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Abstract: The sweet potato weevil (Cylas formicarius) is an important pest in the growing and storage
of sweet potatoes. It is a common pest in the sweet potato production areas of southern China, causing
serious harm to the development of the sweet potato industry. For the existing cultivars in China
and abroad, there is no sweet potato variety with complete resistance to the sweet potato weevil.
Thus, understanding the regulation mechanisms of sweet potato weevil resistance is the prerequisite
for cultivating sweet potato varieties that are resistant to the sweet potato weevil. However, very
little progress has been made in this field. In this study, we inoculated adult sweet potato weevils
into sweet potato tubers. The infected sweet potato tubers were collected at 0, 24, 48, and 72 h.
Then, a miRNA library was constructed for Eshu 6 and Guang 87 sweet potato tubers infected for
different lengths of time. A total of 407 known miRNAs and 298 novel miRNAs were identified.
A total of 174 differentially expressed miRNAs were screened out from the known miRNAs, and
247 differentially expressed miRNAs were screened out from the new miRNAs. Moreover, the targets
of the differentially expressed miRNAs were predicted and their network was further investigated
through GO analysis and KEGG analysis using our previous transcriptome data. More importantly,
we screened 15 miRNAs and their target genes for qRT-PCR verification to confirm the reliability
of the high-throughput sequencing data, which indicated that these miRNAs were detected and
most of the expression results were consistent with the sequencing results. These results provide
theoretical and data-based resources for the identification of miRNAs in response to sweet potato
weevil infection and an analysis of the molecular regulatory mechanisms involved in insect resistance.

Keywords: sweet potato weevil; microRNA; sRNA sequencing; target gene

1. Introduction

MicroRNAs are a group of short-sequence RNAs of non-coding proteins with a length
of 20–24 nt which are widely distributed in eukaryotes and have high conservation, timing,
and tissue specificity [1–6]. These miRNAs are not only involved in plant growth [7–11] and
physiological metabolism [9,12,13], but also play a key regulatory role in various biotic and
abiotic stress responses [14–17]. Studies have found that miRNAs play an indispensable
role in plant defense against insects. Research on tobacco–TBM interactions has shown that
changes to a plant’s secondary metabolites are induced by miRNAs after an insect infection
to achieve insect resistance [18]. Before and after the TBM infection in wild-type tobacco
and RDR1 tobacco plants, it was found that the RDR1 tobacco mutant was susceptible
to some miRNAs that induced the expression of ethylene and jasmonic acid, signaling
pathway-related genes and causing plant hormone changes. The phenotype of RDR1 was
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indirectly regulated by smRNAs due to the changes in hormone-signaling-pathway-related
genes [19].

The sweet potato weevil (Fabricius), also known as the sweet potato ant elephant and
the sweet potato elephant snout, is an important pest in the growing and storage of sweet
potatoes [20]. It is a common pest in the sweet potato production areas of southern China,
causing serious harm to the development of the sweet potato industry. To date, the research
on sweet potato weevils in China has mainly focused on its biology and control [21–24], and
there are few reports on the resistance gene resources for the sweet potato weevil [25,26].
For the existing cultivars in China and abroad, there is no sweet potato variety with
complete resistance to the sweet potato weevil [27]. Therefore, understanding the regulation
mechanisms of sweet potato weevil resistance is the prerequisite for cultivating sweet potato
varieties that are resistant to the sweet potato weevil.

To date, research indicates that miRNAs are mainly involved in the regulation of
growth, development, and stress responses in sweet potato [28,29]. Sun et al. [30] explored
the expression of 16 miRNAs in different tissues of sweet potato plants and found that
some miRNAs were expressed in an organ-dependent manner. The expression level of
miR167 in stamens was higher than that in other tissues, indicating that it may be crucial
for stamen development. The expression levels of miR156 and miR162 in the roots were
significantly lower than those in the leaves and fibrous roots, indicating that these miRNAs
may play a role in the initiation and development of roots. The inhibitory expression of
miR408 enhanced the defense system of transgenic sweet potato plants against herbivore
injury by up-regulating the expression levels of IbKCS, IbPCL, and IbGAUT [31]. However,
the key miRNAs and their functions in the regulation of the sweet potato weevil have not
been identified and analyzed, and the molecular mechanism of miRNAs in the regulation
of sweet potato weevil infection is still unclear.

In this study, high-throughput sequencing technology was used to study changes in
the expression of miRNAs in sweet potatoes at the whole-genome level after an infection
by sweet potato weevils; identify known miRNAs and new miRNAs; screen and excavate
differentially expressed miRNAs in response to sweet potato weevils; and annotate and
enrich the predicted regulatory target genes. This research provides theoretical and data-
based references for further exploring the regulatory mechanisms of miRNAs and their
molecular regulatory pathways and networks in the response and adaptation to sweet
potato weevil infection.

2. Materials and Methods
2.1. Plant Materials

The sweet-potato-weevil-susceptible sweet potato variety Eshu 6 and the sweet-potato-
weevil-resistant sweet potato variety Guang 87 were selected as experimental materials.
The two varieties were planted in 50 pots each and placed in the potted plant section at the
Institute of Food Crops, Hubei Academy of Agricultural Sciences.

2.2. Infection Treatment and Sample Collection

Sweet potato plants with a strong growth potential and relatively consistent growth
were selected and placed in insect cages, with 1 pot per cage and 3 pots per variety.
The environmental conditions were 25 ± 2 ◦C, 80% relative humidity, 16 h of light, and
8 h of darkness. Approximately 20 adult sweet potato weevils were inoculated to in-
fect sweet potato tubers. The infected sweet potato tubers were collected after 0, 24, 48,
and 72 h and named E_0, E_24, E_48, E_72, G_0, G_24, G_48, and G_72, respectively.
Each experimental group contained three biological replicates, for a total of 24 samples
(2 treatments × 4 time points × 3 biological replicates). The samples were promptly frozen
in liquid nitrogen and stored at −80 ◦C until required.
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2.3. Library Preparation and Small RNA Sequencing

The RNA of the 24 infected sweet potato tuber samples was extracted and used for
sRNA library construction. The libraries were sequenced on an Illumina Noveseq platform
at Wuhan Feisha Gene Information Co., Ltd. (Wuhan, China).

2.4. Identification of miRNA

Sequences were mapped to the reference genome (http://public-genomes-ngs.molgen.
mpg.de/SweetPotato/ (accessed on 20 March 2021)) using bowtie with the parameters (-p 5
-v 1 -k 1) and assessed for the mapping rate and genome distribution. The mapped sequence
reads were compared to known sequences in miRBase (v. 22) using miRDeep2 (-g 0) and
sRNA-tools-cli (tool hp_tool) [32,33] to identify known miRNAs. The miREvo [34] and
miRDeep [35] software was used to predict the candidate miRNAs and assess length
distribution and nucleotide proportion to identify novel miRNAs.

2.5. Identification of Differentially Expressed miRNA

The expression levels of miRNAs in all samples were standardized or normalized
by the TPM value. Eshu 6 and Guang 87 samples at 24 h, 48 h, and 72 h after treatment
(E/G_24, E/G_48 and E/G_72) were compared with the corresponding samples at 0 h
(E/G_0). DESeq2 [36] was used to identify the differently expressed miRNAs. The miRNAs
with |log2(fold change)| > 1 and an adjusted p-value < 0.05 were considered differentially
expressed miRNAs.

2.6. Prediction of miRNA Targets

TargetFinder [37] and qTar were used to predict the target genes of differentially
expressed miRNAs. GO enrichment analysis and KEGG enrichment analysis were per-
formed on the candidate targets. GOseq [38] and KOBAS [39] were used for GO and KEGG
enrichment analyses of the target genes.

2.7. qRT-PCR Analysis

Fifteen differentially expressed miRNAs and their target genes were selected. Specifi-
cally designed forward primers and universal reverse primers were used for mature miR-
NAs (Supplementary Table S1). Then, SYBR® Select Master Mix (2X) was used for RT-PCR
amplification. U6 (U6-F: GGGGACATCCGATAAAATT, U6-R: TGTGCGTGTCATCCTTGC)
was used as the internal reference gene for the miRNA, and sweet potato β-Actin (β-Actin-F:
AGCAGCATGAAGATTAAGGTTGTAGCAC, β-Actin-R: TGGAAAATTAGAAGCACTTC-
CTGTGAAC) was used as the internal reference gene for the target gene. Each sample
was repeated three times. The relative expression of genes was calculated using the 2−∆∆Ct

method [40].

3. Results
3.1. High-Throughput Sequencing Data Analysis

A total of 24 samples were taken for sRNA library construction and sRNA sequencing.
As shown in Table 1, 14,507,166, 14,810,952, 13,701,096, and 15,575,806 total sequenced
reads were extracted from the infected Eshu 6 tubers at 0 h, 24 h, 48 h, and 72 h, respectively,
while a total of 14,162,156, 15,108,182, 13,616,807 and 15,348,571 total sequenced reads were
extracted from the infected Guang 87 tubers at 0 h, 24 h, 48 h, and 72 h, respectively. After
filtering and quality control, 10,978,936, 13,084,249, 9,258,096, and 13,362,839 clean reads
from Eshu 6 tubers and 11,968,368, 13,596,968, 11,742,576, and 14,047,853 clean reads from
Guang 87 tubers were obtained and blasted to the reference sequences. An amount of
75.68–85.79% of clean reads for Eshu 6 samples and 84.51–91.53% of clean reads for Guang
87 samples were assigned to the reference genome (Table 1).

http://public-genomes-ngs.molgen.mpg.de/SweetPotato/
http://public-genomes-ngs.molgen.mpg.de/SweetPotato/
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Table 1. High-throughput sequencing data statistics for different samples.

Library Treatment Sample ID Total Reads Clean Reads Percentage (%) Mapped Genome Percentage (%)

Eshu 6

E_0

E_0_1 13,505,817 8,874,325 65.71 7,046,454 66.39
E_0_2 13,547,525 10,174,405 75.10 4,838,795 50.56
E_0_3 16,468,157 13,888,078 84.33 6,237,540 46.92
Mean 14,507,166 10,978,936 75.68 6,040,930 54.62

E_24

E_24_1 16,990,361 15,477,110 91.09 5,980,088 45.94
E_24_2 12,898,360 11,156,704 86.50 8,128,053 69.23
E_24_3 14,544,136 12,618,934 86.76 7,616,186 66.19
Mean 14,810,952 13,084,249.33 88.34 7,241,442 60.45

E_48

E_48_1 16,179,390 13,552,999 83.77 9,147,300 68.44
E_48_2 12,901,334 9,569,488 74.17 10,439,875 57.02
E_48_3 12,022,565 4,651,802 38.69 12,267,059 71.56
Mean 13,701,096 9,258,096.333 67.57 10,618,078 65.67

E_72

E_72_1 15,711,300 13,017,803 82.86 2,910,452 62.57
E_72_2 14,969,018 13,776,032 92.03 5,994,652 67.55
E_72_3 16,047,099 13,294,682 82.85 5,389,906 53.80
Mean 15,575,806 13,362,839 85.79 4,765,003 61.31

Guang 87

G_0

G_0_1 15,031,654 13,592,390 90.43 6,773,030 56.00
G_0_2 13,460,140 10,613,259 78.85 6,516,875 64.05
G_0_3 13,994,674 11,699,455 83.60 7,906,581 67.58
Mean 14,162,156 11,968,368 84.51 7,065,495 62.54

G_24

G_24_1 17,559,872 17,142,807 97.62 6,482,848 58.11
G_24_2 14,141,613 12,140,937 85.85 6,207,694 45.06
G_24_3 13,623,060 11,507,160 84.47 7,465,376 63.02
Mean 15,108,181.67 13,596,968 90.00 6,718,639 55.40

G_48

G_48_1 13,554,175 11,845,193 87.39 7,608,730 60.30
G_48_2 14,180,870 13,364,466 94.24 9,247,207 68.23
G_48_3 13,115,375 10,018,069 76.38 8,947,533 64.43
Mean 13,616,807 11,742,576 86.24 8,601,157 64.32

G_72

G_72_1 12,481,043 11,739,937 94.06 8,511,456 62.62
G_72_2 13,666,809 12,095,700 88.50 9,168,804 59.24
G_72_3 19,897,861 18,307,922 92.01 8,574,439 70.62
Mean 15,348,571 14,047,853 91.53 8,751,566 64.16

Notes: E_0, E_24, E_48, and E_72: the infected Eshu 6 tubers at 0 h, 24 h, 48 h, and 72 h; G_0, G_24, G_48, and
G_72: the infected Guang 87 tubers at 0 h, 24 h, 48 h, and 72 h.

We counted the total clean reads and found that the length distribution patterns of
the sRNAs were similar in the two libraries. The lengths ranged from 18 to 30 nt, of which
22 nt and 24 nt sRNAs were the most abundant (Figure 1). This result is consistent with
previous reports by Tang et al. [41].

3.2. Identification of Known miRNAs and Novel miRNAs

By comparing with the miRbase database, a total of 407 known mature miRNAs and
908 known hairpin miRNAs were identified. A total of 298 novel mature miRNAs and
307 novel hairpin miRNAs were identified in the libraries (Table 2). These miRNAs were
then divided into 83 identified families (Figure 2). Among them, the miR159 family had the
largest number, with 56 members, followed by miR156 (51), miR166 (47), miR171 1 (40),
miR395 (39), and miR167 1 (37).
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the infected Guang 87 tubers at 0 h, 24 h, 48 h, and 72 h. 
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Figure 1. The sRNA length distribution. (a) Sequencing frequency of miRNAs in Eshu 6 with
different lengths; E_0, E_24, E_48, and E_72: the infected Eshu 6 tubers at 0 h, 24 h, 48 h, and 72 h.
(b) Sequencing frequency of miRNAs in Guang 87 with different lengths; G_0, G_24, G_48, and G_72:
the infected Guang 87 tubers at 0 h, 24 h, 48 h, and 72 h.

Table 2. Summary of known and novel miRNAs in different samples.

Mapped Mature
Known miRNAs

Mapped Hairpin
Known miRNAs

Mapped Mature
Novel miRNAs

Mapped Hairpin
Novel miRNAs

Total 407 908 298 307
E_0_1 146 475 219 260
E_0_2 161 482 237 265
E_0_3 161 499 243 276
E_24_1 228 577 268 293
E_24_2 205 520 263 288
E_24_3 197 516 266 288
E_48_1 201 510 249 276
E_48_2 211 545 244 277
E_48_3 201 543 207 258
E_72_1 192 490 226 268
E_72_2 202 533 246 277
E_72_3 152 385 205 252
G_0_1 178 500 248 272
G_0_2 153 491 243 269
G_0_3 178 491 245 274

G_24_1 177 514 273 293
G_24_2 239 569 275 294
G_24_3 229 587 274 297
G_48_1 221 566 278 289
G_48_2 221 570 271 290
G_48_3 151 405 214 250
G_72_1 208 578 265 292
G_72_2 192 503 233 267
G_72_3 246 585 269 301
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Figure 2. The number of miRNAs belonging to the top 19 miRNA families.

3.3. Analysis of Differentially Expressed miRNAs

During the detection of differentially expressed miRNAs, |log2 (FC)| > 1 and p < 0.05
were used as the screening criteria. There were 421 differentially expressed miRNAs
observed during the infection by sweet potato weevils, including 174 known miRNAs and
247 new miRNAs (Supplementary Table S2).

The results (Table 3) show that, among the different treatment lengths within the
same variety, the differential expression of miRNAs in Eshu 6 was the highest after 24 h of
infection, while the differential expression of miRNAs in Guang 87 was the lowest after
24 h of infection. The number of up-regulated miRNAs was higher than down-regulated
miRNAs. When comparing the treatments of different varieties for the same lengths of
time, the differentially expressed miRNAs were the highest after 24 h of infection, and the
differentially expressed miRNAs were the lowest after 48 h of infection.

Table 3. The number of differentially expressed miRNAs in sweet potato after sweet potato weevil infection.

Samples Comparison Differentially Expressed Up-Regulated Down-Regulated

E_0 vs. E_24 270 164 106
E_0 vs. E_48 223 139 84
E_0 vs. E_72 236 120 116
G_0 vs. G_24 173 102 71
G_0 vs. G_48 186 115 71
G_0 vs. G_72 223 131 92
E_24 vs. G_24 131 84 47
E_48 vs. G_48 65 28 37
E_72 vs. G_72 79 48 31

In Figure 3a, 150 miRNAs were differentially expressed in Eshu 6 tubers at all three
time points after treatment. The 150 differentially expressed miRNAs were divided into
two categories. Class I contained 67 miRNAs, and their expression levels were down-
regulated at 24 h, 48 h, and 72 h after infection. Class II contained 83 miRNAs which
were up-regulated at 24 h, 48 h, and 72 h after infection. In Figure 3b, 107 miRNAs
were differentially expressed in Guang 87 tubers at all three time points after treatment.
These 107 differentially expressed miRNAs were divided into two categories. Class I
contained 47 miRNAs, and their expression levels were down-regulated at 24 h, 48 h, and
72 h after infection. Class II contained 60 miRNAs, and their expression levels were up-
regulated at 24 h, 48 h, and 72 h after infection. In Figure 3c, 26 miRNAs were differentially
expressed in both Eshu 6 and Guang 87 tubers at all three time points after treatment. These
26 differentially expressed miRNAs were divided into two categories. Class I contained
5 miRNAs, and their expression levels were down-regulated. Class II contained 14 miRNAs,
and their expression levels were up-regulated. The results show that the expression levels of
the same miRNAs in both the same and different varieties, and after infection for different
lengths of time, show the same trend in variation.
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Figure 3. Differentially expressed miRNAs in sweet potato after infection with sweet potato weevils.
(a) Left: changes in miRNA expression in Eshu 6 tubers after infection with sweet potato weevils;
right: expression pattern of DE miRNAs; (b) left: changes in miRNA expression in Gaung 87 tubers
after infection with sweet potato weevils; right: expression pattern of DE miRNAs; (c) left: common
differentially expressed miRNAs in Eshu 6 and Guang 87 tubers under different time treatments;
right: expression pattern of DE miRNAs.
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3.4. Predicted miRNA Target Genes and GO/KEGG Enrichment Analyses

Target genes were predicted using the TargetFinder and qTar software according to
the sequence information for the differentially expressed miRNAs and the corresponding
species. A total of 33,909 identical potential target genes were predicted by the two
prediction methods, of which 21,717 were known miRNA target genes and 12,192 were
new miRNA target genes (Supplementary Table S3).

To further understand the metabolic pathways and biological processes of differen-
tially expressed miRNAs after sweet potato weevil infection, GO and KEGG enrichment
analyses were performed. GO analysis was performed on the predicted target genes
and identified three main functional categories in the response of sweet potato to sweet
potato weevil infection: molecular function, cellular components, and biological processes
(Supplementary Figure S1). In the biological process category, the main biological func-
tions of the predicted target genes are enriched in metabolic and cellular processes. In the
cellular component category, the predicted biological functions of target genes are mainly
enriched in the cell, organelles, and membrane. In the molecular function category, the
predicted biological functions of target genes were mainly enriched in binding, catalytic
activity, and transporter activity. Most target gene functions are related to these and other
similar binding functions. KEGG analysis showed that the target cells were enriched in
the MAPK signaling pathway–plant, phosphatidylinositol production, plant hormone
production, ascorbate production, aldarate metabolism, α-linolenic acid metabolism, etc.
In conclusion, these results provide clues and references for revealing the molecular and
cellular mechanisms involved in the response of sweet potato plants to infection by sweet
potato weevils.

The target genes regulated by these miRNAs play a key regulatory role in the insect
resistance of sweet potato (Table 4). The results show that three members of the MIR167_1
family (bna-miR167d, vvi-miR167c, and ptc-miR167f-5p), one member of the MIR156 family
(hbr-miR156), and one member of the n_MIR318 family (novel_318) all possess a target gene
related to insect resistance. Among them (Supplementary Table S4), the expression level
of bna-miR167d was up-regulated at 24 h and 48 h after sweet potato weevil infection of
Eshu 6 tubers; the expression levels of vvi-miR167c and ptc-miR167f-5p were up-regulated
at 24 h and 48 h after sweet potato weevil infection of Eshu 6 tubers and 48 h after sweet
potato weevil infection of Guang 87 tubers; and the expression level of hbr-miR156 was
up-regulated at 24 h after sweet potato weevil infection of Eshu 6 tubers and 72 h after sweet
potato weevil infection of Guang 87 tubers. The expression level of novel_318 was down-
regulated after Eshu 6 was infected by sweet potato weevil for 72 h, but up-regulated at 0 h,
24 h, and 72 h after the infection of two varieties with different insect tolerances for the same
length of time. The results show that these five miRNAs were the key regulatory factors in
the response of sweet potato plants to the infection mechanism of sweet potato weevils.

Table 4. The number of differentially expressed miRNAs in sweet potato after sweet potato weevil
infection.

miRNA Family miRNA Target_mRNA Nr

MIR167_1

bna-miR167d Tai6.4195.1 PREDICTED: glutamate–cysteine ligase, chloroplastic-like [Ipomoea nil]
bna-miR167d Tai6.35623.1 PREDICTED: glutamate–cysteine ligase, chloroplastic-like [Ipomoea nil]
vvi-miR167c Tai6.4195.1 PREDICTED: glutamate–cysteine ligase, chloroplastic-like [Ipomoea nil]
vvi-miR167c Tai6.35623.1 PREDICTED: glutamate–cysteine ligase, chloroplastic-like [Ipomoea nil]

ptc-miR167f-5p Tai6.4195.1 PREDICTED: glutamate–cysteine ligase, chloroplastic-like [Ipomoea nil]
ptc-miR167f-5p Tai6.35623.1 PREDICTED: glutamate–cysteine ligase, chloroplastic-like [Ipomoea nil]

MIR156 hbr-miR156 Tai6.44728.1 PREDICTED: protein SENESCENCE-ASSOCIATED GENE 21,
mitochondrial-like [Ipomoea nil]

n_MIR318 novel_318 Tai6.52197.1 PREDICTED: ethylene receptor 1 isoform X1 [Ipomoea nil]
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3.5. qRT-PCR Verification

A total of 15 differentially expressed miRNAs and their target genes, including ath-
miR319a, gma-miR168b, cpa-miR166e, mtr-miR319a-3p, zma-miR166h-3p, ath-miR396a-3p,
osa-miR166g-3p, ath-miR166a-3p, lja-miR166-3p, novel_47, aau-miR168, osa-miR166d-5p,
gma-miR396a-3p, ath-miR168a-3p, and novel_136, were screened for RT-PCR verification
in the non-infected and infected treatments at different stages.

According to the results in Figure 4, the expression patterns of the 15 selected miRNAs
in qRT-PCR experiments were consistent with those detected by high-throughput sequenc-
ing. Similar expression trends (up-regulation or down-regulation) were observed between
the qRT-PCR analysis and the sRNA sequencing results.
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gma−miR168b, cpa−miR166e, mtr−miR319a−3p, zma−miR166h−3p, and their target genes;
(B) qRT-PCR analysis of ath−miR396a−3p, osa−miR166g−3p, ath−miR166a−3p, lja−miR166−3p,
novel_47, and their target genes; (C) qRT-PCR analysis of aau−miR168, osa−miR166d−5p,
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4. Discussion

When induced by insect stress, miRNAs change their expression level and participate
in plant–insect defense responses by regulating the expression of stress-response target
genes at transcriptional and post-transcriptional levels [42–44]. As discussed, studies have
found that miRNAs play an indispensable role in plant defense against insects. However,
there have been relatively few studies conducted on miRNAs in sweet potato, and studies
to date have mainly focused on the miRNAs related to growth, development, and the
regulation of stress responses [45–47]. Studies on the miRNAs involved in sweet potato
resistance to insect stress are also rarely reported. In this study, we analyzed the changes
in the miRNA transcriptome for the whole sweet potato genome in order to uncover the
miRNAs related to sweet potato weevil infection, and we also analyzed the sweet potato’s
regulatory network in response to sweet potato weevil stress.

Under insect stress, miR156 is up-regulated, which controls the synthesis of plant
secondary metabolites and the formation of epidermal hairs. It also helps the plant to
resist insect infection by controlling the expression of target genes encoding SPL-family
transcription factors [48–50]. It has been reported that miR156-SPL14 affects the JA and
JA-Ile (jasmonoyl-isoleucine) content by regulating the expression of MPK6 and other
genes in the JA pathway, thereby reducing the fecundity and survival rate of BPH [51]. The
target gene of PhmiR156 in Phyllostachys pubescens, PhSPL17, plays an important role in
managing the insect resistance of Phyllostachys pubescens [52]. A study on the regulation
mechanisms of epidermal hair distribution in A. thaliana showed that SPL9 can directly
bind to the promoter on the negative regulator gene TCL1. In the growth of plants, miR156
levels decreased, SPL9 increased gradually, and the TCL1 gene expression levels increased,
thereby inhibiting the formation of epidermal hairs on the inflorescence axis and the floral
organs [53]. The results of this study show that the expression level of hbr-miR156 was
up-regulated after the sweet potato tuber was infected with sweet potato weevils, and the
predicted target gene hbr-miR156 (Tai6.44728.1) may have a negative regulatory relationship
with hbr-miR156 as suggested by qRT-PCR verification. However, this molecular regulation
mechanism needs to be further studied in the future.

At present, the research on miR167 is focused on Arabidopsis thaliana, rice, tomato,
and other model plants, and most of the research focuses on the regulation of plant growth
and development. In sweet potato, only the expression of miR167 in different tissues
was detected. It was found that the expression level of miR167 in sweet potato stamens
was higher than that in other tissues, indicating that miR167 may be essential for stamen
development. However, there is no report on the role of miR167 in the regulation of
stress responses to sweet potato diseases and insect pests. In this study, bna-miR167d,
vvi-miR167c, and ptc-miR167f-5p (members of the three miR167 families) were significantly
up-regulated by sweet potato weevil infection. The corresponding predicted target genes
may also have a negative regulatory relationship as verified by qRT-PCR. Therefore, further
studies on the molecular regulation mechanism of miR167 are needed. Moreover, many of
the new differentially expressed miRNAs found in this study may be closely related to the
regulation of sweet potato weevil infection stress, and their specific molecular mechanisms
need to be further explored and analyzed.

When plants are infected by pests and diseases, insect-resistant defense mechanisms
are initiated at the molecular level through insect-responsive miRNAs and their target genes,
which control the synthesis of plant secondary metabolites and the formation of epidermal
hairs to resist insect infection [18,54,55]. In this study, the target genes corresponding
to differential miRNAs were found to be significantly enriched in the MAPK signaling
pathway–plant, phosphatidylinositol production, plant hormone production, ascorbate
production, aldarate metabolism, α-linolenic acid metabolism, etc., confirming that these
biological processes and metabolic pathways may be involved in the infection response to
the sweet potato weevil. However, their specific mechanisms remain to be further explored.

In conclusion, miRNAs play an important role in the adaptation and response process
of sweet potato plants to the infection stress caused by the sweet potato weevil. The
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regulation mechanisms of miRNAs and their target genes analyzed in this paper provide
a theoretical basis for analyzing the response of sweet potato to biological stressors, and
provide molecular data resources for genetic breeding to improve the insect resistance of
sweet potato.

Supplementary Materials: Supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/genes13060981/s1. Figure S1. GO and KEGG analysis of target genes for
differentially expressed miRNAs, Table S1: Specific forward primer sequences and universal reverse
primer sequences of miRNA and target genes, Table S2: 421 differentially expressed miRNAs,
Table S3: Predicted miRNAs identical potential target genes, Table S4: Expression trends (upregulated
or downregulated) of antiinsect-related miRNAs.
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