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Since the outbreak of Coronavirus Disease 2019 (COVID-19) in 2020, it has significantly
affected the global health system. The use of deep learning technology to automatically
segment pneumonia lesions from Computed Tomography (CT) images can greatly reduce
the workload of physicians and expand traditional diagnostic methods. However, there
are still some challenges to tackle the task, including obtaining high-quality annotations
and subtle differences between classes. In the present study, a novel deep neural network
based on Resnet architecture is proposed to automatically segment infected areas from CT
images. To reduce the annotation cost, a Vector Quantized Variational AutoEncoder (VQ-
VAE) branch is added to reconstruct the input images for purpose of regularizing the
shared decoder and the latent maps of the VQ-VAE are utilized to further improve the fea-
ture representation. Moreover, a novel proportions loss is presented for mitigating class
imbalance and enhance the generalization ability of the model. In addition, a semi-
supervised mechanism based on adversarial learning to the network has been proposed,
which can utilize the information of the trusted region in unlabeled images to further reg-
ularize the network. Extensive experiments on the COVID-SemiSeg are performed to verify
the superiority of the proposed method, and the results are in line with expectations.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Since the first person was diagnosed with Coronavirus disease in 2019 (COVID-19) [1], there have been more than 170
million confirmed cases and more than 3.541 million deaths as of May 31, 2021 [2]. The disease has since spread worldwide,
leading to an ongoing pandemic.

Symptoms of COVID-19 are variable, the most common are cough, fever, headache, loss of smell and taste, and breathing
difficulties. The virus affects multiple organs in the human body, and the lung is the ground zero for the virus affection.
Computed Tomography (CT) imaging has become a critical means to detect lung tissue associated with the virus, where seg-
mentation of the infection regions is important for the subsequent assessment. In the past, studies observed that radiological
imaging is effective in the inchoate screening of COVID-19 [3]. The manual segmentation of the lesions from CT images is
time-consuming and requires a large expenditure of labor, whereas, manual annotation is a subjective task, and its accuracy
is affected by the physicians’ clinical experience and personal bias. Thus, the automatic segmentation of the lesions is highly
desirable in clinic practice.
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Recently, deep learning has achieved great success in the field of medical image analysis [4]. Many robust models have
been applied to segment COVID-19 infected area from CT images, including classic U-Net [5], Unet++ [6], and DenseUnet [7].
To obtain a robust segmentation network, the model requires sufficient annotated labels. Shan et al. [8] proposed a method
that involved interactivity with experts in the training process of the network. Moreover, Zheng et al. [9] proposed an unsu-
pervised framework, which can generate pseudo labels to improve the performance of the model. Although many outstand-
ing works have been proposed to tackle the COVID-19 pneumonia lesion segmentation task, there are still many challenges
that need to be solved. First, it is difficult to segment the corresponding lesion area correctly due to the variety of the shape,
texture, and position of the lesion. Second, the infection lesions have different complex characteristics, for example, Ground-
Glass Opacity (GGO), consolidation, etc. The inter-class gap between them is small, the boundary is blurred, and the contrast
of the lesion compared with the normal area is low. These challenges make it difficult for even experts to segment the area of
the lesions accurately, let alone automatic segmentation without manual intervention. Finally, for the above reasons, it is
difficult to obtain sufficient high-quality labels in practice and the acquisition of annotations is time-consuming and
expensive.

To address the aforementioned issues, the VQ-VAE [10] branch is introduced to reconstruct the input images. The branch
can regularize the shared decoder. The generated latent maps with rich semantic information are fed into the decoder to
further enhance the feature representation. Moreover, the proportion loss is proposed to mitigate class imbalance, which
encourages the label marginal to match target class proportions. Furthermore, a novel semi-supervised framework is pro-
posed which is based on adversarial learning to alleviate the shortage of high-quality labels. Specifically, the training process
includes two phases: fully-supervised learning and semi-supervised learning. The first phase leverages labeled images to
train the model, and the second part utilizes unlabeled data to provide supervised signals. The two phases are performed
simultaneously. The whole training process will be detailed in Section 3. In a nutshell, the contributions and novelty of
the present study are highlighted as follows:

(1) A novel network for COVID-19 infected area segmentation from CT slices is presented. The framework integrates a VQ-
VAE branch to reconstructs the input image into itself, and the shared encoder is regularized by the module. It can not
only improve the performance but also help to consistently obtain reliable performance for any random initialization.
(2) The proportion loss is proposed to mitigate the class imbalance, but without losing generality. It can effectively induce
the proportions of the label to match the target. Also, the training processing can be stabilized by the proposed loss.
(3) A novel semi-supervised framework based on adversarial learning is proposed. It can not only make full use of the
labeled images, but also utilized the supervision signals generated by unlabeled images to guide the training process.

The sections of this paper are organized as follows. The second section introduces the related work. Furthermore, Section 3
provides a detailed explanation of the proposed method. The experimental results and performance analysis are introduced
in Section 4. Finally, we present the conclusion in Section 5.
2. Related work

Some works related to our research will be discussed in this section, including medical image segmentation, loss function
for semantic segmentation, and artificial intelligence techniques for COVID-19.
2.1. Medical image segmentation

In computer-aided diagnosis, medical image segmentation is a fundamental and challenging task, aiming to accurately
recognize the target regions (e.g., organs, tissues, lesions). In recent years, convolutional neural network have dominated
the field of image segmentation, and have been widely employed in medical image processing.

Fully supervised learning is the most widely used technology for medical image segmentation tasks, which requires ade-
quate high-quality annotations. One of the most prominent works is U-Net, which is proposed by Ronneberger et al. [11]. The
model includes an encoder for feature extraction and an asymmetrical decoder for restoring spatial resolution and generat-
ing segmentation results. Features at different levels are merged through skip-connections, which improves segmentation
accuracy. Furthermore, Zhou et al. [12] improved the multi-layer features fusion method and proposed U-Net++, which adds
a nested convolutional structure between the encoder and decoder. The methods mentioned above are all for 2D data, but
most medical image data type are 3D. To solve this problem, Çiçek et al. [13] present the 3D U-Net that utilizes the inter-slice
knowledge by replacing the layers with a 3D version. Meanwhile, the attention mechanism is introduced into some works
[14] to re-weight the features to strengthen the effective characteristic and suppress the ineffective features.

To train a robust segmentation network, sufficient annotations are essential. As manual delineation for lesions is label-
intensive and time-consuming, adequate high-quality annotations are often unprocurable for medical image segmentation.
To mitigate the dependence on annotations and reduce costs, semi-supervised learning algorithms have gained extensive
attention and research. Research scholars in Ref. [15]16 applied self-taught algorithm to spread useful information obtained
by labeled data through manifold assumptions to generate pseudo-labels and perform iterative optimization. The drawback
of this type of method is that the performance highly depends on the quality of the generated pseudo-labels. If the model
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learns the failing label, it may continuously amplify it and affect the final prediction. Bai et al. [16] combined the post-
processing algorithm with the self-training to segment the left ventricular MRI image. This method first learns the labeled
data and segments the unlabeled image. Then, the conditional random field is introduced to refine the predictions, which are
leveraged to guide the next iteration. Rajchl et al. [15] also applied the self-taught and additionally used the bounding-box
level annotations to assist the supervision process. To reduce the limitations of single model prediction, the co-training algo-
rithm is introduced to use multiple pre-trained models to comprehensively predict pseudo-labels. Peng et al. [17] used the
mean values predicted by multiple models as pseudo labels, and introduced adversarial samples to capture the differences
between different models to make the models learn more complementary knowledge. The various alternative methods can
adjust the process of learning pseudo labels by introducing additional constraints to improve the utilization efficiency of the
pseudo labels. Andriy [18] proposed a model that integrates variational auto-encoder(VAE) to mitigate insufficient training
data, and won 1st place in the BraTS. 2018 challenge.
2.2. Loss function for semantic segmentation

The loss function is highly important for designing comprehensive image segmentation-based frameworks. Many
researchers have experimented with diversified domain-specific loss functions to improve performance for specific datasets.
The most widely applied loss function is cross-entropy [19], which is defined as measuring the difference between two prob-
ability distributions for a given random variable or set of events. To address the issue of unbalanced data categories, the
weighted binary cross-entropy [20] was proposed to weight specific classes. The Focal Loss [21] is also applicable to imbal-
anced class scenarios, which can induce the model to focus more on hard examples and down-weights the contribution of
easy examples. The dice coefficient is a commonly applied metric for evaluating the performance of medical image segmen-
tation. The V-Net [22] proposed the Dice Loss based on the Dice coefficient. Tversky index [23] is a generalization of the Dice
coefficient. It weights the false positives and false negatives with a hyper-parameter. There are some distance-based losses
[24] that have also been proposed recently, and they are generally sensitive to boundary and contour information, and are
suitable for medical image segmentation. Some other loss functions attempt to leverage structural priors such as CRF, and
Generative Adversarial Networks(GANs) to supplement the information obtained by the model. Zhao et al. [25] proposed
a Structural Similarity Loss (SSL) to get a high positive linear correlation between the labels and the predictions. In a nutshell,
each type of loss has its merit and disadvantage. Therefore, some researchers [26] combined the different types of loss so that
the compound loss can maximize its strengths and avoid weaknesses.
2.3. Artificial intelligence techniques for COVID-19

During the outbreak of COVID-19, many artificial intelligence(AI) technologies was proposed against the virus. Compared
to the traditional imaging workflow that heavily relies on human labors, AI enables more safe, accurate, and efficient imaging
solutions. Medical imaging such as X-ray and computed tomography (CT) [27] plays an essential role in this war without
smoke. There are several essential contactless imaging workflows proposed in [28]. These techniques are more flexible
installation and more accessible to the patient. Scientists in [29] proposed a self-contained mobile based on artificial intel-
ligence for pre-scanning and diagnosis systems.

The applications for COVID-19 can be divided into three categories, including patient scale (e.g., medical imaging for diag-
nosis [30]), molecular scale (e.g., protein structure prediction [31], and societal scale (e.g., epidemiology [32]). The patient
scales are mainly focused on the present study [33]. Whereas, automatic segmentation is the most challenging task, which
is extremely important for the assessment and quantification of COVID-19. Fan et al. [34] proposed a two-step training
scheme for multiclass COVID-19 infection segmentation. The authors first applied a convolutional neural network(CNN)
to generate the binary lesion segmentation, and the second network utilizes the results to classify the lesion voxels into
ground-glass opacity (GGO) and consolidation. They also introduced a novel semi-supervised learning method, which lever-
ages a few labeled images to generate pseudo labels. CovidENet [35] is an ensemble of 2D and 3D CNNs based on AtlasNet
[36] for total lesion segmentation, and the performance of the model is in line with the expectation. The U-shape types are
the most common architectures applied in medical segmentation, which have achieved reasonable segmentation results in
COVID-19 applications. Furthermore, Shan et al. [37] proposed the VB-Net, which utilizes the bottleneck blocks to obtain a
more efficient segmentation. Recently, attention mechanisms have been widely applied in various applications. Oktay et al.
[38] combined attention and UNet to capture fine structures of the medical images. Whereas, authors in [39] applied the
technology to the segmentation of COVID-19 infected areas and achieved considerable performance.
3. Method

In the following, the overall structure of the whole network would be firstly described. Then, the details of the proposed
methods are introduced, including VQ-VAE module, proportions loss and semi-supervised learning.
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3.1. Network architectures overview

The proposed model is based on adversarial learning, which consists of two parts, ie., a segmentation network, and a dis-
criminator network. The segmentation network comprises a backbone network and a VQ-VAE branch. The workflow of the
proposed approach is displayed in Fig. 1.

There are two separated branches in the segmentation network processing the input images. The backbone is a modified
Resnet-based network, and it could be any robust model designed for semantic segmentation, e.g., FCN, Unet, and PSPNet.
The feature maps of the intermediate layer are fed into the VQ-VAE branch to generate reconstructions of input images,
which can regularize the shared network portions. Moreover, the top and bottom levels of the latent maps generated by
VQ-VAE are fused and concatenated to the intermediate feature maps generated by the backbone network, and it can further
enhance the feature representation of semantics. The model is trained on the COVID-SemiSeg dataset [34], which is com-
posed of 50 multi-class labels by doctors and 1600 unlabeled images. A novel semi-supervised framework is introduced
to make full use of limited labeled images and large amounts of unlabeled images. In the initial stage of training, only the
labeled images are utilized to update the model. When the loss tends to be saturated, the unlabeled images are introduced
and the coarse pseudo labels of the images are generated. Then, the discriminator is applied to filter out the untrusted region
of the coarse pseudo labels and generate refined pseudo labels to further enhance the performance of the model. The entire
self-taught process is completed simultaneously without human intervention.

The discriminator is designed in a fully convolutional manner, which indicates the untrusted regions of the prediction and
discards them. It takes a prediction generated from the segmentation network and yields a confidence map of the same size
as the prediction. Every pixel of the confidence map indicates the probability of input data sampled from the ground truth
distribution. From Fig. 1, for the output of the discriminator, the brighter part is, the more trusted.

The training phase can be split into two stages, the first stage is fully supervised learning, and then semi-supervised learn-
ing is executed. For the first phase, the segmentation network is supervised by Lcomp, which consists of two parts, namely,
standard cross-entropy loss Lce and L prop (proportion loss). The L prop is proposed to encourage label marginals to match target
Fig. 1. Overview of the proposed model.
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class proportions. Then after several training iterations, the segmentation network takes unlabeled images to generate
pseudo labels, which are applied to further improve the performance of the model. Furthermore, adversarial learning is
introduced in the training scheme. In this phase, the segmentation network is supervised by Lsemi; Lce; Ladv, and L prop, where
Lsemi is the cross entropy between the unlabeled images and the pseudo label, and Lce is the CE between the labeled data and
the labels. The labeled and unlabeled images are all fed into segmentation to generate predictions, and then the discrimina-
tor takes the predictions to generate confidence maps, which are used to refine the coarse pseudo labels. Moreover, the Ladv is
applied to fool the discriminator by maximizing the probability of the predicted results being generated from the ground
truth distribution. Note that, the discriminator is trained with the labeled data by Ld. The detail will be described in
Section 3.4.

3.2. VQ-VAE module

A novel VQ-VAE module is proposed to improve the performance of the model, which is inspired by [10]. The segmen-
tation network follows encoder-decoder architecture with an asymmetrically Resnet-based encoder and a smaller decoder.
As the training dataset size is limited, the VQ-VAE branch is added to the endpoint of the encoder to reconstruct the input
images. It can provide additional guidance to the training process and impose regularization on the shared encoder, which
induces the encoder to extract more representative features. In particular, a hierarchy of vector quantized codes is applied to
reconstruct the input images. The branch generates a top-level latent code that contains global information such as the shape
and geometry of objects, and a bottom-level latent code representing the local details such as texture. Furthermore, the two
levels of representation are integrated into a comprehensive feature by up-sampling and concatenate operations. Then, the
fused features are fed into the subsequent network to further improve the performance of the model.

The VQ-VAE can be classified as the VAE family, which has an encoder, code, and decoder. The difference is that the code is
not directly generated by the encoder, but is obtained through vector quantization. The module can reconstruct more coher-
ence and fidelity images with less resource consumption. Whereas, the model is based on likelihood, in principle, it covers all
modes of the data and can capture the diversity of the true distribution. Thus, the aforementioned issues inspired us to apply
the VAE-based branch to improve the expression of features and the robustness of the model.

The branch consists of an encoder and a decoder, and a shared codebook. The encoder maps the observations to a series of
discrete latent variables, and the decoder reconstructs the observations from these discrete variables. The input x is trans-
formed into a vector EðxÞ by the nonlinear mapping of the encoder, and the vector is quantized according to its distance from
the prototype vectors in the codebook ek; k 2 1 . . .K such that each vector EðxÞ is replaced by the index of the nearest pro-
totype vector in the codebook. Finally, the indices are fed into the decoder and mapped back to their corresponding vectors
in the codebook, from which it reconstructs the data via another non-linear function.
QuantizeðEðxÞÞ ¼ ek where k ¼ argmin
j

EðxÞ � ej
�� �� ð1Þ
Following [10], the objective function of the VQ-VAE contains three terms:
Lðx;DðeÞÞ ¼ x� DðeÞk k22 þ sg½EðxÞ� � ek k22 þ b sg½e� � EðxÞk k22 ð2Þ

where e is the quantized code for the training example x. The first part is the data fidelity term, which makes the reconstruc-
tion error as small as possible. The other two additional terms are ingeniously designed to align the vector space of the code-
book with the output of the encoder. The second part is applied to the codebook, where sg½�� means stop gradient, that is,
backward gradient transfer is not executed. It makes the selected codebook e close EðxÞ, which denotes the output of the
encoder. The last term is effective for the encoder, which induces the EðxÞ to stay close to the chosen codebook vector
and prevents the parameters of the encoder from fluctuating too frequently. In this paper, the bis set to 0.25.

3.3. Proportions loss

Semantic segmentation is a pixel-wise classification task, and choosing a suitable loss function is extremely important for
the task. Most work applies variants of the Cross-Entropy(CE) or Dice loss as their objective function. The medical image seg-
mentation task generally faces the problem of class imbalance, i.e., the proportion of segmented regions varies greatly and
may cause large-region terms in the objective to completely dominate small-region ones. To tackle this issue, some work
focus on designing a novel architecture or training schemes, yet, the loss function to be minimized during training plays
a critical role. [26] demonstrate that CE and Dice share a very deep connection, and Dice is intrinsically more preferring small
regions, while CE implicitly encourages the ground-truth region proportions. The difference between the two types of losses
mentioned above is called label-marginal biases. In this paper, a novel way is proposed to solve the problem.

We first present the analysis of CE, and then introduce the proposed method. Let F and K denote the random variables
associated with the learned features and the labels, and HðFjKÞ is the conditional entropy of learned features given the labels.
Note that, the F is continuous, while the K is discrete with a random variable sampled from a finite set 1; . . . ;Kf g. Following
[40], the marginal distribution of the labels could be denoted as follow:
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PðK ¼ kÞ � yk ^ ¼ Xkj j
Xj j ð3Þ
where the yk denotes the GT proportion of region k, the X indicates the spatial image domain, and Xk denotes the GT pro-
portion of the kth class. Therefore, the conditional entropy of the learned features could be expressed as follows:
H FjKð Þ ¼
XK
k

P K ¼ kð ÞH FjK ¼ kð Þ � 1
Xj j

XK
k

Xkj jH FjK ¼ kð Þ ð4Þ
with each HðFjK ¼ kÞ given by:
H FjK ¼ kð Þ ¼ �
Z
f h
P f hjK ¼ k
� �

log P f hjK ¼ k
� �

df h ð5Þ
where f h denotes feature embedding. Then, the conditional entropy in Eq. (5) is estimated by well-known Monte-Carlo esti-
mation, which is shown as follow [41].
Z
f
gðf ÞPðf jSÞ � 1

Sj j
X
i2S

gðf iÞ ð6Þ
where gðf iÞ denotes a feature vector at point i, and the S is a discrete set of points which belongs to X. The gð�Þ is an arbitrary
function, and Pðf jSÞ expresses the density of gðf iÞ.

Then, Eq. (6) is applied to HðFjK ¼ kÞ, and Eq. (4) could be denoted as follows:
HðFjKÞ � � 1
Xj j

XK
k

X
i2Xk

logðPðf hi jkÞÞ ð7Þ
Furthermore, following the Bayes rule Pðfhi jkÞ / pik
pk ^. p^k ¼ 1

Xj j
P
i2X

pik denotes the predicted probability of class k, and

pik ¼ Pðkjf hi Þ is the softmax predictions at the pixel. Thus, the HðFjKÞ could be re-written as follow:
HðFjKÞ � � 1
X

XK
k

X
i2Xk

logð pik
pk^

Þ

¼ CEþ
XK
k

yk ^ logðpk^Þ
ð8Þ
Due to the definition of the label-marginal KL divergence, we have:
DKLðyjjpÞ ¼
XK
k¼1

yk ^ logðyk^
pk^

Þ¼c �
XK
k

yk ^ logðpk^Þ ð9Þ
where ¼c stands for equality up to an additive and/or nonnegative multiplicative constant, and y denotes GT label-marginal
probability, yet, the probability of the predicted label-marginal is denoted as p

Finally, the CE is denoted as:
CE¼c HðFjKÞ þ DKLðyjjpÞ ð10Þ

The first part is the matching of GT, and the second part is the label-marginal bias. From this formula, the label-marginal

bias is a hidden term, and it can induce the proportions of the predicted segmentation regions to match the ground-truth
proportions. The KL term also can be viewed as a regularization term, which encourages low uncertainty within each
ground-truth segmentation region. If CE only contains the entropy term, it may lead to trivial imbalanced solutions. How-
ever, the two competing terms are implicit so that the contribution of the related parts cannot be controlled. It is evident
that the contribution is significant in imbalanced problems. In addition, the label-marginal can mitigate the difficulty that
the ground-truth matching terms differ by several orders of magnitude across regions. Appropriate label-marginal terms
can effectively avoid large-region terms dominating small-region ones. Thus, the proportions loss is proposed to control
explicitly the label-marginal bias. We applied CE, proportion loss Lprop to form a novel compound loss to update the segmen-
tation network.
Lcomp ¼ Lce þ kðy� pÞ2 ð11Þ

where kis a hyper-parameter, which is set to 0.5 in the present study. From the function, the second part is Lprop, which can be
viewed as a regularization term to encourage the prediction proportions to match the ground-truth proportions. The solution
is simple but effective, especially in the scenario of class imbalance in medical image segmentation. Fig. 2 shows visual com-
parisons of the segmentation results, which demonstrate the effectiveness of the proposed method.
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Fig. 2. The visual comparison between the proposed method and various losses. The color masks denote the COVID-19 infected regions in CT axial slice,
where the red and green denote the GGO and consolidation respectively. The images in the left-most column are the ground-truth. The examples show that
our method can achieve the best performance. The proposed method is susceptible to the segmentation regions of both classes. However, for the first
example, CE basically did not identify the consolidation region. Moreover, the combinations of the CE and Dice also lost some details.
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3.4. Semi-supervised learning

To alleviate the shortage of annotations, a semi-supervised learning scheme is introduced, which only needs a few anno-
tations and make full use of the rich unlabeled images. Furthermore, we design an adversarial framework to enhance the
fitting and generalization ability of the model. The whole model contains two branches, which are used for fully supervised
learning and semi-supervised learning.

In the early stages of training, the labeled data is only utilized as the training source data, which can be viewed as the fully
supervised learning phase. Moreover, the segmentation network is supervised by Lcomp in this stage, while adversarial learn-
ing has not been introduced into the training scheme. Then, after the model is trained for several rounds, we introduce semi-
supervised adversarial learning, which not only applies the Lcomp as the objective function but also introduces an adversarial
loss to further improve the performance of the model. In this phase, the dual-branches are executed simultaneously. specif-
ically, the Lsemi; Lprop, and Ladv are applied to the semi-supervised branch, meantime, Ladv is also introduce in fully supervised
learning. The adversarial loss is displayed as follows:
Ladv ¼ �
X
h;w

logðDðSðInÞÞðh;wÞÞ ð12Þ
where In denotes input images, Sð�Þ represents the segmentation network, and Dð�Þ is the discriminator network. In practice,
the label of the discriminator is a mask filled with 1 and the same size as the original images. For the discriminator, if the
input data is more likely to be sampled from ground truth, the corresponding pixel of the confidence map, ie., the output of
the discriminator would tend to be 1. The probability of the prediction would be maximized by this loss to confuse the dis-
criminator, which can encourage the model to generate predictions close to the ground truth distribution.

When the segmentation network is trained for several rounds, and the objective function tends to saturate. The unlabeled
images are introduced to regularize the segmentation network. The model takes the labeled and unlabeled images simulta-
neously, and the branch with labeled images continues to perform fully supervised learning. For the semi-supervised learn-
ing branch, the segmentation network takes the unlabeled images to generate predictions, that is, coarse pseudo labels,
which are then fed into the discriminator to obtain the confidence maps. Moreover, we set a threshold T for the elements
in the confidence map and the regions greater than T are assumed to be the confidence area. In practice, we found that
by setting T to [0.1, 0.3], the model can get reasonable results. On the contrary, the region smaller than the threshold would
be zeroed, which would not participate in the gradient transfer process. Finally, the confidence areas of coarse pseudo labels
are retained and obtained the refined pseudo labels, ie., the label of the unlabeled images.
Pseudo� Label ¼ IðDðSðUnÞÞðiÞ > TÞ � argmaxðSðUnÞÞ
c

ð13Þ
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where Ið�Þ denotes the indicator function. The semi-supervised learning is a self-taught process, which is fully automatic
without manual intervention. The pseudo labels of the unlabeled images are gradually refined and rationalized, whereby
progressively imposing beneficial regularization to the model. It should be noted that, the discriminator is supervised by bin-
ary spatial cross-entropy loss.
LD ¼ �
X
i2Xn

ð1� ynÞ logð1� DðSðXnÞÞðiÞÞ þ yn logðDðYnÞðiÞÞ ð14Þ
where yn takes two values, 0 and 1. If the data is sampled from the ground truth distribution, yn ¼ 1, otherwise yn ¼ 0. The
certain pixel of the input image is denoted as i.
4. Experimental Results

In this section, we will discuss the details of the proposed method for the comprehensive experiments on the COVID-19
infection segmentation dataset (COVID-SemiSeg). First, a brief introduction of the dataset, evaluation metrics and implemen-
tation details are presented. Moreover, an ablation study is performed to verify the predominance of the proposed method.
The experimental results show that our proposed method can reach and surpass the state-of-the-art models.

4.1. Evaluation datasets and metric

The performance of the proposed methods is verified on the COVID-SemiSeg [34], which contains 100 labeled CT images
collected from [42], and 45 CT images are used as training data, 5 CT images for validation, meanwhile, the rest part for test-
ing. Furthermore, the dataset also leverages large-scale unlabeled CT images as a supplement to training samples, whereby
applied in semi-supervised learning. There are 1600 unlabeled CT images extracted from the COVID-19 CT Collection [43],
which comprises 20 CT volumes from different COVID-19 patients. In conclusion, this dataset is highly suitable for applying
the proposed method.

To evaluate our model more comprehensively, six metrics are introduced for evaluation. In addition to using the three
commonly adopted metrics, i.e., the Dice similarity coefficient, Sensitivity (Sen.), and Specificity (Spec.), we also introduce
another three golden metrics from the object detection field, i.e., Structure Measure(Sa) [44], Enhance-alignment Measure
(Emean

/ ) [45], and Mean Absolute Error(MAE). The Sa can measure the structural similarity between a prediction and the label,

and the Emean
/ can evaluate the local and global similarity between two binary masks. The last one is a measure of the pixel-

wise error between the prediction and ground-truth mask.

4.2. Implementation details

We implemented our network in Pytorch framework. To train the segmentation network, we leverage the stochastic gra-
dient descent(SGD) optimization method, and the learning rate is set to 0.01. The momentum of the SGD optimizer is set to
0.9, and the weight decay is set to 10�4. Meanwhile, to train the discriminator, we use the Adam optimizer with the learning
rate set to 10�4. In the fully-supervised phase, the Lcomp is the only objective function to update the segmentation network,
and the model is trained for 1000 iterations in this stage. Then, the model goes into the semi-supervised mode, the dual
branches are executed simultaneously. Moreover, Lsemi and Ladv are weighted in the objective function, their weight param-
eters are 0.1 and 0.01 respectively. In the process of adversarial learning, the segmentation network and the discriminator
are updated alternately. Specifically, the parameters of one network are not updated while the other network is training.

4.3. Segmentation results

In this work, our model is experimented on COVID-SemiSeg dataset, and the proposed algorithm is compared against the
FCN [46], Deeplabv3+ [47], U-Net [11], U-Net++ [12], Attention UNet [38], R2U-Net [48], PSPNet [49], MA-Net [50], to
demonstrate that our method performs comparably with the state-of-the-art model. The results are shown in Table 1.

As can be seen in Table 1, the proposed method outperforms the other models in terms of six metrics. For Dice, our
method surpasses the two state-of-the-art models MANet and U-Net++, by 9.6% and 18.5% on average segmentation result
respectively. Due to regions of the consolidation are generally small, and the contrast with the surrounding area is low, the
boundary is usually blurred. Thus, it is more challenging to segment it correctly. Whereas, the proposed method can achieve
the best performance. As presented in Table 1, the proposed method surpasses the Attention UNet by almost 16% in terms of
Dice. In short, the proposed method achieves competitive performance in most evaluation metrics.

The visual comparison of COVID-19 infection segmentation results is shown in Fig. 3, indicating that the proposed meth-
od’s performance surpasses other methods remarkable. It can be seen from Fig. 3 that U-Net cannot obtain a satisfactory
result, and there are a large number of mis-segmented tissues exist. The Attention U-Net get better performance, but the
results are still not promising. Moreover, the segmentation regions of the aforementioned method are not coherent.
Although the segmentation results of FCN are smooth, it also generates a lot of mis-segmentation. The success of the
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Table 1
Quantitative results of ground-glass opacities and consolidation on the COVID-SemiSeg dataset. The best and the second results are highlighted in red and blue.

Ground-Glass Opacity Consolidation Average

Methods Dice Sen. Spec. Sa Emean
/ MAE Dice Sen. Spec. Sa Emean

/ MAE Dice Sen. Spec. Sa Emean
/ MAE

FCN[46] 0.480
± 0.03

0.450
± 0.01

0.910
± 0.01

0.582
± 0.02

0.754
± 0.01

0.101
± 0.03

0.283
± 0.02

0.268
± 0.01

0.714
± 0.02

0.554
± 0.02

0.561
± 0.01

0.051
± 0.01

0.382
± 0.03

0.359
± 0.01

0.812
± 0.02

0.568
± 0.02

0.658
± 0.01

0.076
± 0.02

Deeplabv3+[47] 0.462
± 0.03

0.591
± 0.03

0.912
± 0.03

0.551
± 0.01

0.690
± 0.02

0.079
± 0.02

0.201
± 0.04

0.289
± 0.04

0.685
± 0.05

0.598
± 0.01

0.610
± 0.01

0.049
± 0.01

0.332
± 0.03

0.440
± 0.03

0.799
± 0.04

0.565
± 0.01

0.650
± 0.01

0.064
± 0.01

U-Net[11] 0.473
± 0.02

0.530
± 0.03

0.944
± 0.02

0.577
± 0.01

0.743
± 0.01

0.098
± 0.01

0.274
± 0.02

0.302
± 0.01

0.673
± 0.02

0.640
± 0.01

0.805
± 0.02

0.048
± 0.02

0.374
± 0.02

0.416
± 0.02

0.809
± 0.02

0.609
± 0.01

0.774
± 0.01

0.073
± 0.01

U-Net++[12] 0.488
± 0.02

0.542
± 0.03

0.952
± 0.02

0.580
± 0.01

0.787
± 0.02

0.080
± 0.01

0.280
± 0.02

0.311
± 0.01

0.745
± 0.02

0.615
± 0.03

0.820
± 0.01

0.046
± 0.01

0.384
± 0.02

0.427
± 0.02

0.849
± 0.02

0.598
± 0.01

0.740
± 0.02

0.063
± 0.01

Attention UNet[38] 0.491
± 0.02

0.539
± 0.02

0.961
± 0.04

0.576
± 0.01

0.792
± 0.02

0.082
± 0.01

0.279
± 0.01

0.320
± 0.01

0.752
± 0.04

0.597
± 0.03

0.811
± 0.01

0.049
± 0.01

0.385
± 0.02

0.430
± 0.01

0.857
± 0.04

0.587
± 0.01

0.802
± 0.01

0.066
± 0.01

R2U-Net[48] 0.410
± 0.04

0.481
± 0.02

0.875
± 0.02

0.554
± 0.03

0.716
± 0.01

0.097
± 0.01

0.193
± 0.02

0.284
± 0.02

0.693
± 0.01

0.495
± 0.04

0.554
± 0.01

0.049
± 0.02

0.302
± 0.03

0.383
± 0.02

0.784
± 0.01

0.525
± 0.03

0.635
± 0.01

0.070
± 0.01

PSPNet[49] 0.500
± 0.01

0.445
± 0.03

0.945
± 0.02

0.594
± 0.03

0.820
± 0.02

0.081
± 0.01

0.241
± 0.02

0.279
± 0.02

0.687
± 0.03

0.655
± 0.02

0.794
± 0.03

0.044
± 0.02

0.371
± 0.02

0.343
± 0.02

0.816
± 0.03

0.625
± 0.03

0.807
± 0.01

0.063
± 0.01

MANet[50] 0.537
± 0.02

0.519
± 0.02

0.969
± 0.03

0.633
± 0.03

0.880
± 0.02

0.078
± 0.01

0.292
± 0.03

0.285
± 0.02

0.743
± 0.04

0.651
± 0.02

0.797
± 0.02

0.044
± 0.01

0.415
± 0.02

0.402
± 0.02

0.849
± 0.03

0.642
± 0.02

0.839
± 0.02

0.061
± 0.01

Ours 0.587
± 0.02

0.606
± 0.03

0.963
± 0.02

0.644
± 0.01

0.877
± 0.03

0.073
± 0.01

0.323
± 0.03

0.333
± 0.02

0.759
± 0.02

0.678
± 0.02

0.855
± 0.01

0.039
± 0.01

0.455
± 0.02

0.470
± 0.03

0.861
± 0.01

0.671
± 0.02

0.866
± 0.02

0.056
± 0.01
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Fig. 3. Visual comparison of lung infection segmentation results, where the red and green regions indicate the GGO and consolidation, respectively.
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proposed method is owed to the VQ-VAE module, proportion loss and semi-supervised learning. As can be observed, the pro-
posed method is more sensitive to the small target, and the segmentation boundaries are more accurate and smoother.

4.4. Ablation study

In this section, the proposed VQ-VAE module, proportion loss, and semi-supervised adversarial learning are analyzed
detailly. The VQ-VAE module is applied to regularize the shared network, which can be viewed as an encoder. It makes
the encoder more robust and can generate features that are more representative. Furthermore, the high and low-level latent
features are fused with the intermediate features of the backbone network to enhance the feature representation. Moreover,
the proportion loss induces label marginal to match target class proportions, thereby alleviating class imbalance without los-
ing generality. We also introduce semi-supervised adversarial learning to the framework, which makes the best use of unla-
beled data. Meantime, the discriminator is applied to discover the trustworthy regions in the prediction of the unlabeled
images, thereby providing additional supervisory signals. The semi-supervised adversarial learning is flexible enough to
detect mismatches in a wide range of higher-order statistics between the predictions and the ground-truth without defining
these manually, and the adversarial process encourages the segmentation network to generate predictions closer to the
ground truth. The ablation study validates the proposed methods, and the results are presented in Table 2. It can be observed
from Table 2 that all of the proposed methods improve the performance of the model. The VQ-VAE module can regularize the
shared parameters of the network, and it can further provide supplementary features to enhance the feature representations.
Moreover, the low and high-level features generated by this module can reconstruct the original image. The low-level fea-
tures represent the global information of the images, such as the shape, color, and geometry of objects. On the contrary, the
high-level latent code can provide local details, such as texture. As can be observed, VVM and Lprop have similar improve-
ments in almost all metrics, but Lprop improves the results by 34.2% in terms of Dice on Consolidation areas. It reveals that
the proportion loss encourages the model to focus on the small target. As presented in Table 2, Lprop brings considerable
improvement in terms of Sa and Emean

/ . Due to the Sa is presented to measure the structural similarity between prediction

and ground-truth mask, and the Emean
/ is a metric for evaluating local and global similarity. Thus, the gain demonstrates that

the Lprop encourages the proportions of the predicted segmentation regions to match the ground-truth proportions, thereby
increasing the coherence and structure of the segmentation. The SSA brings the greatest improvement, which shows that the
model benefits from the supervision signal provided by unlabeled images. It leverages the self-taught process to refine the
coarse pseudo labels of the unlabeled images, which are further applied to guide the training. Fig. 4.

4.5. Visualization results

To get a deeper understanding of the proposedmethod, the reconstructed images generated by VQ-VAE and the confidence
mapsgeneratedby thediscriminator are visualized in Fig. 4. As canbeobserved, the reconstructed images generated by theVQ-
VAEmodule can restore theoriginal images to a great extent, yet thereare still somenoises that failed to reconstruct theoriginal
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Table 2
Ablation study of the proposed methods. VVM stands for VQ-VAE module, SSA denotes semi-supervised adversarial learning. The best two results are shown in red and blue fonts.

Ground-Glass Opacity Consolidation

Methods Dice Sen. Spec. Sa Emean
/ MAE Dice Sen. Spec. Sa Emean

/ MAE

Backbone 0.473 ± 0.05 0.575 ± 0.03 0.891 ± 0.02 0.591 ± 0.01 0.574 ± 0.03 0.140 ± 0.02 0.187 ± 0.03 0.261 ± 0.02 0.613 ± 0.02 0.573 ± 0.03 0.759 ± 0.02 0.049 ± 0.02
Backbone+VVM 0.520 ± 0.02 0.579 ± 0.02 0.912 ± 0.02 0.599 ± 0.01 0.659 ± 0.03 0.136 ± 0.02 0.213 ± 0.02 0.279 ± 0.02 0.628 ± 0.01 0.621 ± 0.01 0.775 ± 0.01 0.048 ± 0.01
Backbone+Lprop 0.514 ± 0.03 0.587 ± 0.03 0.935 ± 0.01 0.510 ± 0.01 0.731 ± 0.01 0.105 ± 0.01 0.251 ± 0.02 0.284 ± 0.03 0.662 ± 0.02 0.588 ± 0.00 0.802 ± 0.02 0.045 ± 0.01
Backbone+SSA 0.539 ± 0.04 0.599 ± 0.05 0.944 ± 0.02 0.625 ± 0.01 0.854 ± 0.02 0.128 ± 0.02 0.249 ± 0.02 0.278 ± 0.02 0.690 ± 0.01 0.597 ± 0.03 0.783 ± 0.01 0.043 ± 0.00
Backbone+VVM+Lprop 0.557 ± 0.03 0.590 ± 0.01 0.938 ± 0.04 0.618 ± 0.03 0.810 ± 0.02 0.095 ± 0.01 0.279 ± 0.01 0.301 ± 0.01 0.702 ± 0.01 0.630 ± 0.01 0.791 ± 0.02 0.043 ± 0.01
Backbone+SSA+Lprop 0.571 ± 0.04 0.609 ± 0.02 0.956 ± 0.02 0.641 ± 0.03 0.838 ± 0.01 0.091 ± 0.01 0.294 ± 0.02 0.315 ± 0.03 0.713 ± 0.01 0.628 ± 0.01 0.811 ± 0.03 0.041 ± 0.00
Backbone+VVM+SSA+Lprop 0.587 ± 0.02 0.606 ± 0.03 0.963 ± 0.02 0.644 ± 0.01 0.877 ± 0.03 0.073 ± 0.01 0.323 ± 0.03 0.333 ± 0.02 0.759 ± 0.02 0.678 ± 0.02 0.855 ± 0.01 0.039 ± 0.01
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Fig. 4. Visualization results of the reconstructed images and confidence maps.

G. Jin, C. Liu and X. Chen Information Sciences 612 (2022) 745–758
images’ structure. It isworthmentioning that thehighand low-level latent features of themoduleare applied to reconstruct the
original images. Due to the features being another high-order representation of the images, they are fused with the interme-
diate features of the backbone network to improve the performance. The third line of Fig. 4 indicates the confidencemaps gen-
erated by the discriminator. The brighter regions denote which part of the input data is closer to the ground truth distribution.
Themodel discovers the trustworthy regions to guide the self-taught process and provide supplementary supervision signals,
therebypromoting segmentationaccuracy.According to the confidencemaps, theuntrusted regions are discarded in the coarse
pseudo labels to obtain the refined pseudo labels. This self-taught process can further improve the performance by using the
supervision signal provided by unlabeled data and regularizing the segmentation network.

5. Conclusions

In this work, a novel adversarial network has been proposed that consists of two sub-networks: segmentation network
and discriminator network of which the segmentation network includes two parts: the backbone network, and the VQ-VAE
module. The VQ-VAE module can regularize the shared parameters of the network. Meantime, the latent features generated
by it are fused with the intermediate features of the backbone network to further enhance the performance. Moreover, the
cross-entropy loss is analyzed which consists of two parts, ie., the conditional entropy part and label-marginal bias. It
inspired us to propose a novel proportion loss to encourage the target class proportions to match the ground truth propor-
tions. Furthermore, a semi-supervised scheme is presented that the unlabeled data are fed into the adversarial network to
generate refined pseudo labels, which provide the supervised signals to improve the performance of the model. Extensive
experiments on the COVID-SemiSeg dataset demonstrated that the proposed model outperforms the state-of-the-art model.
The proposed model has great potential to be applied in assessing the diagnosis of COVID-19, e.g., quantifying the infected
regions, monitoring the longitudinal disease changes, and mass screening processing. In the future, model accuracy can be
further improved by reducing the computational complexity and enhancing robustness. In addition, unsupervised learning
has recently gained a lot of attention from scholars, and our future work also considers extending semi-supervised learning
to unsupervised learning, among which contrastive learning is particularly prominent. Contrastive learning can make full use
of a large number of unannotated images to learn the prior knowledge distribution of the data. Through fine-tuning, the
knowledge acquired during the pre-training process is transferred to downstream tasks and improves the performance of
the model. Our future work will apply contrastive learning to existing tasks to further alleviate the reliance on labeled data.
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