 90 s per image stack. Timing for bead localization and computing displacements closely follows 
the timing results in Patel et al.26—approximately 20  s on 3 parallel threads. Regularization is completed in 
approximately 1 min, and the following plotting and output steps are accomplished in approximately 20 s. By far 
the most time consuming stage of the computational process is the finite element solver, which is computed with 
16 GB and 2 CPU cores allocated for Docker in approximately 10 min per time point image pair. In future, more 
extensive multi-processor capability could be straightforwardly added if needed. Post-processing to compute 
surface tractions takes only a few tenths of a second. Thus total runtime (neglecting time for user interaction) 
may be budgeted at approximately 15 min per time point image pair.

Data availability
All data used to generate figures and results for this work are freely available and hosted on the University of 
Wisconsin - Madison MINDS research data storage service at the following web link: http://digit al.libra ry.wisc.
edu/1793/80302 . As mentioned earlier, the code is also freely available from the Franck Lab GitHub repository. 
Code, data, and assistance are also available by contacting the authors (raising an “Issue” in GitHub is preferred).
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