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Abstract: Several mAbs have been tested or are currently under clinical evaluation for the 
treatment of COPD. They can be subdivided into those that aim to block specific pro- 
inflammatory and pro-neutrophilic cytokines and chemokines, such as TNF-α, IL-1β, 
CXCL8 and IL-1β, and those that act on T2-mediated inflammation, respectively, by block-
ing IL-5 and/or its receptor, preventing IL-4 and IL-13 signaling, affecting IL-33 pathway 
and blocking TSLP. None of these approaches has proved to be effective, probably because 
in COPD there is no dominant cytokine or chemokine and, therefore, a single mAb cannot be 
effective on all pathways. With a more in-depth understanding of the numerous pheno/ 
endotypic pathways that play a role in COPD, it may eventually be possible to identify those 
specific patients in whom some of these cytokines or chemokines might predominate. In this 
case, it will be possible to implement a personalized treatment, but the use of each mAb will 
only be reserved for a very limited number of subjects. 
Keywords: COPD, monoclonal antibodies, pheno/endotypic pathways, anti–T1-mediated 
inflammation mAbs, anti–T2-mediated inflammation mAbs

Introduction
Although COPD is a disorder characterized by the presence of chronic inflamma-
tion that is predominantly neutrophilic, there is a rather large proportion of patients 
with a predominantly eosinophil-mediated inflammation or in whom neutrophilic 
inflammation is combined to varying degrees with eosinophilic inflammation.1 

Other inflammatory cells including macrophages and CD4+ and CD8+ T lympho-
cytes are also involved, but the extent of their participation varies depending on the 
patient’s endotype.2 In addition, inflammatory cells are variably distributed in the 
bronchial tissue between and within individuals with COPD and over time,3 which 
is certainly critical when treating a patient with COPD, but unfortunately still 
poorly studied.Table 1

Unfortunately, inflammation in COPD lungs responds poorly to corticosteroid 
treatment. For this reason, over the past two decades, pharmacological research has 
been moving toward finding new anti-inflammatory pharmacological approaches to 
treat COPD patients more adequately.4–6 The focus was on finding new targets that 
inhibit the recruitment and activation of inflammatory cells involved in COPD.7 

This is leading to the synthesis of new drugs that should block the inflammatory 
mediators that recruit or activate these cells or are released by them.7 Unfortunately, 
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Table 1 Trials That Have Evaluated or are Evaluating mAbs in COPD

Classes of 
mAbs

mAbs Effects Ongoing Studies

Targeting specific pro-inflammatory and pro-neutrophilic cytokines and chemokines in 

COPD

TNF-α 
inhibitors

Etanercept 

Infliximab

Reduction in COPD hospitalizations. 

No beneficial effect for the treatment of AECOPDs but 

in patients with <2% eosinophils at baseline showed a 
possible better response than with prednisone. 

No beneficial effects.

Anti–CXCL8 ABX-CXCL8 Improvement in dyspnoea, but not in lung function or 

health status.

Anti–IL-1β Canakinumab 

MEDI8986

Lack of efficacy on the risk of AECOPDs, lung 

function, and health status. 
Lack of efficacy on the risk of AECOPDs, lung 

function, and health status.

Anti–IL-17A CNTO 6785 Only a small improvement in FEV1% predicted.

Targeting T2-mediated inflammation

Anti–IL-5 Mepolizumab 

Benralizumab

Reduction of the rate of moderate and severe AECOPDs 

in those with higher levels of blood eosinophils. 
In individuals with blood eosinophil counts ≥150 cells/µL 

at screening or ≥300 cells/µL in the prior year, reduction 

of AECOPDs requiring corticosteroid treatment 
especially in the presence of increased blood eosinophil 

counts, but not of those requiring antibiotics. 

Reduction of the rate of moderate and severe AECOPDs 
in those with higher levels of blood eosinophils. 

A history of three or more AECOPDs in the past 12 

months, baseline postbronchodilator FEV1 less than 40% 
and postbronchodilator response of 15% or more 

predict the treatment effect in individuals with baseline 

blood eosinophil count ≥220 cells/μL under triple 
therapy.

A Phase III trial ongoing to confirm the benefits of 

mepolizumab as add-on treatment to optimized 
maintenance COPD therapy in COPD patients 

experiencing frequent AECOPDs and characterized by 

eosinophil levels. 
A Phase II study evaluating whether starting mepolizumab 

at the time of a hospitalisation for an AECOPD in patients 

with significant eosinophilia will result in a reduction in 
readmission to hospital in a high-risk population. 

A Phase III trial evaluating the efficacy and safety of 

benralizumab on annualized rate of moderate or severe 
AECOPDs in patients with moderate to very severe 

COPD with a history of ≥2 moderate and/or severe 

AECOPDs in the previous year and elevated peripheral 
blood eosinophils (≥300/μL) despite receiving triple 

therapy for at least 3 months and ICS-based dual inhaled 

treatment for the rest of the year. 
A Phase II trial testing whether in patients who have an 

elevated eosinophil count at the time of exacerbation, a 

single injection of benralizumab alone or in combination 
with prednisolone will improve clinical response 

compared with prednisolone alone.

Anti–IL13/ 

anti–IL4

Dupilumab 

Lebrikizumab

It does not influence AECOPD rate versus placebo in 

patients with COPD and a history of exacerbations 

despite ICS and at least one long-acting 
bronchodilator inhaler medication.

A Phase III trials assessing its efficacy, safety, and 

tolerability in patients with moderate-to-severe 

COPD with type 2 inflammation.

Anti–TSLP Tezepelumab A Phase IIa trial assessing its safety and efficacy in 
patients with moderate to very severe COPD 

receiving triple maintenance therapy, and having had 2 

or more documented AECOPDs in the 12 months 
prior the enrolment.

(Continued)
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many of these approaches have failed to reach the clinical 
development stage or have failed in the clinic.8

Nevertheless, the improved understanding of the 
inflammatory process underlying COPD is suggesting the 
use of biologic agents or biological response modifiers, 
which act by neutralizing or modulating the function of 
certain inflammatory mediators such as tumor necrosis 
factor (TNF)-α, interleukin (IL)-1β, IL-4, IL-5, IL-6, IL- 
8, IL-13, IL-18, IL-23, IL-33, eotaxin-1 (CCL-11), thymic 
stromal lymphopoietin (TSLP), and transforming growth 
factor (TGF)-β, in order to achieve a more specific anti- 
inflammatory action.9 This should implement targeted 
treatment that improves disease control and decreases 
exacerbation rates.

Most biological therapies are based on the administra-
tion of antibodies against these mediators or their receptors 
(table 1), although inhibitors, mostly of kinases, are also 
used.9 Monoclonal antibodies (mAbs) offer several advan-
tages such as high affinity and specificity binding against a 
wide variety of proteins depending on the target, relative 
metabolic stability that allows them to remain active for 
long periods of time with a duration of action of weeks or 
even months, and low toxicity because their degradation 
products are amino acids and therefore are not converted 
into toxic metabolites.10

Targeting Specific Pro- 
Inflammatory and Pro-Neutrophilic 
Cytokines and Chemokines in 
COPD
In neutrophil-associated COPD with activation of the 
inflammasome, T1 and T17 immunity is the most common 

phenotype.11,12 Several cytokines are thought to drive 
neutrophilic inflammation, such as TNF-α, IL-8, IL-17, 
and IL-23. Human bronchial epithelial cells also express 
IL-6, IL-17 and IL-22/IL-22R. IL-1β and TNF levels are 
increased in COPD and are associated with macrophage 
activation and neutrophilic inflammation.11,12 

Macrophages are recruited with activation of the NOD- 
like receptor protein-3 (NLRP3) inflammasome and cas-
pase-1-dependent release of pro-inflammatory IL-1-like 
cytokines IL-1α, IL-1β, IL-33, and IL-18.12 Although 
COPD is primarily characterized by neutrophilic inflam-
mation, studies on targeted biologic therapy for neutrophi-
lic inflammation have been disappointing to date.

TNF-α Inhibitors
A recent systematic review and meta-analysis performed 
to evaluate the correlation between TNF-α level and 
COPD reported that TNF-α level was increased in patients 
with COPD compared with healthy controls.13 Several 
pollutants, including cigarette smoke, induce TNF-α pro-
duction by alveolar macrophages, neutrophils, T cells, 
mast cells, and epithelial cells.14 TNF-α augments neutro-
phil chemotaxis and migration by inducing IL-8 expres-
sion and increasing endothelial adhesion molecules.15 

Furthermore, it is a potent activator of NF-κB, capable of 
amplifying the inflammatory response.16

However, TNF-α inhibitors have shown only limited 
clinical efficacy. In controlled trials, infliximab, an immu-
noglobulin (Ig)G mAb that can quickly form stable com-
plexes with the human soluble or membrane form of TNF, 
and thus terminate the biological activity of TNF, had no 
beneficial effects in patients with mild, moderate, or severe 

Table 1 (Continued). 

Classes of 
mAbs

mAbs Effects Ongoing Studies

Anti–IL-33 Itepekimab 

MSTT1041A 
MEDI 3506

No reduction of the annualized rate of moderate-to- 

severe AECOPDs but in former smokers with COPD 
significant reduction of the frequency of AECOPDs 

and improvement of lung function.

Phase III trials evaluating its efficacy compared with 

placebo on the annualized rate of moderate-or-severe 
AECOPDs over a 52-week placebo-controlled 

treatment period in former smokers with moderate- 

to-severe COPD. 
A Phase II trial evaluating its impact on the rate of 

AECOPDs. 

A Phase II proof of concept trial assessing its effects 
compared with placebo on pulmonary function after 

12 week-treatment in patients with moderate to 

severe COPD and chronic bronchitis.
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COPD.17,18 Conversely, in patients with rheumatoid arthri-
tis and COPD, etanercept, a receptor blocker that binds to 
free-floating and cell-bound TNF, and not infliximab, 
reduced COPD hospitalizations, but only 16 of 1205 
patients (1.3%) in the study were on etanercept.19 In any 
case, in a double-blind randomized controlled trial, etaner-
cept had no beneficial effect for the treatment of acute 
exacerbations of COPD (AECOPDs) although patients 
treated with etanercept and with <2% eosinophils at base-
line showed a possibly better response than those treated 
with prednisone.20

The reason for the failure of anti–TNF therapies in 
patients with COPD is presumably because other proin-
flammatory cytokines drive the inflammatory process.15 

However, preclinical studies suggest that TNF-α inhibitors 
could reverse corticosteroid insensitivity by restoring the 
broad attenuation effects of corticosteroids on inflamma-
tion and airway remodelling21 and, also, when combined 
with corticosteroids, they could induce synergistic effects 
in controlling airway remodelling.22

Anti–CXCL8 mAbs
IL-8 is a pro-inflammatory chemokine from the CXC 
family. It is also known as CXCL8 and is a chemokine 
with potent neutrophil chemotactic and activation 
properties.23 Patients with COPD have high levels of 
CXCL8 in sputum and BAL fluid.23 However, results 
from a Phase II pilot study in COPD patients with ABX- 
CXCL8, a fully human mAb that recognized only free 
CXCL8, suggested that neutralization of CXCL8 may 
improve dyspnoea, but fails to improve lung function or 
health status.24 It has been suggested that the clinical fail-
ure of this mAb is likely due to the active form of CXCL8 
is bound to proteoglycans on the endothelial surface.4

PA401 or dnCXCL8, which is a modified recombinant 
human CXCL8 characterized by an increased binding affi-
nity to glycosaminoglycans that allows it to displace endo-
genous CXCL8 from glycosaminoglycans expressed at the 
site of inflammation, can reduce BAL neutrophils and 
systemic inflammatory markers in a mouse lung inflamma-
tion model.25 HuMax-IL8 (previously known as BMS- 
986253), a fully human IgG1k mAb that binds to free IL- 
8, has previously been tested in a Phase I clinical trial on 
cancer patients26 and is currently the object of an ongoing 
Phase 2 clinical trial in patients affected by severe 
COVID-19 (NCT04347226). Both PA401 and HuMax- 
IL8 have not been evaluated in patients with COPD.

Anti–IL-1β mAbs
The IL-1 family consists of two related polypeptides, IL- 
1α and IL-1β that bind to the same primary receptor IL- 
1R1, which is expressed by almost all cell types, and can 
recruit and/or activate a variety of immune cells and 
immunocompetent cells, such as macrophages, endothelial 
cells, neutrophils, and epithelial cells.27 The activity of IL- 
1β in the lung induces a phenotype with typical COPD 
features, consisting of pulmonary inflammation, emphy-
sema, and airway fibrosis.27 IL-1β secretion is increased in 
stable and exacerbating COPD28 and is likely involved in 
the initiation and persistence of inflammation. In COPD 
IL-1β serum level correlates with clinical aspects of dis-
ease severity.29

Because specific pharmacologic blockade of IL-1 
activity in COPD may be relevant for limiting inflamma-
tion and exacerbations in COPD, canakinumab, which is 
an anti–IL-1β mAb, and MEDI8986, a fully human IgG2 

mAb that binds selectively to IL-1R1, were tested in 
patients with COPD; however, the results demonstrated 
an acceptable safety profile but a lack of efficacy at least 
with regard to impact on the risk of AECOPDs, lung 
function, and health-related quality of life (HRQoL).30 

Nevertheless, it has been highlighted the need for better 
stratification and targeting of specific disease cohorts and 
for studies with specific mAbs against IL-1α and IL-1β 
using lung-specific biomarkers to understand whether tar-
geting these cytokines is a viable therapeutic approach for 
patients with COPD.31 In addition, it has been suggested 
that interfering with IL-1 may reduce mucosal inflamma-
tory responses to microbes, which could predispose 
patients to respiratory tract infections and pneumonia.32

Anti–IL-17A mAbs
The IL-17 family of cytokines has six members, of which 
IL-17A and IL-17F are highly homologous and bind to a 
complex receptor of IL-17RA and IL-17RC, so that they 
share similar biological effects.33 IL-17A and IL-17F are 
involved in COPD pathophysiology, although a study 
found evidence of increased production of IL-17A but 
not IL-17F in the bronchial submucosa of COPD patients.-
34 IL-17 activates many signalling pathways, which in turn 
leads to the production of many other cytokines (such as 
IL-6, IL-1β, TNF-α, granulocyte colony-stimulating factor 
[G-CSF], granulocyte-macrophage colony-stimulating fac-
tor [GM-CSF], and TGF-β) and chemokines (including IL- 
8 and monocyte chemoattractant protein [MCP1]) from 
many alveolar cell types (endothelial cells, epithelial 
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cells, and macrophages).35 The increase in the production 
of IL-17A causes neutrophil recruitment, leading to 
chronic inflammation.36 IL-17A can also promote airway 
remodelling by increasing TGF-β1 and inhibiting cell 
autophagy in inflammatory lung tissue.36 IL-17 airway 
activity positively correlates with disease severity in 
COPD patients.36

Even though different models of experimental COPD 
suggest that IL-17A drives lung inflammation and lung 
damage, targeting IL-17A has, so far, not been proven to 
be useful in the treatment of stable COPD patients.37 

CNTO 6785, a mAb that binds to human IL-17A, caused 
a small improvement in forced expiratory volume in 1 s 
(FEV1)% predicted in patients with moderate-to-severe 
symptomatic COPD, but failed to show any statistically 
or clinically significant difference in primary or secondary 
end points between the intervention and placebo arms. In 
addition, there were more protocol defined AECOPDs in 
the CNTO 6785 arm compared with placebo at week 16 
(18 vs 11).38

A number of anti–IL-17A and anti–IL-17RA mAbs are 
under development to decrease neutrophil recruitment and 
airway inflammation.8 However, most studies have been 
and are aimed at testing the effects of these mAbs on 
asthma rather than COPD, likely because IL-17 secreted 
by Th17 cells, plays a key role in the pathogenesis of 
neutrophilic asthma, which is unresponsive to high dose 
inhaled corticosteroids (ICSs), and probably to precision 
novel anti-IgE, and IL mAb therapies.39 A blockade of IL- 
17RA resulting in the inhibition of the effects of both IL- 
17A and IL-17F has been attempted in patients with severe 
asthma using brodalumab, which is a mAb that targets IL- 
17RA.40 Although it did not induce any improvement in 
lung function, symptoms, or QoL, the study population 
was not screened for neutrophils in sputum or mediators 
of the IL-17 pathway. A study (NCT01902290) that aimed 
to assess whether brodalumab was safe and effective com-
pared to placebo as measured by changes in Asthma 
Control Questionnaire (ACQ) composite scores in inade-
quately controlled asthma subjects with high bronchodila-
tor reversibility but not selected based on matching 
endotype was stopped due to lack of efficacy. 
Conversely, secukinumab, a fully human anti–IL-17A of 
the IgG1κ isotype, seemed to work in those patients suffer-
ing from not adequately controlled severe asthma despite 
high doses of ICSs and LABAs.41 These patients had low 
IgE (<150/uL) and increased nasal epithelial neutrophilic 
inflammation. Responders were defined as >5% change 

from baseline of percent predicted FEV1. However, treat-
ment with secukinumab was terminated, as it was not 
effective in the target population.42

CCJM112, a novel fully human anti–IL-17A IgG1κ 

mAb that, in contrast to secukinumab, binds with similar 
affinity to both human IL-17A and IL-17A, has already 
been studied in a phase II trial in patients with uncon-
trolled severe asthma and low blood IgE and eosinophil 
levels (NCT03299686). The study has been completed, but 
results have not been published yet.

Brodalumab, secukinumab and CCJM112 have not yet 
been tested in patients with COPD. The lack of interest in 
evaluating these mAbs in COPD is surprising. as there is 
documentation that a signature of IL-17-associated airway 
inflammation is upregulated in approximately a third of 
COPD participants and is associated with distinct inflam-
matory, physiologic, and clinical features.43 It has been 
suggested that targeting IL-17 in COPD may therefore be 
therapeutically useful if it is aimed at well-characterised 
neutrophilic patients who may respond well to these drugs, 
possibly identified by nasal sampling performed to detect 
those with high IL-17 levels.44 However, it must be high-
lighted that secukinumab was unable to inhibit ozone- 
induced acute neutrophilic airway inflammation in healthy 
volunteers.45 Furthermore, targeting the IL-17 pathway 
may increase the risk of AECOPD by diminishing host 
defense.8 Neutralizing IL-17 activity can induce immuno-
suppression, which is problematic in patients with COPD 
given their susceptibility to pulmonary infections.43 Not 
insignificant, in this regard, is the concern that blocking 
the IL-17/IL-23 axis, which plays an important role in 
defending the lungs against bacterial infections through 
the release of antimicrobial peptides from airway epithelial 
cells, may cause reduced immunity to infections.46

Targeting T2-Mediated 
Inflammation Using mAbs
In COPD, patients may have increased eosinophil counts 
in peripheral blood and/or sputum that might predict a 
clinical response to ICSs, with an improvement in post- 
bronchodilator FEV1 following treatment.47,48 Although 
the T2 immune response, which encompasses eosinophilic 
inflammation and is mediated by IL-4, IL-5 and IL-13,2 

typically decreases with aging, tobacco smoking may 
attenuate the age-related decrease in total serum IgE levels 
and eosinophilic inflammation in populations with and 
also without asthma.49 This immunologic picture in a 
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smoking subject is termed asthma-COPD overlap (ACO), 
although controversy exists regarding the precise defini-
tion of ACO also because there are patients with neutro-
phil predominant ACO.50 The high percentage of patients 
with COPD who show a T2 inflammation explains the 
interest in evaluating the effects of specific mAbs able to 
interfere with eosinophils.6 However, it should always be 
considered that blood eosinophil counts can be variable in 
individual COPD patients.51 Consequently, classifying 
COPD as noneosinophilic, with intermediate eosinophilic 
picture, or clearly eosinophilic considering the three 
thresholds <100 cells/mm3, 100–299 cells/mm3, and 
≥300 cells/mm3, respectively, suggested by the Global 
Initiative for Chronic Obstructive Lung Disease52 may be 
incorrect if repeated counts of eosinophils in the blood 
over time are not performed.

Anti–IL-5 mAbs
IL-5 modulates the proliferation, maturation, and activa-
tion of eosinophils and eosinophilic airway inflammation 
and appears to modulate the development and functions of 
human basophils and mast cells owing to the common 
expression of several crucial receptors in these cells.53 Its 
biological effects are mediated by its selective interaction 
with the IL-5 receptor (IL-5R), consisting of a specific α 
subunit (IL-5Rα) and a non-specific βc heterodimer.53

It has been reported that sputum concentrations of IL-5 
are correlated with sputum eosinophil numbers in COPD 
patients with eosinophilia.54 Furthermore, soluble IL-5Rα 
is increased during virus-induced AECOPDs.55 Since eosi-
nophils rapidly undergo apoptosis in the absence of IL-5, it 
is believed that blocking IL-5 may be a potential thera-
peutic approach to prevent or dampen eosinophil-mediated 
inflammation.56 The efficacy and safety of mepolizumab, a 
humanized mAb of the IgG1k class that blocks free IL-5, 
and benralizumab, a fully humanized afucosylated IgG1κ 

mAb that binds to a specific epitope within the extracel-
lular domain on IL-5Rα, which is in close proximity to the 
IL-5 binding site and thus inhibits IL-5R signalling, inde-
pendent of ligand, which are currently approved for treat-
ment of severe eosinophilic asthma, have now been 
examined in large clinical trials in the eosinophilic 
COPD population. Both mepolizumab and benralizumab 
had a similar safety profile that was not significantly 
different compared to placebo.30

A recent Cochrane systematic review that included six 
studies involving a total of 5542 participants concluded 
that mepolizumab and benralizumab probably reduce the 

rate of moderate and severe AECOPDs in the highly 
selected group of people who have both COPD and higher 
levels of blood eosinophils (patients with blood eosino-
phils at the higher end of the normal range as well as those 
with true blood eosinophilia).57

However, it should be noted that it is still unknown 
which subpopulation of COPD patients is most likely to 
respond to anti-IL-5 mAbs,58 although they are most likely 
to be those with a higher disease burden and a higher 
degree of eosinophilic inflammation. A pre-specified 
meta-analysis of data of individuals with blood eosinophil 
counts ≥150 cells/µL at screening or ≥300 cells/µL in the 
prior year from two trials that looked at mepolizumab in 
COPD showed that mepolizumab had primarily reduced 
AECOPDs requiring corticosteroid treatment especially in 
the presence of increased blood eosinophil counts, while 
the effect on exacerbations requiring antibiotics was less 
pronounced.59 An analysis of two Phase 3 clinical trials 
testing the effects of benralizumab in patients with mod-
erate to very severe COPD found that a history of three or 
more AECOPDs in the past 12 months, baseline post-
bronchodilator FEV1 less than 40% and postbronchodila-
tor response of 15% or more were the strongest and most 
consistent baseline clinical characteristics that appeared to 
predict the treatment effect with this mAb in individuals 
with baseline blood eosinophil count ≥220 cells/μL and 
who were receiving triple therapy.60

However, the interest in correctly positioning anti–IL-5 
Abs in the treatment of COPD has not yet died down. A 
Phase III trial is ongoing to confirm the benefits of mepo-
lizumab as add-on treatment to optimized maintenance 
COPD therapy in COPD patients experiencing frequent 
AECOPDs and characterized by high eosinophil levels 
(NCT04133909 or MATINEE), while a Phase II study is 
evaluating whether starting mepolizumab at the time of a 
hospitalisation for an AECOPD in patients with significant 
eosinophilia will result in a reduction in readmission to 
hospital (NCT04075331 or COPD-HELP).

A Phase III trial that aims to evaluate the efficacy and 
safety of benralizumab on annualized rate of moderate or 
severe AECOPDs in patients with moderate to very severe 
COPD with a history of ≥2 moderate and/or severe 
AECOPDs in the previous year and elevated peripheral 
blood eosinophils (≥300/μL) despite receiving triple (ICS/ 
LABA/LAMA) background therapy for at least 3 months 
and ICS-based dual inhaled treatment for the rest of the 
year is ongoing (NCT04053634 or RESOLUTE). In con-
trast, a Phase II trial is testing whether in patients who 
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have an elevated eosinophil count at the time of exacerba-
tion, a single injection of benralizumab alone or in combi-
nation with prednisolone will improve clinical response 
compared with prednisolone alone (NCT04098718 or 
ABRA).

In any case, the presence of resident human eosinophils 
in the lungs that are independent of IL-561 prevents mas-
sive removal of eosinophils from the airways from indu-
cing any significant clinical benefit in many patients with 
COPD.62 Therefore, we cannot exclude that airway eosi-
nophilia in COPD may be driven in an IL-5-independent 
manner and be different from that found in asthma.

Anti–IL13/Anti–IL4 mAbs
IL-4 and IL-13, which are made by mast cells, T2 cells, 
and innate lymphoid 2 cells (ILC2s), bind to the type 2 
receptor complex, IL-4Rα/IL-13Rα1, on airway epithelial 
and smooth muscle cells, eosinophils, and mast cells.63 IL- 
4 also binds to the type 1 receptor complex found on T 
cells, which consists of IL-4Rα and a γc-chain. This leads 
to upregulation of T2 responses with accumulation of 
eosinophils and downregulation of T1 responses. IL-13 
directly affects airway contractility. It also increases 
mucus production, and by stimulating periostin release 
from airway epithelial cells, may contribute to 
remodelling.

Experimentally in a transgenic mouse model, it has 
been observed that eosinophil-derived IL-13 stimulates 
alveolar macrophages to produce matrix metalloprotease 
(MMP)-12 and, thus, plays a role in alveolar destruction.64 

At the same time, it was documented that in patients with 
eosinophilic COPD and coexisting emphysema, pulmon-
ary eosinophilia was associated with elevated levels of 
MMP-12, predictive of emphysema.64

Two pivotal studies (NCT03930732 or BOREAS and 
NCT04456673 or NOTUS) are assessing the efficacy, 
safety, and tolerability of dupilumab, a fully human IgG4 

mAb that targets IL4Rα thus inhibiting signalling of both 
IL-4 and IL-13, in patients with moderate-to-severe COPD 
with type 2 inflammation.

Lebrikizumab, a humanised mAb that binds to soluble 
IL-13 and blocks activation of IL-4Rα and IL-13Rα1 
heterodimers, has been evaluated in patients with COPD 
and a history of exacerbations despite ICS and at least one 
long-acting bronchodilator inhaler medication 
(NCT02546700 or VALETA). The full results are yet to 
be released, but preliminary data suggest that they do not 
influence AECOPD rate versus placebo.55 There is no 

information on the use of tralokinumab, a human IgG4 

mAb that neutralizes IL-13 and prevents interaction with 
its receptor, in COPD patients.

Anti–TSLP mAbs
Thymic stromal lymphopoietin (TSLP), an IL-7-like cyto-
kine, is an upstream epithelial T2 cytokine known to exert 
multipotential pathogenic effects also beyond T2 
inflammation.65 It initiates the intracellular T2 signalling 
by binding to its high-affinity heterodimer receptor com-
plex, which consists of its specific receptor, TSLPR, and 
an IL-7Rα subunit in cells co-expressing TSLPR and IL- 
7Rα. TSLP initially binds to TSLPR, followed by recruit-
ing of the IL-7Rα chain.65 TSLP is produced by airway 
epithelial cells during inflammation and induces T2 
immune response by directly stimulating T cells, mast 
cells, and natural killer cells and indirectly by activation 
of CD11c+ dendritic cells located within the lung epithe-
lium that then migrate to the lymph nodes where they 
prime CD4+ T cells to produce T2 inflammatory 
cytokines.66

Constitutive and in vivo expression of TSLP has been 
documented in the airway smooth muscle of COPD 
patients.67 It is likely that this TSLP expression could 
influence immune regulation by interacting with and influ-
encing local immune cells in the COPD airways.68 

Furthermore, viruses can induce overproduction of TSLP 
in COPD epithelial cells,69 suggesting a role for TSLP in 
AECOPDs. However, also T1 cytokines can induce TSLP 
production in COPD and it has been speculated that den-
dritic cell-derived TSLP acts as an important molecular 
checkpoint to limit IL-1β-mediated effector responses 
through a negative feedback loop that may limit the mag-
nitude of the inflammatory response to injury.70

Tezepelumab, a human IgG2 mAb that binds to TSLP, 
preventing its interaction with the TSLP receptor 
complex,71 is under investigation in a phase IIa, multi-
centre, double-blind, randomised trial in patients with 
moderate to very severe COPD receiving triple inhaled 
maintenance therapy, and having had 2 or more documen-
ted AECOPDs in the 12 months prior the enrolment 
(NCT04039113 or COURSE).

Targeting IL-33 Pathway
IL-33, an alarmin cytokine from the IL-1 family, is 
released from the epithelium due to damage to epithelial 
cells and exerts its pro-inflammatory biological functions 
via its receptor, which is a heterodimeric complex that 
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comprises suppression of tumorigenicity 2 (ST2) and IL-1 
receptor accessory protein (IL-1RAcP).72 The resulting 
signal leads to the induction of transcription of down-
stream inflammatory and anti-inflammatory genes. IL-33 
has been implicated in eosinophil recruitment to the air-
way and maturation in the bone marrow largely via ILC2, 
and thus it promotes the ILC2 response, which secretes a 
large amount of IL-5 and IL-13 in allergic inflammation.73

It is believed that IL-33 could play a role in the patho-
genesis and progression of COPD because substantial 
increases in IL-33 levels have been documented in serum 
or plasma and sputum as well as in lung biopsy specimens, 
epithelial and endothelial cells of COPD patients.74 The 
expression of IL-33 and the ST2 receptor increases in this 
disorder probably due to the inducing action of cigarette 
smoke, with levels that are associated with the degree of 
airway and systemic inflammation.75 In effect, a reduction 
in COPD risk associated with IL33 (rs146597587) loss of 
function and, on the contrary, gains of function in IL33 and 
IL1RL1 variants with increased risk have been 
documented.73

A Phase II study has evaluated the impact of itepeki-
mab, an anti–IL-33 human IgG4 mAb, as an add-on to the 
standard of care on the annualized rate of moderate-to- 
severe AECOPDs over up to 52 weeks of treatment.76 

Compared with placebo, itepekimab did not significantly 
reduce the annualized rate of moderate-to-severe 
AECOPDs. However, in former smokers with COPD, it 
significantly reduced the frequency of exacerbations and 
improved lung function, again compared with placebo.

Another Phase II trial has evaluated the impact of 
MSTT1041A, an anti-ST2 mAb, administered subcuta-
neously by an infusion pump at 490 mg every 4 weeks 
over a 48-week treatment period, on the rate of AECOPDs 
(NCT03615040 or COPD-ST2OP), but no result has been 
posted.

Other RCTs are ongoing. Itepekimab is now under 
further investigation in two Phase III trials to evaluate its 
efficacy compared with placebo on the annualized rate of 
moderate-or-severe AECOPDs over a 52-week placebo- 
controlled treatment period in former smokers with mod-
erate-to-severe COPD (NCT04701983 or AERIFY-1 and 
NCT04751487 or AERIFY-2). MEDI 3506, another anti– 
IL-33 mAb, is in a Phase II proof-of-concept trial that is 
assessing its effects compared with placebo on pulmonary 
function after 12 weeks of treatment in patients with 
moderate-to-severe COPD and chronic bronchitis 
(NCT04631016 or FRONTIER-4).

Administration of mAbs by 
Inhalation
It is possible that the low efficacy of mAbs is, at least in 
part, due to the fact that they are large molecules that are 
administered systemically and reach the lung only in a 
small percentage of the administered dose.10,77 It is there-
fore conceivable that their administration by inhalation 
may increase the proportion of active drug in the lung 
with limited passage of the drug into the bloodstream.78 

However, the pulmonary delivery of mAbs is challenging 
in terms of aerosol technology and the formulation of 
biological agents for inhalation.78 It is important that 
mAbs remain stable during aerosolization. It is likely that 
mesh nebulizers allow for delivery of high amounts of 
drugs (often required for mAbs) and better preserve the 
molecular integrity of proteins by being less harsh regard-
ing chemical and physical constraints.79 Obviously, the 
addition of surfactant to maintain the molecular integrity 
and, thus, the pharmacological activity of mAbs during 
vibrating net nebulizing is necessary.77 It is therefore 
desirable that trials comparing the effects of a systemically 
administered mAb with those induced by the same mAb 
administered by inhalation be performed as soon as possi-
ble. However, only mAbs with very high doses potency 
are suitable for pulmonary delivery because only small 
volumes of fluid can be administered.80

Conclusion
As we have repeatedly pointed out, there are different 
pheno/endotypes of COPD whose presence makes a per-
sonalized therapeutic approach to the COPD patient cru-
cial and the generalization of results of clinical trials that 
have not considered this issue of no real value.6,81,82

It is likely, therefore, that the lack or near lack of 
therapeutic effect of the various mAbs tested in different 
RCTs reflects the complexity of COPD with its numerous 
pheno/endotypic pathways playing a role in COPD.6,82 In 
fact, in COPD, there is no dominant cytokine or chemo-
kine and, therefore, a single mAb cannot be effective on 
all pathways. This makes it essential to evaluate these 
mAbs in specific well-identified pheno/endotypes in 
which some of these cytokines or chemokines might pre-
dominate, such as in eosinophilic COPD.6,82

The redundancy of signal-induced effects, particularly 
the possibility that other pathways can still induce or 
maintain the inflammatory state even when a specific path-
way is turned off, represents a high critical point that must 
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always be considered when evaluating the effects of mAbs 
in COPD.83 It is the most likely cause of failure when 
blocking a single specific pathway and is, furthermore, a 
major obstacle to the development of targeted therapies.6

In general, almost all available studies on the use of 
mAbs in COPD focus on the prevention of AECOPDs. 
However, there are several other outcomes that also need 
to be considered when treating a patient with COPD.84 

Cochrane's analysis of anti-IL-5 therapies for COPD has 
concluded that there was probably little or no difference 
between the intervention and placebo for quality-of-life 
measures.57 Apparently, there is also no major impact of 
these mAbs on lung function.85 For other classes of mAbs, 
information is even more scarce. There is no doubt that in 
the future it will be necessary to study in detail the impact 
of mAbs on other key outcomes such as pulmonary func-
tion, as important differences may also be detected. For 
example, an experimental study showed that benralizumab 
was more potent than mepolizumab in increasing levels of 
cAMP in the airways,86 which may mean a different 
impact on lung function. Another experimental study 
documented that activation of the IL-4/IL-13 pathway 
can promote profound airway smooth muscle hyperreac-
tivity, while neither IL-5 nor IL-17A enhanced airway 
contractile responses.87 Thus, the impact of blocking 
these cytokines with mAbs may result in completely dif-
ferent bronchial tone responses.

Although we completely agree that mAbs could be the 
future of personalized treatment in COPD,82 we are fully 
aware that there is a long way to go before they become 
part of everyday practice in COPD.88 In any case, our 
opinion is that mAbs will be reserved for a very limited 
number of patients suffering from COPD.82 Perhaps, how-
ever, if the therapeutic approach is centered on treatable 
traits as suggested for the treatment of COPD in general89 

and eosinophilic forms in particular,90 new studies focus-
ing on outcomes other than exacerbations may provide 
information that could broaden the range of those who 
may benefit from these drugs.
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