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The inflammatory immune response (IIR) is a physiological or excessive systemic
response, induced by inflammatory immune cells according to changes in the
internal and external environments. An excessive IIR is the pathological basis for
the generation and development of neurological diseases. Ginkgolides are one of
the important medicinal ingredients in Ginkgo biloba. Many studies have verified that
ginkgolides have anti-platelet-activating, anti-apoptotic, anti-oxidative, neurotrophic,
and neuroimmunomodulatory effects. Inflammatory immunomodulation is mediated by
inhibition of the mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B
(NF-κB) signaling pathways. They also inhibit the platelet-activating factor (PAF)-
mediated signal transduction to attenuate the inflammatory response. Herein, we
reviewed the studies on the roles of ginkgolides in inflammatory immunomodulation and
suggested its potential role in novel treatments for neurological diseases.

Keywords: ginkgolides, inflammatory immune response, neurological diseases, multiple sclerosis,
Guillain–Barré syndrome

KEY POINTS

1. Ginkgolides have inflammatory immunomodulation effects, which are mediated by inhibition
of the MAPK and TLR/MyD88/NF-κB signaling pathways.

2. TLR/MyD88/NF-κB signaling pathways are involved in the pathogenesis of some neurological
diseases.

3. However, there are currently no comprehensive reviews about the regulatory effects of
ginkgolides on the IIR.

4. Ginkgolides may represent a potential therapeutic target for neurological disorders in
the future.
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INTRODUCTION

The inflammatory immune response (IIR) is a physiological
or excessive systemic response, induced by inflammatory
immune cells based on the changes in the internal and
external environments (Han et al., 2018). Inflammatory immune
cells such as macrophages (M8), T lymphocytes, dendritic
cells (DCs), some nonimmune cells, inflammatory immune
cytokines, and related receptor signal transduction pathways
are involved in the mechanisms underlying excessive IIR
(Han et al., 2018). An excessive IIR is the pathological basis
for the generation and development of neurological diseases,
especially neurodegenerative and/or neuroimmune diseases, and
ischemic cerebrovascular diseases (Ritzel et al., 2018; Voet
et al., 2019). Regulating an excessive IIR has become a novel
therapeutic target for neurological diseases. Ginkgolides are
isolated and purified from the leaves of Ginkgo biloba. The
ginkgo leaf extracts commonly contain flavonoids such as
quercetin, kaempferol, myricetin, and terpene trilactone (Al-
Adwani et al., 2019). The extracted terpene trilactone includes
ginkgolide A (GA), B, C, M, J, and K and bilobalide (BB;
Huang et al., 2014). As early as 1985, Braquet et al. discovered
that ginkgolides, particularly GB, are platelet-activating factor
(PAF) receptor (PAFR) antagonists, which contribute to the
prevention of platelet aggregation and thrombosis (Braquent,
1985). The neuromodulatory effects of ginkgolides include
promoting secretion of neurotrophic factors, anti-oxidant effects,
increasing cerebral blood flow and circulation, modifying
neurotransmission, and providing protection against apoptosis
(Bastianetto et al., 2000; Zheng et al., 2000; Wang and Chen,
2005; Tchantchou et al., 2009; Ribonnet et al., 2011; Wei et al.,
2017; Table 1). The regulatory effects of ginkgolides on IIR
have recently been revealed. Ginkgolides can regulate IIR via
PAF-mediated signal transduction, mitogen-activated protein
kinase (MAPK), and toll-like receptor/myeloid differentiation
primary response 88/nuclear factor-kappa B (TLR/MyD88/NF-
κB) signaling pathways. Mediating an excessive IIR is a
novel therapeutic target for neurological diseases, especially
neurodegenerative diseases, ischemic cerebrovascular diseases,
and/or neuroimmune diseases, but there are currently no
comprehensive reviews on this topic. We herein summarize the
articles about the effects of ginkgolides on the IIR, and we
suggest a potential role for ginkgolides as a novel treatment for
neurological disorders.

CHEMICAL AND PHARMACOLOGICAL
CHARACTERISTICS OF GINKGOLIDES

Chemical Characteristics of Ginkgolides
Ginkgolides consist mainly of diterpenes and sesquiterpenes,
which are the only natural substances with tertiary butyl
functional groups [–C17 (CH3)3]. As early as the 1930s, scholars
had extracted and separated active components from Ginkgo
biloba leaves (Strømgaard and Nakanishi, 2004). GA, GB, and
BB in G. biloba were separately measured in the root, stem,
and leaf by high-performance liquid chromatography in 1997
(Lu et al., 2017). The results demonstrated that quantities of

GA, GB, and BB are high in the roots and leaves. Recently,
GA, GB, GC, and BB have been further measured in the
cortex and xylem of roots and branches (Lu et al., 2017). The
diterpenoid lactones of ginkgolides have a unique 20-carbon
skeleton structure, embedded with a tertiary butyl rarely found
in natural compounds, and have a rigid skeleton formed by six
five-membered rings, A–F. The diterpenoid lactones of G. biloba
differ only in the number and position of hydroxyl groups, which
can be converted into each other under certain conditions.

Platelet-Activating Factor-Mediated Signal
Transduction in the Regulation
of Inflammatory Immune Response
of Ginkgolides
Pharmacological studies of ginkgolides are extensive (Table 1,
Figure 1). Ginkgolides are natural PAFR antagonists that
selectively and competitively antagonize PAF-induced platelet
aggregation (Gui et al., 2007). It is well established that PAF
signaling plays a pivotal role in the initiation and progression
of inflammatory and thrombotic reactions, as well as in the
cross talk between them (Stafforini et al., 2003). PAF is a
lipid mediator of inflammation and has important functions
in acute and chronic inflammation, emerging as an important
factor in neural injury, such as ischemia/reperfusion (I/R)
injury, stroke, inflammation, and multiple sclerosis (MS; Bellizzi
et al., 2016; Wang et al., 2018). PAF works by binding to
a unique G-protein-coupled, seven-transmembrane receptor,
which contains an intronless protein coding region and activates
multiple intracellular signaling pathways (Deng et al., 2019).
The PAFR is considered to regulate all PAF actions through
humoral, autocrine, and/or paracrine mechanisms. Kinases and
phospholipases whose activation is induced by PAF include
MAPK, protein kinase C (PKC), phosphatidylinositol 3-kinase
(PI3K), protein tyrosine kinases, G-protein-coupled receptor
kinase, and multiple intracellular signal transducers (Ishii and
Shimizu, 2000). In addition, PAF regulates the expressions of
interleukin (IL)-1, IL-6, IL-8, and pleiotropic cytokines (Hamel-
Côté et al., 2019a,b). As an inflammatory factor, PAF plays an
important role in many pathological conditions. It is remarkable
that PAF is synthesized and released in both acute and chronic
inflammatory animal models. PAF and PAF-like lipids bind
to PAFR, which triggers a variety of intracellular signaling
cascades and induces functional responses by PAFR-bearing
cells, further initiating or amplifying inflammatory, thrombotic,
or apoptotic events (Maerz et al., 2011). Thus, blocking PAFR
signaling could possibly inhibit inflammation or ischemic
injury. There is increasing evidence that GB protects against
neural damage in a variety of circumstances and has beneficial
effects on circulatory and inflammatory conditions due to
pathophysiological effects of PAF (Golino et al., 1993). As
an antagonist of the G-protein-coupled PAFR, GB is widely
present on pivotal target cells of the inflammatory, immune, and
hemostatic systems, and it competitively inhibits PAFR ligand
binding (Gui et al., 2007; Maerz et al., 2011; Figure 2). Tran
and colleagues investigated the roles of PAFR in the abnormal
behaviors induced by phencyclidine (PCP) in mice, and they
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TABLE 1 | Pharmacological characteristics of ginkgolides.

Pharmacological characteristics Possible mechanisms References

Anti-PAF Competitively inhibits the binding of PAFR to ligands. Gui et al. (2007) and Maerz et al. (2011)
Anti-apoptotic Regulates anti-apoptotic protein Suppresses p-SAPK/JNK activation,

reactive oxygen species, mitochondrial pro-apoptotic factors, PARP, and
cytochrome c release.

Ahlemeyer et al. (1999) and Gu et al. (2012)

Anti-oxidative Interferes with production of free oxygen radicals Protects the decrease in
hippocampal Ca2+/calmodulin-dependent protein kinase II activity.

Zalewska et al. (1996) and Pietri et al. (1997)

Neurotrophic effect Up-regulates the expression of BDNF. Wei et al. (2017)
Neuroimmunomodulatory effect Inhibits TNF-α, IL-6, IL-1β and suppresses TLR4, NF-κB gene expressions. Hu et al. (2011)

Note. PAF, platelet-activating factor; PAFR, platelet-activating factor receptor; PARP, poly (ADP-ribose) polymerase; p-SAPK, p-stress-activated protein kinase; JNK, c-Jun N-terminal
kinase; BDNF, brain-derived neurotrophic factor; TNF-α, tumor necrosis factor α; IL, interleukin-6; TLR, toll-like receptor; NF-κB, nuclear factor-kappa B.

FIGURE 1 | Composition and pharmacological properties of ginkgolides. Ginkgolides are isolated and purified from the leaves of Ginkgo biloba. The ginkgo leaf
extracts commonly contain flavonoids such as quercetin, kaempferol, myricetin, and terpene trilactone. The extracted terpene trilactone include ginkgolide A (GA), B,
C, M, J, and K and bilobalide (BB). Ginkgolides have anti-PAF, anti-apoptotic, anti-oxidative, neurotrophic, and neuroimmunomodulatory effects. GA, ginkgolides A;
BB, bilobalide; PAF, platelet-activating factor; PAFR, platelet-activating factor receptor; p-SAPK/JNK, phospho-stress-activated protein kinase/c-Jun N-terminal
kinase; PARP, poly (ADP-ribose) polymerase; BDNF, brain-derived neurotrophic factor; TLR4, toll-like receptor-4; NF-κB, nuclear factor-kappa B.

found that treatment with PCP resulted in a virtual increase in
nuclear translocation of NF-κB p65 and deoxyribonucleic acid
(DNA) binding activity. These findings indicate that levels of
the pro-inflammatory molecule NF-κB are increased through
up-regulation of PAFR. They also found that GB significantly
attenuates abnormal behaviors such as depression, sociability
and cognitive impairment, and behavioral sensitization induced
by PCP, in PAFR knockout mice. Moreover, GB attenuates
PCP-induced increases in NF-κB p65 nuclear translocation and
DNA binding activity (Tran et al., 2018). It was proposed for the

first time that PAF/PAFR mediates dopaminergic degeneration
via an NF-κB-dependent signaling process (Kim et al., 2013).
Depletion of the PAFR gene, or GB, which itself is a PAFR
antagonist, significantly attenuates the increase in NF-κB DNA
binding activity (Kim et al., 2013). GB has also been shown to
ameliorate colonic inflammation and decrease tumor number
and load in mice, through the assessment of disease activity
indexes, histological injury scores, leukocyte infiltration, and
expression of pro-inflammatory cytokines such as tumor necrosis
factor-α (TNF-α), IL-1β, and IL-6 (Sun et al., 2015). PAF
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FIGURE 2 | PAF-mediated signal transduction of ginkgolides in the
regulation of IIR. PAF binds to PAF receptor in vivo, and coupled with G
protein, phospholipase C is activated and has an effect on
phosphatidylinositol 4,5-bisphosphate. Phosphatidylinositol bisphosphate
breakdown produces inositol triphosphate and diglyceride. Inositol
triphosphate can induce intracellular calcium concentration increases and
diglyceride can activate PKC. Finally, it exerts a biological effect by secreting
cytokines and proteins. GB competitively inhibits PAF binding to PAFR in
order to reduce the above series of reactions and play an anti-inflammatory
role. PAF, platelet-activating factor; IIR, inflammatory immune response; PKC,
protein kinase C; GB, ginkgolide B.PAF, platelet-activating factor; PAFR,
platelet-activating factor receptor; GB, ginkgolide B; PIP2,
phosphatidylinositol 4,5-bisphosphate; IP3, inositol 1,4,5-triphosphate; DAG,
diacylglycerol; PKC, protein kinase C; IIR, inflammatory immune response.

regulates cytokines, which stimulates leukotriene synthesis and
is associated with the pathogenesis of inflammatory processes
(Maclennan et al., 2002). The PAFR is also involved in the
microglial polarization modulatory effects of GB on increasing
M2 signature gene expression, reducing M1 gene expression,
increasing transforming growth factor-β (TGF-β) and IL-10
secretion, and decreasing IL-6 and TNF-α (Shu et al., 2016).
Both GA and GB dose dependently inhibit the production
of pro-inflammatory cytokines, such as TNF-α and IL-1,
in lipopolysaccharide (LPS)-stimulated rat microglial cultures
(Li et al., 2017).

Ginkgolides Regulate Mitogen-Activated
Protein Kinase Signaling Pathways in the
Inflammatory Immune Response
The effects of ginkgolides in inflammation and
immunomodulation are gradually recognized. Administration
of GB inhibits TNF-α, IL-6, and IL-1β production and
suppresses TLR4 and NF-κB gene expression in an intracerebral
hemorrhagic rat model (Hu et al., 2011). MAPK signaling
is important for adjusting and controlling the structure and
function of eukaryotic cells by transmitting signals from the cell
membrane to the nucleus in response to a variety of extracellular
stimuli, including neurotransmitters, hormones, inflammatory
factors, viruses, growth factors, and inducer of oxidative stress
(Elbirt et al., 1998; Sun and Nan, 2016). In M8 and DC,

p38 MAPK is activated by TLR and promotes the secretion
of various pro-inflammatory and T cell polarization factors,
such as TNF-α, interferon-γ (IFN-γ), IL-1β, IL-12, IL-6, and
IL-23 (Aicher et al., 1999; Kikuchi et al., 2003). TLRs activate
innate immunity through the early identification of pathogenic-
associated molecular patterns in pathogens (Paul et al., 2018).
These receptors also regulate adaptive immunity through
up-regulating the expression of co-stimulatory molecules on the
antigen presenting cell surface and the secretion of inflammatory
cytokines, providing the second signal for T lymphocyte
activation and inducing T lymphocyte differentiation. In T cells,
p38 MAPK is activated by T cell receptor signaling, cytokines,
and histamine (Berenson et al., 2006; Paul et al., 2018). c-Jun
N-terminal kinase (JNK) and p38 are activated by a large number
of immune receptors such as TLRs, TNFR, and IL-1R (Huang
et al., 2009). JNK-mediated integration of T cell receptor and
costimulation signals play a role in the stress-activated MAPK
pathways in immune responses (Su et al., 2001). Coordinate
immune response is one of the primary functions of stress-
activated MAPK. It has been shown that pharmacological
inhibition of p38 and JNK pathways is effective in treating or
alleviating various inflammatory conditions (Kumar et al., 2003;
Manning and Davis, 2003; Jeffrey et al., 2007).

In order to investigate whether G. biloba extract EGb761,
which mainly contains flavonoids and terpene lactones, could
reduce cerebral p-Tau levels and prevent Alzheimer’s disease
pathogenesis, human P301S tau mutant transgenic mice were fed
with this compound for 5 months (Qin et al., 2018). It was found
that the mouse cognitive function was improved, synaptophysin
loss was attenuated, the cAMP response element binding protein
phosphorylation in the mouse brain was recovered, and the
p-Tau protein was decreased after treatment with EGb761
(Qin et al., 2018). Moreover, long-treatment with EGb761 also
inhibited the activation of p38-MAPK and glycogen synthase
kinase 3 in tau-transgenic mouse brains, the two key enzymes
generating p-Tau. These all suggested that EGb761, especially the
components of GA, BB, and flavonoids, enhanced autophagy,
increased the degradation of phosphorylated tau in neurons,
and reduced the generation of phosphorylated tau by inhibiting
the activity of p38 MAPK and glycogen synthase kinase 3 (Qin
et al., 2018). In addition, the neuroprotective effects of BB on
cerebral ischemia and reperfusion injury are also associated
with inhibition of pro-inflammatory mediator production and
down-regulation of JNK1/2 and p38 MAPK activation (Jiang
et al., 2014). Expression of MAPK/NF-κB signaling proteins,
both in vivo and in vitro, has been evaluated by Hui and
Fangyu (2017), who concluded that BB exerts gastroprotective
effects via the activation of MAPK/NF-κB. In the study of
Chen et al. (2017), high glucose-treated human umbilical
vein endothelial cells (HUVECs) were subject to various
concentrations of GB, and relative p38 MAPK phosphorylation
was analyzed by western blot. The results demonstrated that
GB can also inhibit p38 MAPK phosphorylation. Furthermore,
they found that high glucose-induced expression of TLR4 was
inhibited by p38 MAPK inhibitor SB203580. This indicates
that p38 MAPK possibly participates in the positive feedback
loop with TLR4 signaling and that GB restrains the course
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(Chen et al., 2017; Figure 3). GB potently inhibited the
expression of PF4 and CD40L in thrombin-activated platelets
by inhibition of p38 MAPK phosphorylation. So GB might
be a promising drug in atherosclerosis through inhibiting
platelet function and reducing inflammation (Liu et al.,
2014). In addition, GB also exerted anti-inflammatory and
chondroprotective effects in LPS-induced chondrocytes by
inhibiting LPS-induced MAPK pathway activation, suggesting
that GB might be an underlying therapy for osteoarthritis
(Hu et al., 2018). Collectively, ginkgolides play a role in the
IIR by regulating MAPK signaling pathways, but the detailed
mechanisms still need further investigations.

Toll-Like Receptor/Myeloid Differentiation
Primary Response 88/Nuclear
Factor-Kappa B Pathway in the Regulation
of Inflammatory Immune Response
Myeloid differentiation primary response 88 (MyD88) is an
adaptor protein of the toll/IL-1 receptor (TIR) signaling
pathway. MyD88 has a TIR domain and can interact with
other TIR domains in TIR family cells, mediating downstream
signal transduction and playing a key role in TIR signaling
pathway (Li and Qin, 2005). NF-κB is a protein that controls
transcription of deoxyribonucleic acid, cytokine production,
and cell survival and is also a major transcription factor
involved with both the innate and adaptive immune response
(Smith et al., 2006). Ginkgolides and BB not only inhibited
IL-1β, IL-6, IL-8, IL-10, and TNF-α but also attenuated the
levels of TLR2, TLR4, MyD88, Bak, and RIP3, which were
induced by oxygen-glucose deprivation/reoxygenation (OGD/R)
in BV2 microglial cells. Meanwhile, ginkgolides and BB also
reduced p-TGF-β-activated kinase 1, p-IkBα, and p-IKKβ and
suppressed the OGD/R-induced transfer of NF-κB p65 from
the cytoplasm to the nucleus in BV2 microglial cells (Zhou
Y. et al., 2016). These results showed that ginkgolides and
BB protect BV2 microglial cells against OGD/R injury by
inhibiting TLR2/4 signaling pathways (Zhou Y. et al., 2016).
The therapeutic effects of GB on ischemic and hemorrhagic
stroke are widely recognized. The modulatory effects on
inflammatory-related gene expression, suppression of NF-
κB and PI3K/Akt pathways, and TLR4/NF-κB are the main
protective mechanisms of GB against stroke (Nabavi et al., 2015).
Accumulating evidence demonstrated that GB can suppress
gene expression of TLR4 and NF-κB; decrease concentrations
of inflammatory cytokines such as TNF-α, IL-1β, and IL-6;
and reduce the number of apoptotic neuronal cells in both
intracerebral hemorrhage rat brain tissue and traumatic brain
injury. These all suggested that GBmay ameliorate inflammation
by suppressing the expression of TLR4-NF-κB signaling pathway
(Hu et al., 2011; Yu et al., 2012; Wan et al., 2017). GB also
significantly attenuated activation of NF-κB and expression
of TNF-α mRNA induced by LPS (Wu et al., 2016). In
HUVECs, the expressions of inflammatory protein-intercellular
adhesion molecule-1, the activation of IκB phosphorylation,
and NF-κB induced by oxidized low-density lipoprotein are
all inhibited by GB. The pharmacological effects of GB on

the inflammatory response induced by ox-LDL in HUVECs
may be associated with its inhibition of NF-κB activation and
reduction of reactive oxygen species production (Li et al.,
2009). Both GA and GB have ability to inhibit ischemia-
induced NF-κB activation by IκBα degradation via suppression
of the NF-κB-inducing kinase-IκB kinase pathway (Wang
et al., 2008). GC also shows a beneficial effect against
myocardial I/R injury via inhibition of inflammation, possibly
via suppression of the CD-40-NF-κB signaling pathway and
downstream inflammatory cytokine expression. These may offer
an alternative treatment for myocardial I/R diseases (Zhang et al.,
2018; Figure 3).

The neuroprotective effects of BB may be related to inhibiting
the expression of NF-κB p65 protein and decreasing its nuclear
translocation in the substantia nigra pars compacta of rats
to prohibit the apoptosis of dopaminergic neurons (Li et al.,
2008). GB can also protect cultured neurons from hypoxia- and
glutamate-induced damage and inhibit neuronal apoptosis by
down-regulating pro-apoptotic protein expression including
Bcl-2-associated X protein and up-regulating anti-apoptotic
protein expression (Ahlemeyer et al., 1999; Gu et al., 2012).
The anti-apoptotic property of GB may also contribute to the
suppression of p-SAPK/JNK activation and reactive oxygen
species, inhibiting mitochondrial pro-apoptotic factors such
as caspase-3, caspase-9, poly ADP-ribose polymerase, and
cytochrome c (Gu et al., 2012). GB is also believed to interfere
with the production of free radicals and protect against
a decrease in hippocampal Ca2+/calmodulin-dependent
PKCII activity after cerebral ischemia (Zalewska et al.,
1996; Pietri et al., 1997). Moreover, GA and GB decrease
glutamate-induced damage of neuronal and hippocampal cells
(Prehn and Krieglstein, 1993). Brain-derived neurotrophic
factor (BDNF), a member of the neurotrophin family, is
present in the mature brain and is implicated to decrease
infarct volume and to improve neurological outcomes
(Schäbitz et al., 2000, 2007). BDNF activates intracellular
tyrosine receptor kinase B, MAPK, and the extracellular
signal-regulated kinases to protect against ischemic stroke
(Reichardt, 2006). Wei and colleagues found that GB can
up-regulate the expression of BDNF in ischemic stroke
by evaluating the therapeutic effects of GB in transient
middle cerebral artery occlusion mice and OGD/R-treated
N2a cells (Wei et al., 2017). Collectively, ginkgolides have
anti-PAF, anti-apoptotic, anti-oxidative, neurotrophic, and
neuroimmunomodulatory effects.

ROLES OF GINKGOLIDES IN THE
INFLAMMATORY IMMUNE RESPONSE OF
NEUROLOGICAL DISEASES

Inflammation and immune response, as an important
mechanism, are directly involved in the occurrence of many
diseases of the nervous system, such as Parkinson’s disease
(PD), ischemic stroke, MS, and Guillain–Barré syndrome (GBS).
Ginkgolides might serve as a potential new treatment of these
neurological diseases by regulating IIR (Table 2).
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FIGURE 3 | MAPK and NF-κB signaling pathway of ginkgolides in the regulation of IIR. Lipopolysaccharide stimulates the dimerization of TLR4 and activates the
conserved MAPK tertiary kinase cascade through MyD88, interleukin-1 receptor-associated kinase, which leads to the activation of transcription factors. Finally, it
promotes the expression of inflammatory factors in target cells, thus participating in the inflammatory reaction process induced by lipopolysaccharide. As shown in
the figure, ginkgolides have effects on MAPK and TLRs/MyD88/NF-κB signaling transduction pathway. It can down-regulate MyD88, transforming growth
factor-β-activated kinase-1, IκB kinases, IκBα, extracellular signal-regulated protein kinase 1/2, extracellular signal-regulated JNK, and p38, ultimately reducing
inflammation. MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-kappa B; IIR, inflammatory immune response; MyD88, myeloid differentiation primary
response 88; TLR, toll-like receptor.TLR, toll-like receptor; MyD88, myeloid differentiation primary response 88; IRAK, interleukin-1 receptor-associated kinase; TAK1,
transforming growth factor-β-activated kinase-1; IKK, IκB kinases; MAP3K, mitogen-activated protein kinase kinase kinase; ERK, extracellular signal-regulated
protein-1; JNK, c-Jun amino-terminal kinase; NF-κB, nuclear factor-κB; AP1, activator protein-1; TBK1, TANK-binding kinase 1; IRF, interferon regulatory factor; IIR,
inflammatory immune response.

Ginkgolides in Parkinson’s Disease
PD is a common neurodegenerative disorder of the central
nervous system (CNS), which is characterized by progressive
loss of dopaminergic neurons of the substantia nigra pars
compacta with a reduction of dopamine concentration in the
striatum. The exact PD etiology remains unknown, but a variety
of theories attempted to explain the causes of neuronal death
and to identify possible triggers. It has been hypothesized that
inflammation may underlay the neurodegenerative process, with
the immune system playing a key role (Caggiu et al., 2019).
A rat model of PD was produced with a unilateral infusion
of 6-OHDA into the substantia nigra pars compacta. Different
doses of BB were administered to the rat and locomotor activity
and rotational behavior, and the expressions of NF-κB were
tested after the 6-OHDA infusion. Finally, the study concluded

that NF-κB activation contributes to the 6-OHDA-induced
loss of dopaminergic neurons, and the inhibition of the NF-
κB pathway is likely to be involved in the neuroprotective
effect of BB (Li et al., 2008). The roles of ginkgolides in
IIR are also supported by the study of Kim et al., wherein
they found that GB can significantly attenuate the increase
of the NF-κB DNA-binding activity induced by 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (can induce PD rodent model
through an NF-κB-dependent mechanism; Kim et al., 2013).
Furthermore, PD model treatment with GB-nanocrystals (GB-
NCs) can improve behavior, reduce dopamine deficiency, and
elevate dopamine metabolite levels (Liu et al., 2020). Thus, BB
and GB provide a therapeutic approach to rescue the PD by
regulating IIR. Highly stabilized GB-NCs had small sizes, high
rates of dissolution, and improved oral bioavailability and brain
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TABLE 2 | Roles of ginkgolides in IIR in neurological diseases.

Diseases Actions Ingredients References

Neurodegenerative diseases Inhibition of the NF-κB. BB Li et al. (2008)
Ischemic stroke Decreases infarct size, serum levels of pro-inflammatory factors, expressions

of intercellular adhesion molecule-2 and E-selection.
Down-regulates TLR4 and NF-κB.
Reduces microglial activation and promotes microglia/macrophage transferring
from inflammatory M1 phenotype to M2 phenotype.
Suppresses ERK/MAPK pathway and inhibits Akt phosphorylation.

GB Gu et al. (2012)

Reduces microglial activation and promotes microglia/macrophage transferring
from inflammatory M1 phenotype to M2 phenotype.

GB Gu et al. (2012)

Suppresses ERK/MAPK pathway and inhibits Akt phosphorylation. GB Nabavi et al. (2015)
Neuroimmune diseases Attenuates the inflammatory responses. GB Zhou J.-M. et al. (2016)

Inhibits the expressions of TLR4 and MyD88. GB Chen et al. (2017)
Regulates the TLR/MyD88/NF-κB. Ginkgolides Tran et al. (2018)

IIR, inflammatory immune response; NF-κB, nuclear factor-kappa B; BB, bilobalide; GB, ginkgolide B; TLR, toll-like receptor; ERK, extracellular regulated protein kinase; MAPK,
mitogen-activated protein kinase; MyD88, myeloid differentiation factor 88.

uptake, which might make them effective drugs for anti-PD
therapies in the future. But this field is nascent, and further
explorations are needed.

Ginkgolides in Ischemic Stroke
Numerous studies have proven that neuroinflammation plays
an important pathological role in ischemic stroke (Chen
et al., 2020). Extracellular glutamate increased significantly
after ischemia (Hsieh et al., 2017). And this extracellular
glutamate can result in microglial activation and production of
inflammatory mediators such as pro-inflammatory cytokines,
adhesion molecules, and chemokines (Goldshmit et al., 2018).
These inflammatory mediators can increase the severity of
primary brain damages (Huang et al., 2018). TLR, NF-κB, and
nitric oxide also play a crucial role in mediating signaling
pathways in microglial activation and ischemic stroke-induced
damage (Zheng et al., 2017; Zhao et al., 2019). A growing
number of evidence has shown that administration with GB
decreased infarct size, serum levels of pro-inflammatory factors
(such as TNF-α, IL-6, and IL-1β), and expressions of intercellular
adhesion molecule-2 and E-selectin; down-regulated TLR4 and
NF-κB; and reduced microglial activation in transient middle
cerebral artery occlusion-induced cerebral I/R injury in mice
(Gu et al., 2012; Fan et al., 2020). Previous studies also proved
that GB promoted microglia/macrophage transferring from
inflammatory M1 phenotype to a protective, anti-inflammatory
M2 phenotype in vivo or in vitro (Shu et al., 2016). Other
mechanisms have been revealed that the anti-inflammatory
activity of GB included suppression of ERK/MAPK pathway,
inhibition of Akt phosphorylation, and down-regulation of
p-TAK1, p-IkBα, and p-IKKβ (Nabavi et al., 2015; Fan et al.,
2020). The effects of ginkgolides and BB in the cellular and
signaling events of ischemic stroke, including inflammatory
pathways and neuroprotection, have been validated in multiple
preclinical studies. In the future, we might focus on the design
and synthesis of ginkgolides and BB analogs with brain-targeting
ability, which would cause effective and continuous therapy for
CNS diseases.

Ginkgolides in Multiple Sclerosis
MS is a classic neuroinflammatory and immunological disease
of the CNS, which is the second major neurological disease
leading to the disability of young adults (Hassan-Smith and
Douglas, 2011). In the pathogenesis of MS, antigens are
ingested and recognized by antigen presenting cells (APCs)
such as DCs, which leads to the activation of autoreactive
T cells, leading to a series of pathological changes such
as CNS inflammation, demyelination of myelin sheath, and
destruction of axon (Mundt et al., 2019). DCs can initiate
the autoreactive immune response in the pathogenesis of
MS and promote and maintain immune tolerance on the
other hand (Zhou Y. et al., 2016). PAF is a lipid mediator
produced by cell activation, which participates in inflammatory
reaction. In the process of inflammation and immune response,
immunogen activates a series of signal transduction pathways
in cells, which then triggers the expressions of cytokines and
participates in inflammations and immune responses. NF-κB
and MyD88 are critical intracellular signaling molecules. Recent
studies suggested that NF-κB participates in the inflammatory
immune responses induced by M8. Enhanced NF-κB activity
can inhibit the transformation of M1 into M2, so as to
strengthen and enlarge inflammation responses and aggravate
tissue damages (Vogel et al., 2013). On the contrary, inhibiting
the activity of NF-κB can increase the number and function of
M2 cells and reduce inflammations and promote the recovery of
diseases. MyD88 has a clear relationship with infectious diseases,
tumors, and autoimmune diseases; and an MyD88-dependent
pathway is considered as a vital target for intervention treatment
of these diseases (Feng et al., 2016). TLR/MyD88 signaling
pathway is closely related to the maturation of DCs and the
secretion of inflammatory cytokines. TLR/MyD88 signaling
pathway plays a key role in the pathogenesis of experimental
allergic encephalomyelitis (EAE), a classical animal model of MS
in human. The onset time of TLR9 knockout mice (TLR9−/−)
is delayed compared with that of normal mice, and the clinical
symptoms are mild (Prinz et al., 2006).

Ginkgolides regulate the TLR/MyD88/NF-κB signaling
pathway and attenuate the inflammatory responses to inhibit

Frontiers in Systems Neuroscience | www.frontiersin.org 7 June 2020 | Volume 14 | Article 45

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Li et al. Ginkgolides in Inflammatory Immune Response

the productions of inflammatory factors mediated by OGD/R
in microglial cells (Zhou Y. et al., 2016). GB plays a protective
role in inhibiting the expressions of TLR4 and MyD88 induced
by high glucose and then in alleviating the TLR4-mediated
inflammatory responses in endothelial cells (Chen et al., 2017).
As shown previously, ginkgolides have been proved to be a
PAFR antagonist, significantly reducing the increase of nuclear
translocation of NF-κB p65 induced by PCP (Tran et al., 2018).
It has been reported that GB plays a role in PAFR antagonist
and can effectively prevent synaptic damage in hippocampus
of EAE mice without affecting microglial activation (Bellizzi
et al., 2016). Recently, Yu et al. (2019) have observed the
therapeutic potential of GK in experimental autoimmune
neuritis (EAN) through possible cellular and molecular
mechanisms, especially as a peripheral immunomodulatory,
and provided that GK may be a promising naturally small
molecule compound for treatment of MS in the future.
Despite that ginkgolide treatment may represent a novel
strategy for attenuating the inflammatory responses, the precise
mechanism of ginkgolides in mediating IIR remains to be
further explored.

Ginkgolides in Guillain–Barré Syndrome
GBS is an immune-mediated peripheral neuropathy,
characterized by demyelination of peripheral nerve and
nerve roots and infiltration of small vascular inflammatory
cells. EAN is a useful animal model for conducting research
on the pathogenesis and treatment of GBS (Liu et al., 2018).
A variety of immune cell subsets and a complex network of
cytokines are involved in the pathogenesis and progression
of GBS/EAN, such as Th1, Th2, Th17, and regulatory T cells
(Treg) cells (Zhang et al., 2013). The Th1 response is related
to the acute phase response to the pathogen in GBS, whereas
the Th2 response is associated with the recovery phase (Zhang
et al., 2014). The IFN-γ, IL-6, and TNF-α levels in Th1 are
increased in the acute phase of GBS, whereas those of TGF-β
and IL-4 are increased during the recovery phase of GBS
(Li et al., 2020). Moreover, the proportion of Th17 cells and
the levels of IL-17A in the peripheral blood of GBS patients
are increased in the acute phase of the disease, and those
of IL-17A are related to the disability scale score of GBS
(Kharwar et al., 2017). Tregs can abolish antigen-specific
T cell proliferation and suppress the secretion of Th1 and
Th2 cytokines (Zhang et al., 2013). Previous studies have
suggested that Tregs play a critical role in immune responses
in autoimmune diseases and that these cell numbers are
reduced in patients with GBS and EAN animals, suggesting
their crucial role in damage and repair in GBS (Harness and
McCombe, 2008). In summary, CD4+ T cells exert their effect
by releasing effector cytokines, and the net effects of these Th
cytokines determine the direction of immune responses and
the consequence of GBS/EAN (Harness and McCombe, 2008;
Nyati et al., 2011).

M8 differentiate into two phenotypes after activation:
classical activated M1, also known as pro-inflammatory type
M8, and activated type M2, also known as anti-inflammatory
type M8 (Shapouri-Moghaddam et al., 2018). M1 are involved

in the inflammatory damage of myelin sheath through the
release of pro-inflammatory factors, such as IL-12, during the
early course of GBS (Labonte et al., 2014). M2 are related
to disease recovery by secreting anti-inflammatory cytokines
in the later stage of GBS (Shen et al., 2018). CD4+ T cells
and M8 could interact and promote with each other as the
cytokines secreted by them are interconnected, intricate, and
pleiotropic. These cytokines constitute a complex immune
network in the pathogenesis of GBS/EAN. Previous studies have
shown that TLRs play a pivotal role in the occurrence and
development of GBS (Nyati and Prasad, 2014). Compared with
healthy controls, mRNA levels of TLR2, TLR4, MyD88, and
NF-κB were significantly increased in patients with GBS (Du
et al., 2015). It was also found that significant up-regulation
of TLR2 in sciatic nerves of EAN is correlated with disease
severity (Zhang et al., 2009). Moreover, TLR signaling activates
antigen presenting cells through MyD88-dependent or MyD88-
independent pathways to initiate adaptive immunity (Nyati
and Prasad, 2014). Thus, TLR, MyD88, and NF-κB are
involved in the pathogenesis of GBS/EAN. Studies have also
shown that expression of MyD88 in patients with GBS is
increased (Du et al., 2015). We speculated that the roles of
ginkgolides in GBS/EAN may be mediated by the regulation
of MyD88/NF-κB, based on the fact that ginkgolides attenuate
inflammatory responses by regulating the TLR/MyD88/NF-κB
signaling pathway.

CONCLUSION

Ginkgolides are clinically used for neuroprotective treatment on
reconvalescents of cerebral infarction. However, the cognition
about its therapeutic mechanism is still lacking. Ginkgolides
have several different biological effects including inhibiting
platelet aggregation, preventing apoptosis and oxidation,
providing nutrition to nerves, and regulating neuroimmunity.
Nowadays, accumulating studies have reported that ginkgolides
play an important role in regulating IIR via inhibiting the
PAF-mediated signal transduction, MAPK, and NF-κB signaling
pathways, which provide an insight into the novel clinical
application of ginkgolides in some neurological disease therapy
in the future.
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