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Abstract

Intrinsically disordered regions (IDRs) of proteins often regulate function upon posttranslational 

modifications (PTMs) through interactions with folded domains. An IDR linking two α-helices 

(α1–α2) of the anti-apoptotic protein, Bcl-xL, experiences several PTMs, which reduce anti-

apoptotic activity. Here, we report that PTMs within the α1–α2 IDR promote its interaction with 

the folded core of Bcl-xL that inhibits the pro-apoptotic activity of two types of regulatory targets, 

BH3-only proteins and p53. This autoregulation utilizes an allosteric pathway where, in one 

direction, the IDR induces a direct displacement of p53 from Bcl-xL coupled to allosteric 

displacement of simultaneously bound BH3-only partners. This pathway operates in the opposite 

direction when the BH3-only protein PUMA binds to the BH3 binding groove of Bcl-xL, directly 

displacing other bound BH3-only proteins, and allosterically remodeling the distal site, displacing 

p53. Our findings show how an IDR enhances functional versatility through PTM-dependent, 

allosteric regulation of a folded protein domain.
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INTRODUCTION

Proteins are often comprised of both structured domains and intrinsically disordered regions 

(IDRs)1. Importantly, IDRs can modulate the function of folded domains through a variety 

of in cis autoregulatory mechanisms2. In some cases, autoregulatory IDRs serve as “lids” 

that occlude binding sites within folded domains for trans binding partners [e.g., the N-

terminal lid of Mdm2 that inhibits p53 binding3]. This type of IDR-mediated autoinhibition 

is often regulated by posttranslational modifications2. In other cases, autoregulatory IDRs 

can allosterically regulate the conformation and function of folded domains [e.g., the C-

terminal IDR of Ets-1 traps the folded DNA binding domain in a DNA binding incompetent 

conformation and this inhibition is relieved by multisite phosphorylation of the IDR4]. These 

two examples involve N- and C-terminal IDRs but internal regulatory IDRs have also been 

characterized2. Examples are the autoregulatory IDRs in the anti-apoptotic proteins, Bcl-xL 

and Bcl-2, which sequester their pro-apoptotic Bcl-2 protein family counterparts to inhibit 

apoptosis5,6. Bcl-xL and Bcl-2 utilize dual mechanisms to regulate apoptosis. First, a 

hydrophobic groove in Bcl-xL and Bcl-2 binds the α-helical BH3 domain of pro-apoptotic 

regulators, inhibiting apoptosis7. Second, a site distal to the hydrophobic groove in Bcl-xL 

binds cytosolic p53, inhibiting p53-dependent activation of BAX and apoptosis8. Uniquely, 

the BH3-only protein, PUMA, triggers apoptosis through dual mechanisms by, i) binding to 

the hydrophobic groove of Bcl-xL and displacing pro-apoptotic BH3-only proteins and ii) 

allosterically remodeling the distal binding site to release p539.

Posttranslational modifications within the internal IDRs, positioned between α-helices 1 and 

2 (termed the “α1–α2 IDR”), modulate the anti-apoptotic function of Bcl-xL and Bcl-210–29 

(Fig. 1a, b). One type of posttranslational modification is cleavage of the α1–α2 IDR in Bcl-

xL and Bcl-2 by pro-inflammatory Caspase 111 or by executioner Caspase 3 during late 

apoptosis13,14, which both enhance apoptosis. Another involves phosphorylation of residues 

within the α1–α2 IDR, which is also associated with elevated cell death. Signaling by the 

kinases JNK17,18 and Cdk120,26,28,30, among others, has been implicated in these IDR-

mediated autoregulatory mechanisms, wherein phosphorylation of the α1–α2 IDR in Bcl-xL 

is thought to initiate apoptosis in response to activation of the mitotic spindle 

checkpoint20,23,25,26. Additionally, phosphorylation within the α1–α2 IDR in Bcl-xL may 

modulate coordinated inhibition of apoptosis and autophagy29 through sequestration of the 

BH3-like region of Beclin131. The principal regulatory phosphorylation site within the α1–

α2 IDR of Bcl-xL is serine 62 (S62)23. Another modification is deamidation of asparagines 

52 and 66 (N52 and N66), which converts the dipeptide sequence Asn-Gly into Asp-Gly as a 

consequence of intracellular acidification21. Despite abundant data on the autoregulatory 

role of the α1–α2 IDR, the mechanism through which posttranslational modifications within 

the IDR modulate the anti-apoptotic function of Bcl-xL is unknown. Here, we used nuclear 

magnetic resonance (NMR) spectroscopy and several in vitro and cellular assays to reveal 

how phosphorylation of S62 or deamidation of N52 and N66 within the α1–α2 IDR, i) 

directly inhibit p53 binding at a proximal site and ii) allosterically inhibit binding of pro-

apoptotic BH3 domains to another, distal site within the folded core of Bcl-xL. This 

regulatory cascade reverses the allosteric mechanism utilized by PUMA to trigger p53 

release from Bcl-xL. The dual regulatory role of the α1–α2 IDR, to release both p53 and 
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pro-apoptotic BH3-only proteins from Bcl-xL, extends the mechanistic repertoire available 

to IDRs to increase the functional versatility of covalently linked, folded protein domains. 

This versatility enables diverse signaling inputs to tune the anti-apoptotic activity of Bcl-xL 

and, likely, Bcl-2 to modulate cellular apoptotic responses.

RESULTS

IDR modification lowers Bcl-xL’s affinity for BH3 domains

To understand the mechanistic basis for observations that the anti-apoptotic function of Bcl-

xL is modulated by posttranslational modifications within its α1–α2 IDR, we first tested 

whether phosphorylation of S62 or deamidation of N52 and N66 influenced the affinity of 

Bcl-xL for its pro-apoptotic BH3 partners. We used isothermal titration calorimetry (ITC) to 

determine binding affinities of synthetic peptides spanning the BH3 domains of the pro-

apoptotic proteins BID and BIM for wild type Bcl-xL, a Bcl-xL S62E phosphomimetic 

mutant with reduced anti-apoptotic function in cells28,29, and Bcl-xL deamidated in vitro at 

N52 and N6632 (Fig. 1c–e; Supplementary Table 1). These constructs were truncated at 

residue 209 and therefore lacked the C-terminal membrane insertion domain of Bcl-xL, as 

used in numerous past structural studies of Bcl-xL33–35. This C-terminal truncated form of 

Bcl-xL was recently shown to structurally mimic the mitochondrial membrane-anchored 

form of Bcl-xL36. Wild type Bcl-xL bound tightly to BID and BIM BH3 peptides with 

dissociation constants (KD) of 13 and 17 nM, respectively, in agreement with previous 

reports8,37. In contrast, both Bcl-xL S62E and deamidated Bcl-xL exhibited reduced 

affinities for BID and BIM BH3 peptides, with KD values ranging between 61 and 340 nM. 

These results suggested that these modifications of the α1–α2 IDR down-regulate the anti-

apoptotic function of Bcl-xL by reducing its affinity for pro-apoptotic BH3 domains.

The IDR of Bcl-xL binds to α2–α3 of its folded core

The evidence that post translational modifications altered binding to pro-apoptotic BH3 

partners suggested that the α1–α2 IDR may influence the conformation of the folded, α-

helical core of Bcl-xL, which displays the hydrophobic BH3 domain binding groove. 

Analysis using two-dimensional (2D) NMR spectroscopy revealed marked differences in the 

chemical shift values for residues within α2 and α3 of Bcl-xL constructs containing and 

lacking the unmodified α1–α2 IDR (the latter termed Bcl-xL ΔIDR; Fig. 2a, b; 

Supplementary Fig. 1a). Examination of published structures of Bcl-xL and Bcl-xL 

ΔIDR8,9,33,38 showed that these chemical shift differences correspond to subtle repositioning 

of the α2–α3 segment, with α3 extending further from α4–α5 in the ΔIDR construct 

(Supplementary Fig. 1b). Similar chemical shift differences versus the 2D 1H-15N-TROSY 

spectrum of wild type Bcl-xL were observed with two α1–α2 IDR modified forms of Bcl-

xL, including with the S62E mutation or deamidation of N52 and N66 (Fig. 2c, d and 

Supplementary Fig. 1c; Supplementary Fig. 1d–g, respectively). These perturbations were 

particularly pronounced in the α2–α3 region of Bcl-xL, with more sparse perturbations in 

the neighboring α4 and α5. These observations suggest that the IDR may cause subtle but 

widespread conformational changes within the hydrophobic BH3 domain binding groove 

comprised of these helices (Supplementary Fig. 1b).
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Next, we sought to identify the regions of the α1–α2 IDR that interacted with α2 and α3 of 

the Bcl-xL folded core. Using ITC, we determined that synthetic peptides spanning residues 

44–72 of the Bcl-xL IDR (IDR 44–72) bound in trans to Bcl-xL ΔIDR and that 

phosphorylation of S62 or deamidation of N52 and N66 (e.g., peptides with N52D and 

N66D) enhanced this interaction. For example, the KD value for the IDR 44–72 peptide with 

N52D and N66D was 6 µM and that with phosphorylated S62 was 36 µM versus 270 µM 

with the wild type peptide (Supplementary Fig. 2a–e). Titration experiments using NMR 

confirmed that these modified peptides bound the helical core of 15N-labeled Bcl-xL ΔIDR, 

with the largest chemical shift perturbations (CSPs) observed for residues in α2, α3 and α8 

(Supplementary Fig. 3a–i). Further, shorter α1–α2 IDR peptides (residues 52–66) with 

phosphorylated S62 (IDR 52–66 pS62) or the S62E mutation caused more localized CSPs 

within the α2–α3 region of Bcl-xL ΔIDR (Fig. 2e, f; Supplementary Fig. 3j–m). 

Interestingly, the trajectories of perturbed resonances in peptide titration NMR experiments 

exhibited a non-linear dependence on peptide concentration, suggesting three-state behavior 

possibly due to a peptide binding-induced conformational change within the helical core of 

Bcl-xL ΔIDR (Supplementary Fig. 4a). At low concentrations of the titrated IDR peptide, 

most perturbed resonances of Bcl-xL ΔIDR shifted in the direction of the corresponding 

resonance in the spectrum of wild type, IDR-containing Bcl-xL. This observation suggests 

that, in the absence of IDR posttranslational modifications, the α1–α2 IDR transiently 

interacts in cis with the folded core of Bcl-xL.

To gain further insight into the structural details of the IDR-core interaction and how 

posttranslational modifications modulate Bcl-xL anti-apoptotic function, we monitored 

CSPs in 1H-15N TROSY spectra of 15N labeled Bcl-xL ΔIDR, initially complexed with an 

unlabeled BID BH3 domain peptide, upon titration of the IDR 44–72 pS62 peptide 

(Supplementary Fig. 4b, d). A large number of resonances exhibited large CSPs and shifted 

towards the same frequencies as upon titration of the same peptide into apo Bcl-xL ΔIDR 

(Supplementary Fig. 4e). Several resonances corresponding to residues within the BH3 

binding groove exhibited large CSPs towards the frequencies observed with apo Bcl-xL. 

This effect was especially pronounced for the resonance of R139, which is engaged in a 

conserved electrostatic interaction with an aspartic acid side-chain in BH3 binding partners. 

Correspondingly, in a competition fluorescence anisotropy assay, a fluorescein-labeled BID 

BH3 (FAM-BID BH3) peptide was partially displaced from Bcl-xL ΔIDR through titration 

of the IDR 44–72 pS62 peptide (Supplementary Fig. 4f, g). These NMR and fluorescence 

anisotropy titration results suggest that the interaction of the α1–α2 IDR with the folded 

core destabilizes complexes of Bcl-xL with pro-apoptotic BH3 partners, providing a 

mechanism for down-regulation of its anti-apoptotic activity. While the affinities of these in 

trans IDR – folded core interactions are considerably lower than the tight Bcl-xL – BH3 

domain interactions, covalent linkage of the IDR and folded core in full length Bcl-xL would 

enhance the in cis IDR – folded core interaction, enabling allosteric inhibition of the high 

affinity BH3 domain – BH3 domain binding groove interaction.

IDR phosphorylation enhances binding to the folded core

We next sought a mechanistic explanation that would correlate, i) the decreased affinity of 

Bcl-xL for pro-apoptotic BH3 partners due to the α1–α2 IDR S62E phosphomimetic 
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mutation or N52 and N66 deamidation and ii) the enhanced interaction of the α1–α2 IDR 

with the α2–α3 region of Bcl-xL due to functionally comparable modifications (S62 

phosphorylation, or N52D and N66D mutations). We analyzed published structures of apo 

Bcl-xL and its various BH3 bound forms, which revealed a marked repositioning of the C-

terminus of α2 and the entire α3 relative to α4–α5 and other parts of the BH3 binding 

groove upon BH3 binding. As noted previously8,39, this BH3 binding-induced 

rearrangement involves opening of the binding groove to accommodate the α-helical BH3 

domain7,33 (Fig. 3a). Based on these observations, we hypothesized that the interaction of 

the α1–α2 IDR with the α2–α3 region of Bcl-xL hinders groove opening and antagonizes 

binding to BH3 domains.

We tested this hypothesis by determining the solution structure of a modified form of the 

α1–α2 IDR bound to the folded core of Bcl-xL using NMR. {1H}-15N heteronuclear 

nuclear Overhauser effect (NOE) spectra for Bcl-xL with the S62E phosphomimetic 

mutation showed that residues within the α1–α2 IDR exhibited reduced flexibility in 

comparison with wild-type Bcl-xL (Supplementary Fig. 5 a–d), which allowed 

characterization of α1–α2 IDR—folded core interactions. The similarity of patterns and 

magnitudes of CSPs induced in NMR spectra of Bcl-xL ΔIDR by in trans titration of IDR 

52–66 peptides containing S62E mutation and phosphorylated S62 (Supplementary Fig. 3l, 

m) indicated that these two peptides bound in trans to Bcl-xL ΔIDR similarly and with very 

similar affinities. This observation supported that the in cis α1–α2 IDR—folded core 

interaction in Bcl-xL S62E reflected that associated with phosphorylation of S62. Three 

dimensional 1H-15N or 1H-13C-edited NOE correlation spectroscopy (NOESY) spectra of 

Bcl-xL S62E exhibited many 1H-1H NOE cross peaks between residues in the α1–α2 IDR 

and others in the folded protein core, enabling structure determination of Bcl-xL S62E in a 

‘α1–α2 IDR inhibited’ conformation (Fig. 3b, c; Supplementary Fig. 5e, f). Some of these 

cross peaks were also detected, with weaker intensities, in corresponding spectra of the wild 

type protein (Supplementary Fig. 5f). In particular, the aromatic side-chain protons of W57 

exhibited numerous cross peaks with shielded methyl resonances corresponding to aliphatic 

residues in the core of the protein, including L150 and L108.

In the structure of Bcl-xL S62E, the aromatic side-chain of W57 and other aliphatic 

residues, including I51 and L59, were buried inside a small hydrophobic groove between α3 

and the C-termini of α5 and α1, buttressing one face of α3 opposite from that engaged in 

the BH3 binding groove. The negatively charged side-chains of D61 and, particularly, E62, 

were positioned beside a positively charged surface patch of the Bcl-xL core formed by the 

cluster of arginine residues including R100, R102, R103 (Fig. 3c; Supplementary Fig. 5g). 

This cluster of arginine residues may thus provide an electrostatic docking site that stabilizes 

the various hydrophobic and polar α1–α2 IDR—folded core interactions described above. 

The side-chains of N52 and N66, which become negatively charged upon deamidation, were 

also proximal to the arginine residues cluster in the structure of Bcl-xL S62E, suggesting a 

similar mechanism of stabilization of the α1–α2 IDR—folded core interaction upon N66 

deamidation (Supplementary Fig 5h).

The α1–α2 IDR—folded core interaction observed in the solution structure of Bcl-xL S62E 

exhibited a closed conformation of the BH3 binding groove, which is incompatible with pro-
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apoptotic BH3 domain binding partners. In addition to this allosteric regulation of BH3 

binding, the α1–α2 IDR–folded core interaction would also directly compete with the 

binding of p53 to Bcl-xL (Supplementary Fig. 6a), as shown using a fluorescence anisotropy 

assay (Supplementary Fig. 6b, c). The three arginine residues within α2–α3 of Bcl-xL that 

bind the modified α1–α2 IDR are also present in Bcl-2 (Fig. 3d), which is also 

phosphorylated within the α1–α2 IDR14–16, suggesting a common mechanism of PTM-

dependent autoregulation. Other Bcl-2 protein family members, including Mcl-1, Bax and 

Bak, exhibit similar core structures but considerably shorter α1–α2 IDRs that lack PTM 

sites40,41 (Fig. 1a) and the cluster of surface-exposed arginine residues (Fig. 3d).

Similarity between solution and nanodisc-anchored Bcl-xL

Bcl-xL is known to localize to the cytoplasm as well as to mitochondrial and other cellular 

membranes (summarized in36); however, the in vitro structural results described above 

regarding interactions between the α1–α2 IDR and the Bcl-xL folded core were performed 

in the absence of membranes. To investigate the conformational features of Bcl-xL in the 

presence of membranes, we analyzed 15N-labeled full length Bcl-xL (including the 22 

residue-long C-terminal transmembrane domain) that was anchored to membrane mimetic 

nanodiscs using NMR spectroscopy. The 2D 1H-15N HSQC spectrum of nanodisc-anchored, 

full length Bcl-xL (Supplementary Fig. 8a, magenta spectrum) was similar to that of Bcl-xL 

(lacking the C-terminal transmembrane domain) recorded in aqueous solution for which 

resonances are assigned (Supplementary Fig. 8a, orange spectrum), although, due to the 

large aggregate size of nanodisc-anchored full length Bcl-xL and lower protein 

concentration, the former spectrum exhibited broader resonances and reduced signal 

intensity. The similarity of these two spectra allowed assignment of a large portion of the 

dispersed resonances for nanodisc-anchored, full length Bcl-xL (103 of 226 possible non-

proline HN resonances; Supplementary Fig. 8a,c,d). The assigned resonances span both the 

folded core and α1–α2 IDR of nanodisc-anchored Bcl-xL and exhibit small chemical shift 

perturbations (CSPs; <0.12 ppm) relative to the spectrum of Bcl-xL in solution. In particular, 

small CSPs were observed for several resonances within the α1–α2 IDR and the region of 

the folded core that binds the α1–α2 IDR (resonances labeled in red and blue, respectively, 

in Supplementary Fig. 8a). Notably, the indole resonance of W57 within the α1–α2 IDR, 

which binds to the folded core (vide supra), exhibited essentially identical chemical shift 

values in the two samples (Supplementary Fig. 8a, inset). These results are consistent with 

previous results from Yao, et al.36, which showed through the analysis of 2D 1H-15N HSQC 

spectra that, in the absence of residues 45–84 of the α1–α2 IDR, the folded core of 

nanodisc-anchored Bcl-xL closely resembled that of solution Bcl-xL lacking the C-terminal 

transmembrane domain. These results also showed that the C-terminal transmembrane 

domain was inserted into the lipid bilayer of nanodiscs. Our results show that the presence of 

the α1–α2 IDR does not alter the mechanism of nanodisc anchoring or the conformation of 

the folded core of Bcl-xL. Furthermore, our results demonstrate that interactions between 

the α1–α2 IDR and the folded core of Bcl-xL are preserved in nanodisc-anchored, full 

length Bcl-xL. While the nanodiscs used here do not mimic the lipid composition and 

dynamics of the outer mitochondrial membrane, our results do suggest that the 

autoregulatory interactions between the α1–α2 IDR and the folded core of Bcl-xL discussed 
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above for solution Bcl-xL may be preserved in mitochondrial Bcl-xL. The cellular results 

discussed below further support this view (vide infra).

The α2–α3 Arg cluster senses IDR modifications

Based upon our structural investigations of Bcl-xL S62E, we hypothesized that electrostatic 

interactions between a positively charged cluster of arginine residues between α2 and α3 

and negatively charged moieties introduced by posttranslational modifications within the 

α1–α2 IDR mediate allosteric control of the BH3 domain binding and anti-apoptotic activity 

of Bcl-xL. To test this hypothesis, we introduced a charge reversal mutation, Arg 103 to Glu 

(R103E), within the cluster of three arginines between α2–α3 in Bcl-xL (Fig. 3d). This 

arginine residue, amongst the three in the cluster, is solvent exposed and its side-chain is 

oriented outside the BH3 domain binding groove, enabling mutation to Glu to alter binding 

to the α1–α2 IDR but not alter the core domain structure. ITC measurements showed that 

Bcl-xL R103E, containing the wild type α1–α2 IDR, tightly bound to BH3 peptides, 

although with somewhat lower affinities (higher KD values) than to wild type Bcl-xL (Fig. 

3e, Supplementary Table 1). However, the BH3 binding affinity of this mutant was 

insensitive to mutation of Ser62 to Glu (S62E) or deamidation of N52 and N66 (Fig. 3f, g). 

These results support our proposal that PTMs promote interactions with α3 of the Bcl-xL 

folded core by increasing the negative charge of the α1–α2 IDR, i) directly inhibiting p53 

binding and ii) allosterically reducing the affinity of the BH3 binding groove for pro-

apoptotic BH3 domains.

To assess the biological relevance of this mechanism, we determined the anti-apoptotic 

activity of wild type Bcl-xL and autoregulation defective mutants in HeLa cells through 

expression of Cerulean fluorescent protein (CFP)-fused forms of Bcl-xL. Unlike the 

constructs utilized for in vitro studies, these encoded full length Bcl-xL, including the C-

terminal membrane insertion domain. Because our in vitro results used Bcl-xL constructs 

that lacked the C-terminal segment, we used full length Bcl-xL, which could normally 

partition between cytosolic and mitochondrial membrane localization, to test our 

mechanistic hypotheses. Cells were transfected with vectors that encoded CFP, CFP-Bcl-xL 

wild type, CFP-Bcl-xL S62E, CFP-Bcl-xL R103E, and CFP-Bcl-xL S62E, R103E (Fig. 4). 

The CFP fusion was introduced to enable the selection of cells with comparable expression 

levels using fluorescence activated cell sorting (FACS). Transfected cells were subjected to 

several levels of UV irradiation and analyzed by FACS for CFP expression and Annexin V 

staining, an established early apoptosis marker42 (Fig. 4a, c; Supplementary Fig. 7). These 

assays indicated that expression of wild-type Bcl-xL protected against UV-induced apoptosis 

and that protection was reduced by the S62E phosphomimetic mutation, as previously 

reported28,29 (Fig. 4b). The R103E mutant was also less effective than wild-type Bcl-xL in 

protecting UV-irradiated cells against apoptosis. In the presence of the R103E mutation—

predicted to disrupt the α1–α2 IDR-mediated autoinhibitory mechanism—introduction of 

the S62E mutation did not further reduce protection (Fig. 4c). This observation agreed with 

in vitro ITC binding assays (Fig. 3e–f) and confirmed that a reduction in positive charge at 

the α2–α3 region of Bcl-xL prevented the stabilization of its inhibitory α1–α2 IDR—folded 

core interaction driven by negative charges at position 62. Western blot analysis confirmed 

that all CFP-labeled Bcl-xL constructs were similarly expressed and did not experience 
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differential degradation (Fig. 4d), validating that the cellular effects of the mutations were 

due to their effects on the affinity of Bcl-xL for its pro-apoptotic binding partners. 

Fluorescence cell imaging showed that the CFP-labeled Bcl-xL constructs exhibited 

comparable localization to intracellular membranes (those of mitochondria and ER), which 

was not altered upon UV irradiation (Supplementary Fig. 9). This observation indicated that 

mutation of residues within the IDR, or that interact with the IDR, did not alter the 

membrane localization of Bcl-xL. However, these mutations did alter Bcl-xL function, 

suggesting strongly that the α1–α2 IDR-dependent autoregulatory mechanism functions 

similarly in C-terminally truncated Bcl-xL constructs in in vitro assays and in full-length 

Bcl-xL in cells, a substantial proportion of which is anchored to mitochondrial membranes 

(Supplementary Fig. 9).

Expression of wild-type or R103E Bcl-xL was associated with low level, UV-induced 

phosphorylation of S62 (Fig. 4d). However, the observation that Bcl-xL S62E was a poorer 

inhibitor of apoptosis than the wild-type protein suggested that S62 phosphorylation was 

incomplete under these UV treatment conditions. Conversely, the S62E mutant, representing 

stoichiometric phosphorylation of this residue, enabled maximal, α1–α2 IDR-dependent 

down-regulation of Bcl-xL’s anti-apoptotic activity.

Finally, we immunopurified the CFP-Bcl-xL constructs and analyzed the level of 

coimmunoprecipitation of the pro-apoptotic partners, BIM, BAX [a pro-apoptotic effector 

which exhibits a BH3 domain that binds to and is inhibited by Bcl-xL43], and p53. Both 

BIM and BAX exhibited substantial coimmunoprecipitation with most of the CFP-Bcl-xL 

constructs but not with the S62E mutant (Fig. 4d). This observation is in agreement with our 

ITC and FACS results showing a reduction in BH3 binding or anti-apoptotic activity, 

respectively, of Bcl-xL S62E versus wild-type Bcl-xL and no further effect of the S62E 

mutant when introduced into the R103E mutant (Fig. 4a–c). These coimmunoprecipitation 

assays reported on the formation of complexes of Bcl-xL with endogenous, full-length, BH3 

domain-containing proteins in cells and agreed with our in vitro binding assays performed 

with synthetic BH3 domain peptides.

Intriguingly, while cells expressing Bcl-xL R103E exhibited higher levels of apoptosis than 

those expressing wild-type Bcl-xL, both constructs exhibited similar abilities to sequester 

BIM and BAX (as monitored by coimmunoprecipitation; Fig. 4d). However, the R103E Bcl-

xL mutation was previously shown to disrupt binding to p53 in vitro8, and was associated 

with reduced sequestration of p53 in UV-treated cells (Fig. 4d), while in vitro it only 

modestly reduced Bcl-xL binding to pro-apoptotic BH3 domains (Fig. 1c, Fig. 3e, 

Supplementary Table 1). These observations suggest that the heightened apoptosis in cells 

expressing Bcl-xL R103E was due to its reduced ability to sequester p53. Overall, the results 

of our cellular assays support that the S62E phosphomimetic mutation reduced anti-

apoptotic activity by, i) directly reducing sequestration of p53 and ii) allosterically reducing 

sequestration of pro-apoptotic Bcl-2 family proteins with BH3 domains. PTMs within the 

α1–α2 IDR promote interactions with the Bcl-xL folded core that directly inhibit p53 

binding and simultaneously engage the allosteric pathway that modulates BH3 domain 

binding affinity.
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DISCUSSION

Synergy between IDRs and folded domains enhances the functional versatility of proteins1. 

While folded domains are well adapted to perform catalysis and specific molecular 

recognition, IDRs, by virtue of their enrichment in modifiable amino acids and plasticity, 

through often weak and transient interactions, can integrate diverse cellular signals to 

regulate the function of covalently bonded folded domains. The internal α1–α2 IDR of Bcl-

xL has been known to integrate a variety of posttranslational modification signals that 

modulate its anti-apoptotic activity but heretofore the mechanism of this autoregulation was 

unknown. We have shown that the unmodified, >50 residue long α1–α2 IDR of Bcl-xL is 

highly flexible and solvent exposed, making it accessible for signaling inputs by enzymes 

that perform posttranslational modifications. Upon phosphorylation on S62 or deamidation 

of N52 and N66, which both increase negative charge, the central region of the α1–α2 IDR 

binds to a cluster of arginine residues on the surface of the Bcl-xL folded domain, triggering 

a structural rearrangement within the distal binding groove that reduces affinity for pro-

apoptotic BH3 domains. NMR data suggested that autoregulatory interactions between the 

α1–α2 IDR and folded core are similar for solution and nanodisc-anchored Bcl-xL 

(Supplementary Fig. 8). Together with data showing that the autoregulatory mechanism is 

active for Bcl-xL in cells, a significant portion of which is localized to mitochondrial 

membranes, the NMR data suggest that this mechanism may be active for mitochondrial 

Bcl-xL. The evolution of internal IDRs within Bcl-xL and Bcl-2 affords responsiveness to 

diverse apoptotic signals that contribute to their specific functions. By experiencing 

posttranslational modifications from different modifying enzymes, activated under different 

stress stimuli, these IDRs may differentially tune the activity of various anti-apoptotic 

members of the Bcl-2 family of proteins under specific sets of circumstances, such as 

aberrant mitotic spindle assembly in the case of Bcl-xL26. This evolutionary strategy 

towards specific autoregulation affords functional versatility within certain Bcl-2 family of 

proteins, all of which exhibit significant conservation of sequence and structure within their 

folded domains. For example, anti-apoptotic Mcl-1 also contains a N-terminal 

autoregulatory IDR44,45. In contrast, other anti-apoptotic (Bcl-W, A1) and pro-apoptotic 

effector (BAX, BAK, BOK) Bcl-2 family members lack autoregulatory IDRs (Fig. 1A; Bcl-

W, A1 and BOK not shown)46. The presence of IDRs within these apoptotic regulators may 

thus contribute to their role as ‘molecular computers’ capable of integrating a diverse range 

of pro-death and pro-survival signals to control cell fate. This integration occurs not only 

through modulation of the relative expression levels of various anti- and pro-apoptotic Bcl-2 

family members, but also through the fine tuning of their affinities for various binding 

partners through posttranslational modifications within autoregulatory IDRs, as illustrated 

here for Bcl-xL.

The surface of Bcl-xL engaged by the posttranslationally modified α1–α2 IDR is also a 

binding site for the DNA binding domain (DBD) of p538; this latter interaction sequesters 

cytosolic p53 and inhibits BAX-dependent apoptosis9. The BH3 binding groove, comprised 

of α4–α5, and the abutted α2–α3 allosteric regulatory site serve as a two-way conduit for 

signal transmission (Figure 5). In one direction, in response to DNA damage-induced 

nuclear p53 activation47, PUMA binding to Bcl-xL causes α3 to unfold and allosterically 
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triggers p53 release and apoptosis9,48. In the opposite direction, posttranslational 

modification of residues within the α1–α2 IDR in response to various apoptotic signals 

allosterically contracts the BH3 binding groove, freeing pro-apoptotic Bcl-2 family proteins 

to trigger apoptosis. In addition, by engaging the arginine cluster between α2 and α3, which 

otherwise binds to the DBD of p53, the IDR of Bcl-xL may release cytosolic p53 to activate 

BAX and apoptosis. This second pro-apoptotic mechanism further illustrates how functional 

versatility can be achieved by autoregulatory IDRs. Our study illustrates functional synergy 

between a folded domain and a disordered region of an apoptotic regulatory protein, Bcl-xL, 

and clearly demonstrates the capacity of IDRs within multi-domain proteins to serve as 

conduits for the transmission of diverse signaling inputs.

ONLINE METHODS

Reagents

Human Bcl-xL, lacking the 22 C-terminal residues (to improve solubility) and IDR-

truncated Bcl-xL (Bcl-xL ΔIDR), lacking residues 45–84 of the α1–α2 IDR and the 22 C-

terminal residues were cloned into pET28 (EMD Biosciences) and pET21 (Novagen) 

plasmids respectively. Point mutations were introduced with a QuickChange II-Gold site-

directed mutagenesis kit (Quiagen) according to the manufacturer protocol. Primer DNA 

was synthesized by International DNA Technologies Inc. DNA purification was performed 

with Zyppy Plasmid Miniprep kit (Zymo Research) or Maxiprep kit (Invitrogen). DNA 

sequencing was performed by the Hartwell Center for Bioinformatics and Biotechnology. 

Human BID (sequence QEDIIRNIARHLAQVGDSMDRSIPP or 

EDIIRNIARHLAQVGDSMDRSI-ethylene diamine-Fluorescein), BIM (sequence 

DNRPEIWIAQELRRIGDEFNAYYAR) BH3 peptides and BCL-xL IDR peptides (residues 

44–72; 44–72 phosphorylated at S62; 44–72 N52D, N66D; 52–66 phosphorylated at S62; 

52–66 S62E) were synthesized using standard Fmoc-based chemistry by the Hartwell Center 

for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital and HPLC 

purified to >98% purity.

Protein expression and purification

Bcl-xL, Bcl-xL ΔIDR, mutant Bcl-xL and p53 1–360 were expressed and purified as 

previously described8,49. All proteins were expressed in E. coli BL21(DE3) expression 

strain. Unlabeled proteins were expressed in LB media, isotopically labeled proteins in 

MOPS minimal media50 supplemented with the appropriate labeling reagents. Culture media 

were grown at 37 °C until their optical density at 600 nm (OD600) reached a value of 0.6, 

then induced with 0.5 mM IPTG for 5 hours at 37 °C or 16 hours at 18 °C and harvested. 

Bcl-xL-expression cells were lysed by osmotic shock in a buffer containing 25 mM Tris, 500 

mM NaCl, 5 mM imidazole, 20% w/v sucrose, 1 mg/mL lysozime, pH 8.0. The soluble 

fraction of the lysate was then purified by Ni affinity chromatography followed by cleavage 

of the 6×His tag with restriction grade thrombin (Novagen) and anion exchange 

chromatography using mono-dispersed Q–sepharose resin. This step allows for a complete 

resolution of native monomeric, IDR deamidated and dimeric Bcl-xL obtained after the Ni 

affinity step. The whole purification procedure was performed in Tris buffer with either an 

imidazole or NaCl gradient and pH 8.0 or 7.0 for the Ni-affinity or anion exchange steps, 
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respectively. The preparation of the fluorescein labeled Bcl-xL C151S, S2C construct was 

described previously8. His-tagged full-length Bcl-xL was purified from inclusion bodies 

solubilized in 6 M Guanidine Hydrochloride containing 25 mM Tris at pH 8 by Ni affinity 

chromatography. Bcl-xL was eluted from the Ni resin with an imidazole gradient under 

denaturing conditions and then further purified by reverse-phase HPLC over a C4 resin with 

elution by an acetonitrile gradient in the presence of 0.1% trifluoroacetic acid. The eluent 

was then flash frozen and the solvent removed by lyophilization. Protein identity was 

confirmed using mass spectrometry and NMR spectroscopy.

In vitro deamidation of Bcl-xL

Bcl-xL was deamidated at N52, N66 by incubation for 48 hours at 37 °C in buffer 

containing 25 mM Tris, 150 mM NaCl, pH 8.0 at a protein concentration of 200 µM. The 

identity of the deamidated protein product was confirmed by native gel electrophoresis and 

intact mass determination.

Isothermal Titration Calorimetry

All ITC experiments were performed over 19 injections of 2 µL each at 25 °C in 20 mM 

Tris, 40 mM NaCl, pH 7.0, with a MicroCal ITC200 instrument. Data were analyzed with 

the MicroCal ITC plugins within the Origin suite (OriginLab). Titrations were performed in 

duplicate or triplicate.

Binding between Bcl-xL and BID, BIM BH3 peptides—BH3 peptide solutions, at 

nominal concentrations of 50 or 100 µM were prepared from dilution of 10–20 mM DMSO 

stocks into the flow-through buffer resulting from buffer exchange of the Bcl-xL cell 

samples. These BH3 peptide syringe samples were titrated into Bcl-xL, at nominal 

concentrations of 5 or 10 µM, previously buffer exchanged in a 10 KDa cutoff Centricon 

device (Millipore). The DMSO concentration in the cell sample was carefully matched to 

that of the syringe sample. The exact peptide or protein concentration of each sample was 

verified after dilution or buffer exchange.

Binding between Bcl-xL ΔIDR and Bcl-xL IDR peptides—These titrations were 

performed as above, using starting peptide concentrations in the syringe of 1 or 2 mM and 

Bcl-xL ΔIDR concentrations in the cell of 100 or 200 µM. The syringe samples were 

prepared by directly dissolving the lyophilized peptides into buffer resulting from buffer 

exchange of the Bcl-xL ΔIDR cell samples. Due to the acidity of lyophilized peptides, the 

pH was carefully matched to that of the cell component before performing the titrations.

Nuclear Magnetic Resonance
15N-labeled Bcl-xL (wild type or N52, N66 deamidated); 15N-labeled Bcl-xL ΔIDR; 15N-,
13C-labeled Bcl-xL S62E were prepared at the indicated concentrations in 10 mM sodium 

phosphate, pH 7.0, 40 mM NaCl, 0.01% (w/v) NaN3 and 8% 2H2O. Data were acquired on 

Bruker 600-MHz and 800-MHz spectrometers equipped with cryogenically cooled, triple-

resonance single-axis gradient probes. Spectra were processed using TopSpin (Bruker 

Biospin) and analyzed with CARA software. Two-dimensional 1H-15N correlation TROSY 

spectra were acquired at 25 °C on 200 µM samples, using standard Bruker pulse sequences 
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using 8–16 scans, 2,048 × 256 complex points and spectral windows of 14 ppm × 32 ppm in 

the 1H and 15N dimensions, respectively. {1H} -15N heteronuclear NOE experiments were 

collected at 25 °C using 32 scans and 2,048 × 300 complex points using similar spectral 

windows as above on samples containing 0.5 mM protein concentration (Bcl-xL, Bcl-xL 

S62E). The recycle delay was 1 s for TROSY experiments and 4 s for heteronuclear NOE 

experiments. For titrations of Bcl-xL IDR peptides with natural isotopic abundance into 

isotope labeled Bcl-xL ΔIDR, peptide solutions were prepared in the buffer described above 

at concentrations ranging between 40 and 60 mM and the pH was adjusted to 7.0. Aliquots 

of these peptide samples were incrementally added to isotope labeled Bcl-xL ΔIDR samples 

(200 µM). Peptide concentrations ranged between 100 µM or 1 mM to 4 or 6 mM. A slight 

dilution (10%) of the protein samples occurred over the course of the titrations due to 

addition of the peptide solution aliquots. The following three-dimensional experiments were 

performed on Bcl-xL S62E samples for resonance assignment and structure calculation: 

HNCACB, CBCA(co)NOH, HNCO, HN(ca)CO for backbone assignment (2.2 mM sample); 
13C-edited aliphatic and aromatic HSQC-NOESY and 15N-edited TROSY-NOESY for side-

chain assignment and distance restraints (1.8 mM sample). Three-dimensional experiments 

were collected using 8–16 scans over 2,048 × 48–64 × 80–200 complex points and 

processed with linear prediction and zero filling in the indirect dimensions with spectral 

windows of 12–14 ppm (1H), 32 ppm (15N), 18 ppm (13C HNCO, HN(ca)CO), 70 ppm, 

(13C, HNCACB, CBCA(co)NH), 40 ppm (13C aromatic NOESY; offset 120 ppm), 44 ppm 

(13C aliphatic NOESY; offset: 24 ppm). A NOE mixing time of 100 ms was used in all 

cases. An equivalent 15N-edited TROSY-NOESY spectrum was also measured on wild type 

Bcl-xL at a concentration of 0.6 mM using 32 scans per increment.

Solution structure calculation

Structure calculations of Bcl-xL S62E was performed using the program Cyana51. Simulated 

annealing in torsion angle space was performed over 50,000 steps for each run on 400 

structures with the 20 models scoring the lowest target function representing the final NMR 

structure. Distance restraints were generated from volumes of NOESY cross-peaks 

(integrated with CARA) using the Cyana CALIBA tool. Dihedral restraints were generated 

from available assignments using the program TALOS+52. Helical hydrogen bond restraints 

(i to i-4) were applied between residues that showed lack of water exchange peaks in three-

dimensional NOESY spectra in combination with α-helical backbone torsion angle 

restraints. Calculations were performed iteratively with correction of restraints calibration 

and assignments until no further improvement of the target function could be attained. 

Structures were minimized using the model_minimize routine in the program CNS53 using 

an all-energy terms potential, with 1,000 steps and a relative permeativity value of 80. The 

quality of the models was assessed with the Protein Structure Validation Suite54. Structure 

determination details and statistics are provided in Supplementary Table 2. The 

Ramachandran statistics for the 20 lowest energy models were as follows. 98.8% of all 

residues were in favored regions of the Ramachandran plot, 0.5% were in generously 

allowed regions and 0.7% were in disallowed regions.
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Nanodisc sample of full length Bcl-xL

Protein powder (2.5 mg of lyophilized material) was solubilized in 0.5 mL of phosphate 

buffer (25 mM sodium phosphate, pH 6.5, 2 mM DTT, 1 mM EDTA) supplemented with 

100 mM Decylphoshocholine (DePC) detergent, and 50 uL of D2O. The solution was 

centrifuged and the supernatant fraction was used to prepare Bcl-xL in nanodiscs as 

described previously36. A 2D 1H-15N HSQC spectrum was recorded using 256 scans with 

1024 × 128 complex points and spectral widths of 15.6 × 32 ppm in the 1H and 15N 

dimensions, respectively, using a Bruker 800 MHz spectrometer equipped with 

cryogenically cooled, triple-resonance single-axis gradient probe.

Fluorescence Anisotropy

Fluorescence anisotropy measurements were performed at 25 °C using a Horiba Fluorolog 3 

spectrofluorimeter with a 3 mM path-length, 45 µL volume quartz cuvette with excitation 

wavelength of 494 nM and emission wavelength of 521 nM over 5 seconds acquisition 

periods. The concentration of fluorescein labeled BID BH3 peptide (FAM-BID BH3) was 10 

nM and that of fluorescein labeled Bcl-xL C151S S2C (FITC-Bcl-xL) was 100 nM in all 

assays. Samples were prepared in 10 mM sodium phosphate, pH 7.0, 40 mM NaCl. The 

equation used to fit the competition titration between Bcl-xL S62E and FITC-Bcl-xL for 

binding to p53 1–360 was described previously9.

Cell culture and fluorescence activated cell sorting (FACS) analysis

HeLa cells (American Type Culture Collection) were plated at 105 cells/mL (0.5 mL in 24-

well plates) in Dulbecco's modified Eagle's medium supplemented with 10% FCS and with 2 

mM glutamine, penicillin and streptomycin, transiently transfected for 24 h with 0.5 µg of 

the indicated Cerulean or Cerulean–Bcl-xL constructs (cloned in pcDNA3.1 vector, 

Invitrogen) with Lipofectamine. Transfected cells were then UV irradiated (2.5, 5, 10 mJ/

cm2) and incubated for an additional 16 h. Supernatant medium and trypsinized cells were 

collected and stained with APC-labeled annexin V (eBiosciences), and cell death was 

analyzed by FACS. A total of 104 cells were analyzed for each sample; each condition was 

tested using three independent samples. After FACS analysis, remaining samples were 

pooled, harvested, lysed and analyzed by coimmunoprecipitation as described below.

Immunoprecipitation and western blot analysis

Cells were lysed in 0.4 mL ice-cold buffer containing 50 mM Tris, 150 mM NaCl, 1 mM 

EDTA and 0.5% NP-40, pH 7.4. Cell lysates were incubated with 20 µL Protein A/G beads 

(Santa Cruz Biotechnology) supplemented with 1 µg anti-GFP antibody (mixed 7.1 and 13.1 

clones; Roche; at 1:2,000 dilution) for 2 h at 4 °C, washed four times with cold lysis buffer 

and eluted by boiling in 50 µL XT sample buffer (Bio-Rad). The protein concentration of 

total lysate aliquots was determined based upon their optical density at 280 nm. Normalized 

amounts of total lysate or immunoprecipitated samples were analyzed by SDS-PAGE and 

western blot. Total lysates were analyzed for GFP (mixed 7.1 and 13.1 clones; Roche; at 

1:2,000 dilution), Bcl-xL (antibody clone H-5; Santa Cruz Biotechnology; at 1:200 dilution), 

S62-phosphorylated Bcl-xL (antibody sc-101644; Santa Cruz Biotechnology; at 1:200 

dilution), BIM (antibody B7929, Sigma-Aldrich at 1:2,000 dilution), BAX (antibody clone 
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N20; Santa Cruz Biotechnology; at 1:200 dilution), p53 (Antibody clone DO-1, Santa Cruz 

Biotechnology; at 1:1,00 dilution) and Actin (antibody clone 5C5; Santa Cruz 

Biotechnology; at 1:1,000 dilution). Immunoprecipitated samples were analyzed for GFP, 

BIM, BAX and p53 as described above. Validation of antibodies used in these assays can be 

found on the manufacturers' websites.

Confocal microscopy

HeLa cells were plated on 4-well glass chamber slides and transiently transfected with 

indicated Cerulean expressing constructs (Cerulean, Cerulean Bcl-xL WT, S62E, R103E, 

S62E-R103E) and Calreticulin-RFP (OriGene RC100040) using Lipofectamine™ 2000 

transfection reagent as per the manufacturers’ instructions (Invitrogen). 24 h after 

transfection cells were either UV irradiated (10 mJ/cm2) or not and supplemented with fresh 

medium containing Q-VD-OPh (20 µM; MP Biomedicals), and incubated for an additional 

16 h. Cells were then stained with MitoTracker Green (ThermoFisher, M7514) for 20 

minutes. Confocal microscopy was performed using a Marianas spinning disk confocal 

imaging system (Intelligent Imaging Innovations/3i) consisting of a CSU-22 confocal head 

(Yokogowa Electric Corporation, Japan); solid-state diode-pumped laser launch (3i) with 

wavelengths of 445 nm, 473 nm, 523 nm, 561 nm, and 658 nm; and a Carl Zeiss Axiovert 

200M motorized inverted microscope equipped with a precision motorized XY stage (Carl 

Zeiss MicroImaging) and spherical aberration correction optics (3i). Images were acquired 

with a Zeiss Plan-Apochromat 63× 1.4 NA DIC objective and a Cascade II 512 EMCCD 

camera (Photometrics), using the SlideBook 6 software (3i). For quantitative colocalization 

analysis, regions around individual cells were drawn and the Pearson’s correlation 

coefficient was assessed by using SlideBook 6 software (3i). Statistical analysis was 

performed using Graph Pad Prism and Microsoft Office Excel.

DATA AVAILABILITY

Data for the solution structure of Bcl-xL S62E has been deposited to the Protein Data Bank 

(PDB; accession code: 6BF2) and Biological Magnetic Resonance Bank (BMRB; accession 

code: 27291). The datasets generated during and/or analzsed during the current study are 

available from the corresponding author upon request.
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Figure 1. 
PTMs within the α1–α2 IDR of Bcl-xL down regulate its anti-apoptotic function. a. 

Schematic alignment of multi-domain Bcl-2 proteins (pro-apoptotic effectors, Bax and Bak; 

anti-apoptotic, Mcl1, Bcl-2, and Bcl-xL). The sequence if the α1–α2 IDR of Bcl-xL is 

shown at the bottom, with known PTM sites indicated. b. Structure of Bcl-xL (pdb: 1g5j), 

showing the four BH domains in different shades of blue, the BH3 domain partner and 

corresponding binding groove on the surface of Bcl-xL in yellow; the α1–α2 IDR is 

indicated as a dashed line. c–e. Isothermal titration calorimetry thermographs and curve fits 

for titrations of a BID BH3 domain peptide into wild-type Bcl-xL (c), a α1–α2 IDR 

phosphomimetic Bcl-xL S62E mutant (d), and α1–α2 IDR deamidated Bcl-xL (e). KD 

values are the average and s.e.m. of two or three independent titrations.
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Figure 2. 
NMR evidence of an interaction between the α1–α2 IDR and folded core of Bcl-xL. a. 
Overlaid 1H-15N TROSY spectra of Bcl-xL with truncated α1–α2 IDR (Bcl-xL ΔIDR, 

black) or full length α1–α2 IDR (red). b. Structure mapping of residues within the folded 

core of Bcl-xL whose resonances exhibit significant (>1 σ) chemical shift perturbations 

(CSPs) between the two spectra, marked with red spheres. Dashed lines provide visual links 

between some of these residues and the corresponding resonances in panel a. Solid lines 

connect equivalent resonances in the two overlaid spectra. c–d. Analogous representations 

comparing wild-type Bcl-xL, containing the full length α1–α2 IDR (red), with the 
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phosphomimetic Bcl-xL S62E mutant (light blue). Residues exhibiting significant CSPs are 

marked with light blue spheres in panel d. e–f. Titration of a synthetic peptide spanning 

residues 52–66 of Bcl-xL, phosphorylated at S62, into 15N-Bcl-xL ΔIDR (black to cyan 

gradient). Residues exhibiting significant CSPs are marked with light (>1 σ) or dark (>2 σ) 

cyan spheres in panel f.
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Figure 3. 
Inhibition of the BH3-binding associated repositioning of Bcl-xL α2–α3 relative to α4–α5 

by the α1–α2 IDR. a. Structure alignment between unbound Bcl-xL (pdb 1r2d, dark grey) 

and Bcl-xL (light grey) – BH3 domain (green) complexes (complexes with BAK, pdb 1g5j; 

BAX, pdb 3pl7; BAD, pdb 1bxl; PUMA, pdb 2m04; BIM, pdb 4qvf; BID, pdb 4qve; and 

Beclin1, pdb 2pon). The pink arrow marks the repositioning of α3 upon binding of BH3 

domains. b. Solution structure of Bcl-xL S62E highlighting the central portion of the α1–α2 

IDR (residues 54–66, dark cyan) interacting with the folded protein core near arginine 

residues at the α2–α3 junction. c. Close up view of the α1–α2 IDR (dark cyan) – folded 

core (grey) interaction with labeled side chains (IDR residues, dark cyan; core residues, 

black). Green dashes indicate possible electrostatic or hydrogen bonding interactions. d. 
Structure (top) and alignment (center) of the α2–α3 junction sequences in various multi-

domain Bcl-2 proteins and the Bcl-xL R103E mutant. The bottom panel shows the native-

PAGE mobility-shift of Bcl-xL R103E upon deamidation of N52 and N66 (full gel is 

provided in Supplementary Fig. 10). e–g. ITC thermographs and curve fits for titrations of a 

BID BH3 domain peptide into Bcl-xL R103E (e), Bcl-xL S62E R103E (f), and deamidated 

Bcl-xL R103E (g). KD values are the average and s.e.m. of two or three independent 

titrations.
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Figure 4. 
Modulation of the anti-apoptotic activity of Bcl-xL by mutations in the α1–α2 IDR and α2–

α3. a. Fluorescence-activated cell sorting (FACS) analysis of HeLa cells transfected with 

Cerulean fluorescent protein (CFP) - Bcl-xL fusion constructs in the absence and presence 

of increasing UV irradiation. Cerulean only (CFP), white; Bcl-xL wild-type (WT), black; 

Bcl-xL S62E, maroon; Bxl-xL R103E, grey; Bcl-xL S62E - R103E, orange (N = 3 

experimental replicates; error bars, s.e.m.; p values, 95% confidence intervals). b–c. FACS 

populations for (b) CFP-transfected HeLa cells in the absence of UV (left trace; ‘-UV’), 16 

hours after 10 mJ/cm2 UV irradiation (right trace; ‘+UV’), UV-irradiated cells transfected 

with CFP-Bcl-xL wild-type (solid grey; ‘WT + UV’), or CFP-Bcl-xL S62E (maroon trace; 

‘S62E + UV’) and (c) UV irradiated cells transfected with CFP-Bcl-xL R103E (solid grey; 

‘R103E’) or CFP-Bcl-xL S62E - R103E (orange trace; ‘S62E R103E’). d. Western blotting 

analysis of total cell lysates (top seven blots) for Cerulean, Bcl-xL, S62 phosphorylated Bcl-

xL, BIM. BAX. p53 and Actin. The bottom four blots show analyses for Cerulean. BIM. 

BAX and p53 after immunoprecipitation of Cerulean (full gels are provided in 

Supplementary Fig. 10).
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Figure 5. 
Schematic illustration of the proposed dual mechanism of allosteric regulation of Bcl-xL 

enabled by PTMs in the α1–α2 IDR and structural plasticity of α3. a. Bcl-xL inhibits 

apoptosis by sequestering both pro-apoptotic BH3 domain-containing proteins (e.g., BIM) 

and p53. The binding sites on Bcl-xL for BH3 domains and p53 are adjacent but non-

overlapping, and are allosterically coupled. This is termed the “α3 accessible” state. b. The 

binding of PUMA to Bcl-xL directly displaces BH3 domain-containing proteins (e.g., BIM) 

and allosterically releases p53 from the distal site, enabling the released proteins to induce 

apoptosis. This is termed the PUMA-bound, “α3 unfolded” state. c. In a reversal of the 

allosteric pathway illustrated in b, PTMs within the α1–α2 IDR promote its interactions 

with the α2-α region of the folded core, displacing p53, and also allosterically remodeling 

the BH3 binding groove, releasing BH3 domain-containing proteins from Bcl-xL. As in b, 

the released proteins induce apoptosis. This is termed the IDR-bound, “α3 inaccessible” 
state.
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