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Meta-analysis of prostate cancer gene expression
data identifies a novel discriminatory signature
enriched for glycosylating enzymes
Stefan J Barfeld2*, Philip East1, Verena Zuber2 and Ian G Mills2,3*
Abstract

Background: Tumorigenesis is characterised by changes in transcriptional control. Extensive transcript expression
data have been acquired over the last decade and used to classify prostate cancers. Prostate cancer is, however, a
heterogeneous multifocal cancer and this poses challenges in identifying robust transcript biomarkers.

Methods: In this study, we have undertaken a meta-analysis of publicly available transcriptomic data spanning datasets
and technologies from the last decade and encompassing laser capture microdissected and macrodissected sample
sets.

Results: We identified a 33 gene signature that can discriminate between benign tissue controls and localised prostate
cancers irrespective of detection platform or dissection status. These genes were significantly overexpressed in localised
prostate cancer versus benign tissue in at least three datasets within the Oncomine Compendium of Expression Array
Data. In addition, they were also overexpressed in a recent exon-array dataset as well a prostate cancer RNA-seq dataset
generated as part of the The Cancer Genomics Atlas (TCGA) initiative. Biologically, glycosylation was the single enriched
process associated with this 33 gene signature, encompassing four glycosylating enzymes. We went on to evaluate the
performance of this signature against three individual markers of prostate cancer, v-ets avian erythroblastosis virus E26
oncogene homolog (ERG) expression, prostate specific antigen (PSA) expression and androgen receptor (AR) expression
in an additional independent dataset. Our signature had greater discriminatory power than these markers both for
localised cancer and metastatic disease relative to benign tissue, or in the case of metastasis, also localised prostate
cancer.

Conclusion: In conclusion, robust transcript biomarkers are present within datasets assembled over many years and
cohorts and our study provides both examples and a strategy for refining and comparing datasets to obtain additional
markers as more data are generated.
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Background
Alterations in transcriptional programmes are often involved
in neoplastic transformation and progression and defining
these changes will help to understand the underlying biology
of the malignancies. Gene Expression Microarray Analysis
and more recently high-throughput RNA sequencing
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(RNA-seq) are commonly used techniques when trying to
acquire an unbiased view of the expression levels of large
numbers of genes. In order to define more compact and
manageable expression modules that might predict risk or
prognosis, various approaches have been used across several
studies. These include the identification of consensus pro-
files across multiple datasets [1] and identifying biologically
categorised gene sets with enriched representation of
deregulated genes [2,3]. Furthermore, smaller expression
modules have also been identified using hierarchical cluster-
ing methods to generate clusters containing genes with simi-
lar expression profiles across glioblastoma samples [3]. The
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high degree of prostate tissue heterogeneity, however, rep-
resents a challenge for transcriptomics since the relative
prevalence of each cell type within a given sample deter-
mines the overall expression profile. This makes it difficult
to compare prostate samples that have very different epithe-
lial and stromal contents. Many studies have compared
tumor tissue with benign hyperplastic tissue, or with non-
tumoral prostate tissues that were not precisely charac-
terised in terms of location or epithelial representation.
Therefore, the outcomes of these analyses were possibly
biased because the comparisons included tissues of diverse
histological or embryological origins. Various approaches
have been used to overcome this issue including in silico
corrections to compensate for variable epithelial representa-
tions in different samples [4], and laser microdissection
combined with in vitro linear amplification [5]. The laser
capture microdissection study of Tomlins et al. yielded sev-
eral informative molecular concepts (multi-gene modules),
which provide a rich source of data for further refinement
and follow-up as well as distinguishing between stromal and
epithelial cancer signatures [5]. It is, however, not clear how
detectable those concepts might be in material extracted
from heterogeneous whole tissue sections, an important
point given the time and expense associated with laser cap-
ture microdissection.
In this study, we have therefore set out with a number

of goals. First and foremost amongst these was to deter-
mine whether we could identify gene signatures that
were statistically significant in datasets generated from
both whole tissue sections and laser capture microdis-
sected material. If so, this might indicate that with the
right filtering approach, sample heterogeneity might not
be a completely confounding challenge to transcriptomic
analysis. Secondly, if we were able to identify such signa-
tures, we then wanted to be able to refine them to a
point that the signature and any pathway or process
enriched within it could be easily validated by other ex-
perimental and clinical research groups. Here, we report
a concise 33-gene signature with biological enrichment
for glycosylation, which discriminates between benign
tissue and prostate cancer (PCa) across multiple tran-
script detection platforms and sample types.

Methods
Description of datasets
Five datasets were downloaded and used in this study.

1. A 19-sample dataset generated by Varambally et al.,
using the Affymetrix Human Genome U133 Plus 2.0
Array platform. The dataset consisted of 13 macro-
dissected individual benign prostate, primary and
metastatic PCa samples and 6 pooled samples from
benign, primary or metastatic PCa tissues. The ex-
pression array data were downloaded from GEO
under accession number GSE3325 (http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE3325).

2. A 104-sample dataset generated by Tomlins et al., using
an in-house cDNA microarray platform (Chinnaiyan
Human 20K Hs6). Laser capture microdissection was
used to isolate 101 specific cell populations from 44
individuals representing PCa progression in a range of
sample categories encompassing 12 stromal and 89
epithelial cell populations. These were subcategorised as
EPI_BPH (benign prostatic hyperplasia epithelium),
EPI_ADJ_PCA (normal epithelium adjacent to PCa),
EPI_ATR (atrophic epithelium – simple atrophy),
EPI_ATR_PIA (atrophic epithelium), PIN (prostatic
intraepithelial neoplasia), PCA (prostate carcinoma),
MET_HN (Metastatic Prostate Carcinoma - Hormone
Naïve), MET_HR (Metastatic Prostate Carcinoma -
Hormone Refractory), STROMA_EPIBPH (BPH
Stroma - Epithelial BPH ), STROMA_NOR (Normal
Stroma - Organ Donor), STROMA_ADJ_PCA (Normal
Stroma - Adjacent to prostate cancer). In addition three
samples were EPI_NOR (Normal Epithelium - Organ
Donor). In our study we maintain this nomenclature in
describing the dataset. The expression array data were
downloaded from GEO under accession num-
ber GSE6099 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE6099).

3. A multi-cancer microarray dataset generated by
Ramaswamy et al., and consisting of 218 tumour sam-
ples, spanning 14 common tumour types, and 90 nor-
mal tissue samples and profiled on Affymetrix
oligonucleotide microarrays (Hu6800 and Hu35KsubA
GeneChips). The 14 tumour types incorporated into
this study were breast adenocarcinoma, prostate
adenocarcinoma, lung adenocarcinoma, colorectal
adenocarcinoma, lymphoma, bladder transitional cell
carcinoma, melanoma, uterine adenocarcinoma,
leukemia, renal cell carcinoma, pancreatic adenocar-
cinoma, ovarian adenocarcinoma, pleural mesotheli-
oma and cancers of the central nervous system. The
dataset was downloaded from the Broad Institute web-
site (http://www.broadinstitute.org/cgi-bin/cancer/
publications/pub_paper.cgi?mode=view&paper_id=61).

4. A PCa dataset generated by Taylor et al., for 150
tumours, 29 matched normal samples, and 6 cell
lines using the Affymetrix Human Exon 1.0 ST array
platform. There were 27 metastatic samples
amongst the 150 tumours and 35 cases of
biochemical relapse (Additional file 1 in Taylor
et al.,). The expression array data were downloaded
from GEO under accession number GSE21034
(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE21034).

5. High throughput RNA sequencing data were
generated by the The Cancer Genomics Atlas
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(TCGA) consortium for 383 samples, 50 benign
samples and 333 primary tumours. 48 of these
samples represented advanced disease with Gleason
grade ≥8 and 13 cases had undergone progression as
characterised by post-operative biochemical recur-
rence. Data were downloaded from the UCSC Cancer
Genome Browser (https://genome-cancer.ucsc.edu/) -
TCGA_PRAD_exp_HiSeqV2-2014-05-02.tgz. Associ-
ated clinical data were downloaded from the TCGA
Data Portal (https://tcga-data.nci.nih.gov/tcga/).

6. A PCa dataset generated by Grasso et al., generated
for 28 benign prostate tissue samples, 59 localised
PCa and 35 metastatic PCa was generated on two
Agilent microarray platforms (whole genome
microarray (4x44K, G4112F) and whole human
genome oligo microarray (G4112A ). The expression
array data were downloaded from GEO under
accession number GSE35988 (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE35988).

7. Additional datasets were interrogated for the
expression of individual genes within signatures
through the Oncomine Compendium of Expression
Array data (www.oncomine.org).

Prostate cancer dependent expression changes
To generate an initial broad progression dependent gene
set, we used the prostate progression expression dataset
GSE3325 (NCBI GEO database). We quantile normalised
probe level intensity values and generated probe set signal
estimates using RMA (1,2). We first characterised re-
porters with a coefficient of variance of less than or equal
to 0.05 as uninformative and removed them from further
analysis. Reporters having intensities below the 10th quan-
tile (3.91) in more than 75% of the samples were also re-
moved. We identified progression associated expression
changes by linear model. Primary tumour versus benign
and metastatic versus primary contrasts were run and dif-
ferential reporters identified using a 0.01 FDR threshold.
Reporters were further filtered selecting those with a dif-
ferential effect size of greater than or equal to 2-fold. This
resulted in a progression signature set of 4662 reporters,
3021 genes (121 primary, 2900 metastatic, primary ∩
metastatic = 102). Signatures derived from this primary
dataset were subsequently applied to two additional data-
sets, one prostate dataset generated by Tomlins et al. [5]
in a laser capture microdissection study (GSE6099) and
another generated by Ramaswamy et al. [6] and represent-
ing multi-tissue primary tumours and metastases (access-
ible through the Broad Institute data repository: http://
www.broadinstitute.org/cgi-bin/cancer/datasets.cgi).

Identifying correlated gene modules
We clustered our progression gene set using hierarchical
clustering with a Ward agglomerative method designed to
minimize intra-cluster variance (hclust, Bioconductor) and
a 1 - Pearson correlation coefficient dissimilarity measure.
We found this method produced a more highly correlated
clustering structure when compared to other methods lead-
ing to more compact sub-clusters (Additional file 1). We
characterised correlated gene modules by cutting the clus-
ter dendrogram at branch lengths ranging from log10(0.05)
to log10(3000) giving 39 equal intervals across the log scale.
We removed clusters containing less than 3 members from
further analysis. We selected modules defined at branch
lengths 0f 0.6, 0.8, 1.1, 1.9, 2.5, 4.5, 10.6, 24.7 and 101.6 for
further analysis since these gave a broad range of cluster
numbers. Since a smaller branch length threshold does not
always sub divide a parent module modules can be dupli-
cated at different thresholds. These were removed from fur-
ther analysis assigning them to the largest branch threshold
at which they appears. We assigned Gene Ontology classifi-
cations to modules by testing for enrichment at GO nodes
using a hyper-geometric distribution and a 0.01 p-value
threshold. We carried out this analysis at the gene level by
translating chip reporter probeset ids to Entrez gene ids.
All reporters from the progression signature with assigned
Entrez gene ids were used as background. Analysis was car-
ried out using the GoStats package, Bioconductor.

Phenotype dependent transcript module expression
changes
To determine differential regulation of modules within
other expression datasets we first identified phenotype
dependent expression changes for each sample using an
absolute fold change filter of greater than 2. To generate
fold changes against which we could filter each gene
was scaled to a baseline intensity value. In the case of
dataset GSE3325 each signal intensity from the primary
tumour samples was scaled to the corresponding
median gene signal intensity across the benign tumour
samples. Likewise all metastatic samples were scaled to
the median across all primary tumour samples. Prior to
mapping modules to dataset GSE6099 we background
corrected each sample using a normexp method and
print tip loess normalised (normalizeWithinArrays(),
Bioconductor). We then scaled PIN samples to
EPI_ADJ_PCA control samples, PCA samples to PIN,
MET_HNF to PCA and MET_HR to PCA. To identify
hormone refractory dependent expression changes
MET_HR samples were scaled to the median across the
non-refractory samples MET_HN. To determine mod-
ule induction or repression within the scaled samples
we tested for enrichment of module genes within the
sample associated expression changes using a hypergeo-
metric distribution, <= 0.05 fdr. Mapping was achieved
across array platforms using NCBI Entrez gene ids.
Modules with an intersection of less than 3 were dis-
carded from the analysis.
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Phenotype segregation
To determine if any of the enriched modules were capable
of segregating samples on phenotype we built contingency
tables across clinical conditions from each of the data sets
(Tomlins [5] and Ramaswamy [6]) for induced and re-
pressed modules and tested for sample enrichment using a
Fisher’s Exact test. Here we tested each phenotypic group
against all others from each data set.

Cluster analysis
To determine the best clustering method and branch length
thresholds to apply to our analysis we clustered our 4662
reporter prostate tumour progression signature (Additional
file 2: Table S1) using single, average, complete, Ward’s1

minimum variance method and mcquitty2 agglomerative
hierarchical clustering methods along with a divisive
method. The hclust function from Bioconductor3 was used
for the agglomerative techniques and the diana function
from the cluster package from Bioconductor was used to
run the divisive method. We used the cutree function at
branch length thresholds ranging from 0.05 to 2 in incre-
ments of 0.05 to derive groups of correlated genes. In the
case of the Ward agglomerative method where the branch
scales [ it is unclear howWard calculates its branch lengths,
need to find out ] branch length thresholds ranged from
log10(0.05) to log10(3000) in increments of log10(3000/0.05)/
39. Branch length threshold intervals were chosen to pro-
duce a broad range of cluster numbers.

Cluster correlation
To assess the extent to which genes assigned to clusters
are correlated we calculated a within-cluster dissimilarity
value for each cluster4. This is given by

W C ¼ 1
K

XK

k¼1

1
2Nk

XN

i¼1

XN

j¼1

d xi; xj

where d xi, xj is the dissimilarity between genes i and j

across all samples, i,j = 1,2,…N where N is the total num-
ber of cluster members and k = 1,2,…,K where K is the
total number of clusters. In our case the dissimilarity
measure is 1 – Pearson correlation coefficient between 2
genes across all samples. W(C) dissimilarity values across
the array of branch length thresholds can be seen plotted
against cluster number in Additional file 1: Figure S1. As
observed the Ward agglomerative method out performs
all other methods producing clusters that are less dissimi-
lar and therefore more highly correlated than those gener-
ated from other methods relative to the number of
clusters produced. These results provide a justification for
using hierarchical clustering with a ward agglomerative
method to generate sets of co-regulated genes.
Cluster gene ontology entropy
To quantify the information content of our clusters from
a biological perceptive we assigned GO terms to cluster
members. This was achieved by mapping GO terms via re-
porter entrez gene id assignments using the GO.db anno-
tation package from Bioconductor. To quantify the GO
information content of a cluster we calculated Shannon
Entropy bit values given by:

H X ¼ −
1
K

XK

k¼1

XN

i¼1

p xi logbpxi

where xi is a cluster associated GO term, p(xi) is the prob-
ability of choosing xi from all cluster GO terms , i = 1,2,…N
where N is the total number of unique cluster GO terms,
k = 1,2,…K where K is the total number of clusters and
b = 2. H(X) bit values for different branch length thresholds
can be seen plotted against cluster number for the different
clustering techniques in Additional file 3: Figure S2. As
observed the Ward clustering method produces clusters
with higher GO bit values when compared to other
methods. This implies greater uncertainly in the GO
term mappings for clusters generated by the ward
method thus indicating the production of clusters more
GO information rich when compared to other methods.
This provides further justification for using hierarchical
clustering with a ward agglomerative method to gener-
ate sets of co-regulated genes.

Visualization of gene signatures through heatmaps
For visualization, sample groups were averaged using the
mean prior to high level mean and variance normalization
using the freely available software J-Express 2012 (http://jex-
press.bioinfo.no/site/). Subsequently, both sample groups
and genes were hierarchically clustered using complete link-
age and Euclidian distance using the freely available software
Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/clus-
ter/software.htm). Heatmaps were produced using Java Tree
View (http://jtreeview.sourceforge.net/).

Evaluating gene signature specificity and sensitivity
Testset: Grasso 1 Platform GPL6480

# Title Agilent-014850 Whole Human Genome
Microarray 4x44K G4112F

# tissue: benign prostate tissue (N)
# 12
# tissue: localised prostate cancer (T)
# 49
# tissue: metastatic castrate resistant prostate cancer
(WA)

# 27.

http://jexpress.bioinfo.no/site/
http://jexpress.bioinfo.no/site/
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Training data: Grasso 2 Platform GPL6848

# Title Agilent-012391 Whole Human Genome Oligo
Microarray G4112A

# tissue: benign prostate tissue (N)
# 16
# tissue: localised prostate cancer (T)
# 10
# tissue: metastatic castrate resistant prostate cancer (WA)
# 8.

To evaluate the prediction performance 33 gene signa-
ture we analysed data from a microarray experiment of
Grasso et al as available from GEO (GSE35988) http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35988.
The dataset includes measurements on two different

microarray platforms GPL6480 and GPL6848 and includes
three different tissue types (benign, localised and metastatic
castrate resistant prostate cancer).
We used the samples typed on platform GPL6848 as

trainings data to derive the weights of the genes in the
multi-gene signature. First, we replaced missing values
using the k nearest neighbor algorithm as implemented in
the R package impute. The gene PCA3 was not measured
on the microarray and the gene CRISP3 was not observed
in more than half of these samples. Thus, these two genes
were excluded from the signature. We estimated the
weights of each gene using an L2 regularized logit regres-
sion model [7] with the R package glmnet.
Then we used the samples typed on platform GPL6480

as test data to evaluate the prediction performance of the
gene-signature. Per sample we computed one score as the
weighted average over the 31 proposed genes where the
weights were defined by the independent training data. Fi-
nally, we computed ROC statistics and report the area
under the curve (AUC) of the ROC curve (R package
ROCR). The AUC indicates the ability of a marker to dis-
tinguish between two groups, where a value 0.5 is random
and a value of 1 represents a perfect distinction between
the groups. Additionally, we were looking at the AUC of
specific genes, in particular KLK3, ERG and AR.

Results and discussion
In order to define our starting signatures, we selected a
dataset published by Varambally et al. about a decade ago
and consisting of a small number of whole tissue sections
[8]. This constitutes the smallest and oldest dataset used
in our meta-analysis. It was, however, extensively validated
at both the transcript and protein level in the original
study and therefore provides a high-degree of confidence
in data quality. We chose to define our starting signatures
using this dataset in order to assess how much informa-
tion could be derived despite the limitations in size and
age. Within these data, we firstly identified transcripts that
were differentially expressed in localised prostate versus be-
nign tissue or in metastatic disease versus localised cancer
using a conventional linear model approach. This approach
identified 121 genes differentially expressed in localised pri-
mary cancers (primary versus benign, 0.01 FDR) and 2900
genes associated with metastatic status (metastatic versus
primary, 0.01 FDR), which were covered by 4662 probes in
total (Additional file 2: Table S1). To further refine these
gene lists into discrete signatures, we constructed a gene
coexpression network using Pearson correlation coefficients
and hierarchical clustering using the Ward agglomerative
method (See Methods section).
A number of different correlation or dissimilarity metrics

have been employed when constructing co-expression net-
works. To determine the correlation between the genes we
used a Pearson correlation coefficient to construct a dis-
similarity matrix across all affected samples in the prostate
tumour progression dataset and all genes identified in the
preliminary analysis. We then used hierarchical clustering
to group the genes. There are a number of available ag-
glomeration methods available each producing their own
clustering structure. To determine the best agglomeration
method to apply in constructing our expression modules,
we clustered our prostate tumour progression signature
using single, average, complete, the Ward [9] minimum
variance method and the Mcquitty [10] agglomerative hier-
archical clustering method along with a divisive method.
The performance of these clustering methods by using an
algorithm to determine the extent to which genes assigned
to clusters are correlated generating a within-cluster dis-
similarity value for each cluster (Methods section – ‘Clus-
ter Correlation’). In addition, we assessed the information
content in gene ontology terms associated with clusters
generated using each method by calculating Shannon En-
tropy bit values (Methods section - ‘Cluster Gene Ontol-
ogy Entropy’). Shannon entropy and coefficient of variation
are well known in a great many application domains, from
theoretical physics to computational chemistry to materials
science. They have been applied in bioinformatics as well,
most notably in statistical genetics and molecular biology.
Shannon entropy is derived from information theory [11].
Most relevant for this study the approach has previously
been used as a measure of the robustness of gene regula-
tory networks [12], to accelerate feature elimination when
classifying microarray expression data [13]. By these mea-
sures the Ward clustering method provided both more
tightly associated coexpressed gene clusters as well as clus-
ters with higher GO bit values when compared to other
methods, indicative of greater information content in the
ontologies derived for coexpression clusters generated
using the Ward approach than using the other approaches.
Additional file 4: Table S2 provides a complete list of coex-
pressed genes signatures generated used the Ward ap-
proach at all branching thresholds.
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Table 1 KEGG pathway enrichment analysis for the genes comprising signature 1 (101.6.1)

Category Term Count % PValue Genes List
Total

Pop
Hits

Pop
Total

Fold
Enrichment

Bonferroni Benjamini FDR

KEGG_PATHWAY hsa04510:Focal
adhesion

37 2.86 2.01E-06 CAV2, CAV1, MYL5, MYL2, TNC, PTEN, MYL9, VCL, IGF1R, LAMB3,
LAMB2, ITGB8, ILK, ITGB6, PDGFC, PAK1, THBS1, THBS4, COL4A4,
PRKCA, ACTB, MET, ITGA1, ACTN1, IGF1, HGF, COL4A6, FLNA,
LAMA4, ITGA6, CCND2, ITGA5, JUN, ITGA8, COL1A2, MYLK,
PTENP1, PARVA

404 201 5085 2.32 3.42E-04 3.42E-04 0

KEGG_PATHWAY hsa05414:Dilated
cardiomyopathy

21 1.62 2.37E-05 ACTB, SLC8A1, ACTC1, MYL2, LMNA, ITGA1, IGF1, CACNB2, TPM2,
TPM1, TPM4, TGFB2, DES, ITGA6, ITGA5, ITGB8, PLN, ITGA8, ITGB6,
PRKACB, SGCB

404 92 5085 2.87 0 0 0.03

KEGG_PATHWAY hsa05410:
Hypertrophic
cardiomyopathy
(HCM)

20 1.55 2.50E-05 ACTB, SLC8A1, ACTC1, IL6, MYL2, LMNA, ITGA1, IGF1, CACNB2,
TPM2, TPM1, TPM4, TGFB2, DES, ITGA6, ITGA5, ITGB8, ITGA8,
ITGB6, SGCB

404 85 5085 2.96 0 0 0.03

KEGG_PATHWAY hsa00280:Valine,
leucine and
isoleucine
degradation

12 0.93 4.71E-04 MCCC2, ALDH7A1, ALDH1B1, MCEE, AOX1, BCKDHB, DLD,
ACAD8, ACAT1, HIBADH, ALDH3A2, AUH

404 44 5085 3.43 0.08 0.02 0.57

KEGG_PATHWAY hsa04512:ECM-
receptor interaction

17 1.31 7.54E-04 COL4A4, TNC, ITGA1, COL4A6, CD47, LAMA4, LAMB3, LAMB2,
CD44, ITGA6, ITGB8, ITGA5, ITGA8, ITGB6, COL1A2, THBS1, THBS4

404 84 5085 2.55 0.12 0.03 0.92

KEGG_PATHWAY hsa04270:Vascular
smooth muscle
contraction

20 1.55 0 PRKCA, ACTA2, PPP1R12B, CALD1, MRVI1, KCNMB1, ITPR1, MYL9,
ITPR2, EDNRA, AGTR1, ACTG2, PLCB4, GNAQ, PLA2G12A, MYH11,
PRKACB, PLCB1, PPP1R14A, MYLK

404 112 5085 2.25 0.17 0.03 1.35

KEGG_PATHWAY hsa05412:
Arrhythmogenic right
ventricular
cardiomyopathy
(ARVC)

14 1.08 0.01 ACTB, SLC8A1, LMNA, ITGA1, ACTN1, CACNB2, DES, ITGA6, ITGB8,
ITGA5, PKP2, ITGA8, ITGB6, SGCB

404 76 5085 2.32 0.65 0.14 7.2

KEGG_PATHWAY hsa04610:
Complement and
coagulation cascades

13 1.01 0.01 C4A, MASP1, C4B, CFB, C1S, CD59, KLKB1, F3, SERPINE1,
SERPINA1, CFI, C2, PROS1

404 69 5085 2.37 0.71 0.14 8.49

KEGG_PATHWAY hsa04310:Wnt
signaling pathway

22 1.7 0.01 PRKCA, CSNK1A1, WNT5B, CAMK2G, MMP7, FZD1, DKK1, PLCB4,
SFRP1, CCND2, SFRP2, JUN, SFRP4, PRICKLE2, PPP3CB, CAMK2D,
WIF1, PRKACB, AXIN2, PLCB1, MYC, APC

404 151 5085 1.83 0.72 0.13 8.79

KEGG_PATHWAY hsa05332:Graft-
versus-host disease

9 0.7 0.01 HLA-DQB1, IL6, HLA-DRB1, HLA-DRB4, HLA-C, HLA-DPA1, HLA-B,
FAS, HLA-DMB, HLA-G, HLA-DQA1

404 39 5085 2.9 0.82 0.16 11.58

KEGG_PATHWAY hsa00590:Arachidonic
acid metabolism

11 0.85 0.01 CYP2U1, GPX2, PTGIS, PTGS2, PTGDS, ALOX15B, PLA2G12A,
PTGS1, GGTLC3, GGT1, ALOX5, CBR3

404 56 5085 2.47 0.86 0.16 13.08

KEGG_PATHWAY hsa00480:Glutathione
metabolism

10 0.77 0.02 GSTM1, GPX2, GSTM2, GSTA4, GGTLC3, GSTZ1, GSTO2, ANPEP,
GSTT2, GGT1, GSTO1

404 50 5085 2.52 0.93 0.2 17.11

KEGG_PATHWAY hsa04514:Cell
adhesion molecules
(CAMs)

19 1.47 0.02 HLA-DQB1, HLA-DRB1, CDH1, ITGB2, HLA-C, NEO1, HLA-B, HLA-
DMB, CDH3, HLA-DQA1, HLA-G, ITGA6, ITGB8, ITGA8, PVRL3, CD2,
HLA-DRB4, HLA-DPA1, JAM2, NEGR1, SELE

404 132 5085 1.81 0.93 0.19 17.38
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Table 1 KEGG pathway enrichment analysis for the genes comprising signature 1 (101.6.1) (Continued)

KEGG_PATHWAY hsa04940:Type I
diabetes mellitus

9 0.7 0.02 HLA-DQB1, HLA-DRB1, PTPRN2, HLA-DRB4, HLA-C, HLA-DPA1,
HLA-B, FAS, HLA-DMB, HLA-G, HLA-DQA1

404 42 5085 2.7 0.93 0.17 17.49

KEGG_PATHWAY hsa04350:TGF-beta
signaling pathway

14 1.08 0.02 SMAD6, FST, DCN, TGFB2, ACVR2A, ID1, ZFYVE16, ID4, ID3,
THBS1, MYC, BMPR1A, ACVR1, THBS4

404 87 5085 2.03 0.96 0.19 20.39

KEGG_PATHWAY hsa04810:Regulation
of actin cytoskeleton

27 2.09 0.02 FGFR2, FGF7, MYL5, MYL2, DIAPH2, FGF13, ITGB2, MYL9, VCL,
GSN, ITGB8, ITGB6, RRAS, PDGFC, PAK1, FGF2, APC, ACTB, LIMK2,
ITGA1, ACTN1, ITGA6, CHRM3, ITGA5, CFL2, ITGA8, MYLK

404 215 5085 1.58 0.96 0.18 20.54

KEGG_PATHWAY hsa05330:Allograft
rejection

8 0.62 0.02 HLA-DQB1, HLA-DRB1, HLA-DRB4, HLA-C, HLA-DPA1, HLA-B, FAS,
HLA-DMB, HLA-G, HLA-DQA1

404 36 5085 2.8 0.97 0.19 22.63

KEGG_PATHWAY hsa00330:Arginine
and proline
metabolism

10 0.77 0.02 ALDH7A1, ALDH18A1, ACY1, GATM, GLUD2, ALDH1B1, MAOB,
OAT, ALDH3A2, CKB

404 53 5085 2.37 0.98 0.19 23.67

KEGG_PATHWAY hsa00982:Drug
metabolism

11 0.85 0.02 GSTM1, GSTM2, CYP3A5, GSTA4, AOX1, MAOB, ADH5, GSTZ1,
GSTO2, GSTT2, GSTO1

404 62 5085 2.23 0.98 0.18 24.32

KEGG_PATHWAY hsa05218:Melanoma 12 0.93 0.02 FGF7, MET, IGF1, CDH1, CDK6, FGF13, HGF, RB1, PTEN, IGF1R,
PDGFC, FGF2, PTENP1

404 71 5085 2.13 0.98 0.18 24.47

KEGG_PATHWAY hsa05416:Viral
myocarditis

12 0.93 0.02 ACTB, HLA-DQB1, CAV1, HLA-DRB1, ITGB2, HLA-C, HLA-B, HLA-
DMB, HLA-DQA1, HLA-G, MYH11, HLA-DRB4, HLA-DPA1, SGCB

404 71 5085 2.13 0.98 0.18 24.47

KEGG_PATHWAY hsa05310:Asthma 7 0.54 0.02 FCER1A, HLA-DQB1, HLA-DRB1, HLA-DRB4, FCER1G, HLA-DPA1,
HLA-DMB, HLA-DQA1

404 29 5085 3.04 0.98 0.18 25.37

KEGG_PATHWAY hsa00640:Propanoate
metabolism

7 0.54 0.04 ALDH7A1, ALDH1B1, MCEE, SUCLA2, ACAT1, ACSS3, ALDH3A2 404 32 5085 2.75 1 0.25 36.89

KEGG_PATHWAY hsa04916:
Melanogenesis

14 1.08 0.05 PRKCA, WNT5B, GNAI1, CAMK2G, CREB1, EDN1, FZD1, EDNRB,
PLCB4, GNAQ, CAMK2D, CREB3L4, PRKACB, PLCB1

404 99 5085 1.78 1 0.3 44.76

KEGG_PATHWAY hsa04020:Calcium
signaling pathway

21 1.62 0.06 PRKCA, SLC8A1, CAMK2G, PHKA1, PTGFR, ITPR1, ITPR2, EDNRA,
AGTR1, EDNRB, GNAL, CD38, PLCB4, GNAQ, CHRM3, PLN,
CAMK2D, PPP3CB, PRKACB, PLCB1, MYLK

404 176 5085 1.5 1 0.37 54.64

KEGG_PATHWAY hsa04530:Tight
junction

17 1.31 0.06 PRKCA, ACTB, RAB3B, MYL5, MAGI2, ZAK, MYL2, MPDZ, GNAI1,
ACTN1, AMOTL1, PTEN, MYL9, EPB41L2, MYH11, RRAS, JAM2,
PTENP1

404 134 5085 1.6 1 0.36 54.73

KEGG_PATHWAY hsa05222:Small cell
lung cancer

12 0.93 0.07 COL4A4, PTGS2, CDK6, RB1, PTEN, COL4A6, LAMB3, LAMA4,
LAMB2, ITGA6, PIAS1, MYC, PTENP1

404 84 5085 1.8 1 0.36 56.55

KEGG_PATHWAY hsa04360:Axon
guidance

16 1.24 0.08 LIMK2, GNAI1, MET, NTN4, SLIT2, EPHA3, SEMA5A, EPHA4, EPHB6,
CFL2, PPP3CB, SEMA3C, EFNA5, UNC5D, PAK1, RASA1

404 129 5085 1.56 1 0.42 65.75

KEGG_PATHWAY hsa04115:p53
signaling pathway

10 0.77 0.09 SERPINB5, CCND2, SERPINE1, IGF1, CDK6, FAS, GADD45B, THBS1,
CCNG2, PTEN, PTENP1

404 68 5085 1.85 1 0.42 66.77

KEGG_PATHWAY hsa04720:Long-term
potentiation

10 0.77 0.09 PRKCA, PLCB4, GNAQ, CAMK2G, CAMK2D, PPP3CB, PRKACB,
PLCB1, ITPR1, ITPR2

404 68 5085 1.85 1 0.42 66.77

KEGG_PATHWAY hsa04672:Intestinal
immune network for
IgA production

8 0.62 0.09 HLA-DQB1, IL6, TNFSF13B, HLA-DRB1, HLA-DRB4, HLA-DPA1,
HLA-DMB, HLA-DQA1, TGFB2

404 49 5085 2.05 1 0.42 68.02

Barfeld
et

al.BM
C
M
edicalG

enom
ics

 (2014) 7:513 
Page

7
of

26



Table 1 KEGG pathway enrichment analysis for the genes comprising signature 1 (101.6.1) (Continued)

KEGG_PATHWAY hsa05322:Systemic
lupus erythematosus

13 1.01 0.09 HLA-DQB1, HLA-DRB1, C4A, C4B, ACTN1, SSB, C1S, H2AFJ, HLA-
DMB, HLA-DQA1, HLA-DRB4, HLA-DPA1, H3F3B, C2

404 99 5085 1.65 1 0.41 68.42

KEGG_PATHWAY hsa00620:Pyruvate
metabolism

7 0.54 0.09 ALDH7A1, ALDH1B1, DLD, ACYP2, DLAT, ACAT1, ALDH3A2 404 40 5085 2.2 1 0.41 69.45

KEGG_PATHWAY hsa04730:Long-term
depression

10 0.77 0.09 PRKCA, IGF1R, PLCB4, GNAQ, GNAI1, PLA2G12A, IGF1, PLCB1,
ITPR1, ITPR2

404 69 5085 1.82 1 0.4 69.5

KEGG_PATHWAY hsa00980:Metabolism
of xenobiotics by
cytochrome P450

9 0.7 0.1 GSTM1, GSTM2, CYP3A5, GSTA4, ADH5, GSTZ1, GSTO2, GSTT2,
GSTO1

404 60 5085 1.89 1 0.42 71.98

Genes comprising signature 1 (Additional file 5: Table S3) were uploaded into the DAVID gene ontology search engine (http://david.abcc.ncifcrf.gov/). KEGG pathway enrichment was generated and the table
represents the output file ranked based on significance and annotated by column header.
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Table 2 KEGG pathway enrichment analysis for the genes comprising signature 2 (101.6.2)

Category Term Count % PValue Genes List
Total

Pop
Hits

Pop
Total

Fold
Enrichment

Bonferroni Benjamini FDR

KEGG_PATHWAY hsa04610:Complement and
coagulation cascades

10 1.56 0 C1QA, FGG, A2M, C3, KLKB1, CD46, C1R, SERPING1, C1S,
CFD

219 69 5085 3.37 0.33 0.33 2.97

KEGG_PATHWAY hsa04540:Gap junction 10 1.56 0.01 TJP1, ADCY2, GNAI1, PDGFA, TUBB6, GUCY1A3, GJA1,
LPAR1, PRKACB, ITPR2

219 89 5085 2.61 0.88 0.65 14.98

KEGG_PATHWAY hsa04142:Lysosome 11 1.72 0.03 AGA, HGSNAT, LAMP2, CTSK, GM2A, PSAP, LGMN, CTSB,
SCARB2, FUCA1, CLN5

219 117 5085 2.18 0.99 0.77 28.69

KEGG_PATHWAY hsa04270:Vascular smooth
muscle contraction

10 1.56 0.05 PLA2G4A, ADCY2, CALD1, MRVI1, GUCY1A3, PRKCH,
PRKACB, PPP1CB, MYLK, ITPR2

219 112 5085 2.07 1 0.87 46.04

KEGG_PATHWAY hsa04310:Wnt signaling
pathway

12 1.88 0.06 CCND1, PRICKLE1, CCND2, BTRC, NFAT5, CAMK2D, TP53,
MAPK10, PRKACB, FZD5, FZD4, FZD7

219 151 5085 1.85 1 0.85 51.51

KEGG_PATHWAY hsa05330:Allograft rejection 5 0.78 0.07 HLA-DRB5, HLA-DPB1, HLA-E, HLA-DOA, HLA-DRA 219 36 5085 3.22 1 0.84 56.25

KEGG_PATHWAY hsa05416:Viral myocarditis 7 1.1 0.08 CAV1, CCND1, HLA-DRB5, HLA-DPB1, HLA-E, HLA-DOA,
HLA-DRA

219 71 5085 2.29 1 0.86 64.57

KEGG_PATHWAY hsa05332:Graft-versus-host
disease

5 0.78 0.08 HLA-DRB5, HLA-DPB1, HLA-E, HLA-DOA, HLA-DRA 219 39 5085 2.98 1 0.82 65.24

KEGG_PATHWAY hsa04510:Focal adhesion 14 2.19 0.09 CAV1, PDGFA, MAPK10, FLNC, PPP1CB, VCL, CCND1,
CCND2, ITGAV, COL6A2, RAP1A, THBS1, PIK3R1, MYLK

219 201 5085 1.62 1 0.81 67.5

Genes comprising signature 2 (Additional file 6: Table S4) were uploaded into the DAVID gene ontology search engine (http://david.abcc.ncifcrf.gov/). KEGG pathway enrichment was generated and the table
represents the output file ranked based on significance and annotated by column header.
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Table 3 KEGG pathway enrichment analysis for the genes comprising signature 3 (101.6.3)

Category Term Count % PValue Genes List
Total

Pop
Hits

Pop
Total

Fold
Enrichment

Bonferroni Benjamini FDR

KEGG_PATHWAY hsa04110:Cell
cycle

36 0.47 9.03E-20 E2F1, E2F2, E2F3, TTK, CHEK1, PTTG1, CCNE2, CCNE1, CDKN2A,
MCM7, CDKN2C, CDKN2D, ORC6L, TFDP2, BUB1, CCNA2, STAG1,
CDC7, CDC6, RBL1, SKP2, ESPL1, CDC20, MCM2, CDC25C, MCM4,
CDC25A, CDC25B, CDKN1C, CCNB1, CCNB2, MAD2L1, PLK1,
GSK3B, BUB1B, MAD2L2

225 125 5085 6.51 1.29E-17 1.29E-17 1.07E-16

KEGG_PATHWAY hsa03030:DNA
replication

12 0.16 2.15E-07 RFC5, PRIM1, MCM7, RFC4, POLE2, LIG1, POLA1, POLA2, MCM2,
RNASEH2A, MCM4, FEN1

225 36 5085 7.53 3.08E-05 1.54E-05 2.55E-04

KEGG_PATHWAY hsa04114:Oocyte
meiosis

18 0.23 4.82E-06 SGOL1, AURKA, CDC20, ESPL1, PTTG1, CDC25C, CCNE2, CCNB1,
CCNE1, CCNB2, MAD2L1, ADCY9, CALML3, PLK1, BUB1, FBXO5,
CAMK2B, MAD2L2

225 110 5085 3.7 6.89E-04 2.30E-04 0.01

KEGG_PATHWAY hsa04914:
Progesterone-
mediated oocyte
maturation

14 0.18 8.26E-05 HSP90AA1, CDC25C, CDC25A, CDC25B, CCNB1, CCNB2, MAD2L1,
KRAS, ADCY9, PLK1, BUB1, MAD2L2, PIK3R3, CCNA2

225 86 5085 3.68 0.01 0 0.1

KEGG_PATHWAY hsa04115:p53
signaling
pathway

10 0.13 0 CCNE2, CCNB1, CCNE1, CDKN2A, CCNB2, RRM2, TSC2, CHEK1,
PMAIP1, GTSE1

225 68 5085 3.32 0.32 0.07 3.16

KEGG_PATHWAY hsa05222:Small
cell lung cancer

11 0.14 0 E2F1, CCNE2, E2F2, CCNE1, CKS1B, E2F3, PTK2, SKP2, PIAS2,
PIK3R3, ITGA2B

225 84 5085 2.96 0.4 0.08 4.12

KEGG_PATHWAY hsa04360:Axon
guidance

14 0.18 0 PLXNA1, EFNB3, PLXNA2, DPYSL5, EPHB1, PTK2, KRAS, UNC5B,
PAK2, UNC5A, FYN, GSK3B, SRGAP1, SRGAP2

225 129 5085 2.45 0.45 0.08 4.83

KEGG_PATHWAY hsa00240:
Pyrimidine
metabolism

11 0.14 0.01 PRIM1, TYMS, POLR3K, POLE2, RRM2, RRM1, DCK, POLA1, POLA2,
NME7, TK1

225 95 5085 2.62 0.71 0.14 9.63

KEGG_PATHWAY hsa05219:Bladder
cancer

7 0.09 0.01 E2F1, RPS6KA5, E2F2, E2F3, CDKN2A, KRAS, PGF 225 42 5085 3.77 0.74 0.14 10.67

KEGG_PATHWAY hsa05215:Prostate
cancer

10 0.13 0.02 E2F1, CCNE2, E2F2, CCNE1, E2F3, HSP90AA1, KRAS, GSK3B, PIK3R3,
CTNNB1

225 89 5085 2.54 0.9 0.2 17.14

KEGG_PATHWAY hsa00230:Purine
metabolism

14 0.18 0.02 POLR3K, POLA1, DCK, POLA2, HPRT1, GMPS, NME7, GART, PRIM1,
ADCY9, POLE2, RRM2, PKLR, RRM1

225 153 5085 2.07 0.91 0.2 18.08

KEGG_PATHWAY hsa03410:Base
excision repair

6 0.08 0.02 POLE2, UNG, LIG1, MBD4, NTHL1, FEN1 225 35 5085 3.87 0.92 0.19 18.86

KEGG_PATHWAY hsa05214:Glioma 8 0.1 0.02 E2F1, E2F2, E2F3, CDKN2A, KRAS, CALML3, CAMK2B, PIK3R3 225 63 5085 2.87 0.94 0.2 21.16

KEGG_PATHWAY hsa05200:
Pathways in
cancer

23 0.3 0.03 E2F1, E2F2, FZD8, CKS1B, MSH6, E2F3, HSP90AA1, PGF, FGF9,
SKP2, BIRC5, FZD2, CTNNB1, CTNNA2, CCNE2, CCNE1, PTK2,
CDKN2A, KRAS, GSK3B, PIAS2, PIK3R3, ITGA2B

225 328 5085 1.58 0.99 0.27 30.48

KEGG_PATHWAY hsa00670:One
carbon pool by
folate

4 0.05 0.03 TYMS, MTHFD2, SHMT2, GART 225 16 5085 5.65 0.99 0.26 31.03

KEGG_PATHWAY hsa04916:
Melanogenesis

9 0.12 0.07 FZD8, KRAS, ADCY9, CALML3, GSK3B, GNAS, CAMK2B, FZD2,
CTNNB1

225 99 5085 2.05 1 0.47 57.19
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Table 3 KEGG pathway enrichment analysis for the genes comprising signature 3 (101.6.3) (Continued)

KEGG_PATHWAY hsa05210:
Colorectal cancer

8 0.1 0.08 FZD8, MSH6, KRAS, GSK3B, BIRC5, FZD2, PIK3R3, CTNNB1 225 84 5085 2.15 1 0.48 60.57

KEGG_PATHWAY hsa03430:
Mismatch repair

4 0.05 0.08 RFC5, MSH6, RFC4, LIG1 225 23 5085 3.93 1 0.48 61.82

KEGG_PATHWAY hsa05223:Non-
small cell lung
cancer

6 0.08 0.09 E2F1, E2F2, E2F3, CDKN2A, KRAS, PIK3R3 225 54 5085 2.51 1 0.5 66.23

KEGG_PATHWAY hsa05218:
Melanoma

7 0.09 0.09 E2F1, E2F2, E2F3, CDKN2A, KRAS, FGF9, PIK3R3 225 71 5085 2.23 1 0.5 67.79

KEGG_PATHWAY hsa05212:
Pancreatic cancer

7 0.09 0.1 E2F1, E2F2, E2F3, CDKN2A, KRAS, PGF, PIK3R3 225 72 5085 2.2 1 0.5 69.77

Genes comprising signature 3 (Additional file 7: Table S5) were uploaded into the DAVID gene ontology search engine (http://david.abcc.ncifcrf.gov/). KEGG pathway enrichment was generated and the table
represents the output file ranked based on significance and annotated by column header.
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Table 4 KEGG pathway enrichment analysis for the genes comprising signature 3 (101.6.4)

Category Term Count % PValue Genes List
Total

Pop
Hits

Pop
Total

Fold
Enrichment

Bonferroni Benjamini FDR

KEGG_PATHWAY hsa00100:Steroid biosynthesis 3 0.1 0.03 SQLE, FDFT1, SC4MOL 86 17 5085 10.43 0.97 0.97 30.81

KEGG_PATHWAY hsa05200:Pathways in cancer 11 0.38 0.05 LAMA1, HRAS, PTK2, SOS1, CBL, VEGFA, PPARG,
RALA, LEF1, MDM2, LAMB1

86 328 5085 1.98 0.99 0.93 41.08

KEGG_PATHWAY hsa04510:Focal adhesion 8 0.27 0.05 LAMA1, HRAS, PTK2, FLT1, DIAPH1, SOS1, VEGFA,
LAMB1

86 201 5085 2.35 1 0.85 44.04

KEGG_PATHWAY hsa00330:Arginine and proline
metabolism

4 0.14 0.06 ARG1, P4HA2, P4HA1, CPS1 86 53 5085 4.46 1 0.82 49.31

KEGG_PATHWAY hsa05216:Thyroid cancer 3 0.1 0.08 HRAS, PPARG, LEF1 86 29 5085 6.12 1 0.86 63

Genes comprising signature 4 (Additional file 8: Table S6) were uploaded into the DAVID gene ontology search engine (http://david.abcc.ncifcrf.gov/). KEGG pathway enrichment was generated and the table
represents the output file ranked based on significance and annotated by column header.
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Figure 1 (See legend on next page.)
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(See figure on previous page.)
Figure 1 Gene signatures capable of discriminating between prostate cancer subgroups and classify metastatic disease. Gene
signatures generated using the Varambally dataset and found to be significant discriminators of metastatic disease and primary/localised cancers
(Additional file 10: Table S8) when applied to the Tomlins and Rawaswamy datasets were used to cluster samples in these datasets in a heatmap.
The gene signatures represented are those capable of characterising samples from at least one progression stage (Fischer’s exact < = 0.05). Gene
signatures are rows and samples are columns. The colour coded bar at the base of the heatmap indicates the clinical grouping for each sample
as also defined in the key. Metastatic hormone refractory, metastatic hormone naïve and hormone refractory vs. naïve represent prostate cancer
cases from the Tomlins dataset, as do PIN (prostatic intraepithelial neoplasia) and primary carcinoma. The other categories (metastatic and
primary) are samples from the Rawaswamy dataset and are metastatic and primary cancers from multiple organ sites, not simply the prostate
gland. The blue bar graph on the right-hand side of the heatmap depicts the number of genes in each signature which are differentially
expressed and contribute to the sample clustering in this analysis. For signature 1 (dist 101.6.1 and Additional file 5: Table S3) this is 1748 genes
in total as highlighted and other bars are numbers of genes relative to this. The colour scale represents the mean log2 fold change for differential
gene signatures (> = abs log2(2)). Red indicates module induction, green repression. Gene signatures significant in both directions are indicated
in yellow. Using the mean module log2 fold change we clustered the samples and modules using hierarchical clustering with euclidean distance
as a measure of dissimilarity. Data points that contained both induced and repressed values have been excluded from the clustering.

Barfeld et al. BMC Medical Genomics  (2014) 7:513 Page 14 of 26
Four large gene signatures were generated at the least
stringent cut-point consisting of 1334 genes referred to
as signature 1 (annotated as 101.6.1: Additional file 5:
Table S3), 652 genes referred to as signature 2 (anno-
tated as 101.6.2: Additional file 6: Table S4), 836 genes
referred to as signature 3 (annotated as 101.6.3:
Additional file 7: Table S5) and 357 genes referred to as
signature 4 (annotated as 101.6.4: Additional file 8:
Table S6). Signatures 1 and 2 contained genes that pre-
dominantly discriminated between localised PCa and
benign tissue. Using DAVID ontology enrichment
search (http://david.abcc.ncifcrf.gov/) to determine
whether KEGG pathways were enriched within these
signatures, we identified focal adhesions (hsa04510:
Focal adhesion, p-value 7.21x10−6) (Table 1) as the most
significant pathway for signature 1and complement and
coagulation cascades for signature 2 (hsa04610: Com-
plement and coagulation cascades, p-value 0.002)
(Table 2). The 38 genes associated with the focal adhe-
sion annotation (p-value 7.21x10−6) in signature 1 are
listed in Table 1 and were all significantly downregu-
lated in metastatic samples relative to benign and local-
ised PCa. Half of these genes were laminins (eg. laminin
alpha subunit-4 (LAMA4)), integrins (eg. integrin, alpha
1 (ITGA1) and five others), thrombospondins (throm-
bospondins 1 and 4 (THBS1/4), collagens, actins and
myosins which may reflect the remodelling of the extra-
cellular matrix and loss of stroma in particular during
the transition to metastasis. The enrichment for com-
plement and coagulation cascades in signature 2
(p value 0.002) included complement (eg. C1R, C1QA,
C3) and plasma factors as well as serpin peptidase in-
hibitor as listed in Table 2 and were also predominantly
downregulated in metastatic cases versus benign tissue
and localised PCa. Collectively, these pathway enrich-
ments might reflect a combination of extracellular
matrix changes and the contribution of infiltrating im-
mune cells and the inflammatory response. However,
given that the Varambally dataset consists of whole-
tissue sections it is not possible in this meta-analysis to
precisely attribute these signatures to a particular bio-
logical process.
By contrast, signatures 3 and 4 contained genes that

predominantly discriminated between metastatic cases
and benign tissue samples. The dominant pathway for sig-
nature 3 was cell cycle regulation (hsa04110: Cell cycle,
p-value 9x10−20) and the enrichment arose from the over-
expression of a total of 36 genes linked to this process in
the metastatic cases versus benign tissue. The genes are
listed in Table 3 and included E2F transcription factors,
DNA replication licensing factors, cyclin-dependent kin-
ase inhibitors, cell division cycle genes and components of
the mitotic spindle checkpoint control apparatus. Many of
these overexpressed genes also constitute a prognostic cell
cycle progression gene signature, which has been validated
at the transcript level in biopsy samples [14]). For signature
4, steroid biosynthesis was the most enriched pathway
(hsa00100: Steroid biosynthesis, p-value 0.03 – squalene
epoxidase (SQLE), farnesyl-diphosphate farnesyltransferase
1 (FDFT1), sterol-C4-methyl oxidase-like gene (SC4MOL).
In this case the enrichment was due to the differential ex-
pression of three genes that are functionally tightly linked
in some cases on consecutive steps in the cholesterol
biosynthesis pathway. FDFT1 was overexpressed, SC4MOL
was downregulated and SQLE showed a switch in expres-
sion in which one probe on the array was repressed and
another was overexpressed (Table 4). Downregulation
occured predominantly in localized PCa relative to benign
tissue and expression seemed higher in metastatic cases
than localized prostate cancers. FDFT1 overexpression, and
increases in the expression of one probe for SQLE, were
most significant in the metastatic cases compared to benign
tissue and localised disease. These are enzymes associated
with cholesterol biosynthesis in particular and collectively
catalyse 3 out of 4 consecutive reactions in the conversion
of farnesyl pyrophosphate to lathosterol via squalene.
FDFT1 catalyses the production of squalene from farnesyl
pyrophosphate, SQLE catalyses the conversion of squalene

http://david.abcc.ncifcrf.gov/


Table 5 KEGG pathway enrichment for the 71-gene signature capable of subclustering localised prostate cancer cases across multiple datasets

Category Term Count % PValue Genes List
Total

Pop
Hits

Pop
Total

Fold
Enrichment

Bonferroni Benjamini FDR

KEGG_PATHWAY hsa04270:Vascular smooth muscle
contraction

5 6.94 0 ACTG2, MYH11, KCNMB1, MYLK,
MYL9

26 112 5085 8.73 0.12 0.12 1.99

KEGG_PATHWAY hsa05414:Dilated cardiomyopathy 4 5.56 0.01 DES, PLN, IGF1, TPM2 26 92 5085 8.5 0.47 0.27 9.6

KEGG_PATHWAY hsa04960:Aldosterone-regulated sodium
reabsorption

3 4.17 0.02 IGF1, ATP1A2, IRS1 26 41 5085 14.31 0.66 0.31 15.92

KEGG_PATHWAY hsa04310:Wnt signaling pathway 4 5.56 0.04 SFRP1, CAMK2G, PRICKLE2,
MYC

26 151 5085 5.18 0.91 0.45 31.53

KEGG_PATHWAY hsa05410:Hypertrophic cardiomyopathy
(HCM)

3 4.17 0.06 DES, IGF1, TPM2 26 85 5085 6.9 0.99 0.57 49.28

Genes were uploaded into the DAVID gene ontology search engine (http://david.abcc.ncifcrf.gov/). KEGG pathway enrichment was generated and the table represents the output file ranked based on significance and
annotated by column header.
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Table 6 KEGG pathway enrichment analysis for the entire set of overexpressed genes in localised prostate cancer versus benign tissue in the Varambally
dataset (GSE3325)

Category Term Count % PValue Genes List Total Pop Hits Pop Total Fold Enrichment Bonferroni Benjamini FDR

KEGG_PATHWAY hsa00512:O-Glycan biosynthesis 3 0.34 0.01 GALNTL4, GCNT1,
ST6GALNAC1

26 30 5085 19.56 0.43 0.43 8.95

KEGG_PATHWAY hsa04610:Complement and
coagulation cascades

3 0.34 0.04 C4A, C4B, SERPINA1 26 69 5085 8.5 0.94 0.75 36.76

KEGG_PATHWAY hsa05322:Systemic
lupus erythematosus

3 0.34 0.08 C4A, C4B, HLA-DMB 26 99 5085 5.93 1 0.83 58.75

Genes were uploaded into the DAVID gene ontology search engine (http://david.abcc.ncifcrf.gov/). KEGG pathway enrichment was generated and the table represents the output file ranked based on significance and
annotated by column header.
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to 2,3-epoxysqualene and SC4MOL catalyses the conver-
sion of lanosterin to lathosterol. The two metabolites con-
secutively further downstream in the pathway are
dehydrocholesterol and cholesterol. FDFT1 overexpression
has previously been associated with aggressive PCa [15]).
This is particularly intriguing since metastatic PCa is char-
acterised by increases in the proliferative index of tumours
[16] and the ability to produce autocrine steroid hormones
from cholesterol in order to maintain androgen receptor
activity [17]. Consequently the observation of increased
A

Figure 2 Differential expression of a 71-gene signature classifier in a
RNA-seq dataset for prostate cancer (TCGA-PRAD). The expression valu
localised prostate cancer from other samples in all three interrogated datas
exon-array dataset (Taylor et al.) and B. TCGA RNA-seq dataset for prostate
mean of the sample groups (PRIMARY TUMOUR/SOLID TISSUE NORMAL) is
levels of these enzymes in metastatic cases may hypothetic-
ally imply enhanced cholesterol biosynthesis to sustain its
use for steroid hormone biogenesis by the tumours.
Discrimination between cancer and benign control tis-

sue and also between metastatic disease and other clin-
ical cases represents an important goal of biomarker
research. Thus, we used these gene signatures to classify
clinical samples in prostate cancer samples and meta-
static tissue samples in two additional datasets. One
consisted of prostate cancer samples isolated by laser
B

prostate cancer exon-array dataset (Taylor et al.) and the TCGA
es of the 71-gene signature (dist.0.6.34) capable of subclustering
ets are shown in two independent datasets, A. a prostate cancer
cancer (TCGA-PRAD) were used. Values were log2 normalized and the
shown.



Table 7 Comparison of the performance of a 31-gene signature with ERG, AR and KLK3 in discriminating between
benign tissue, localised prostate cancer and metastatic disease

Gene/signature AUC benign-local AUC benign-metastatic AUC localized-metastatic

KLK3 0.5204082 0.9104938 0.8707483

ERG 0.812616 0.9326599 0.6099773

AR 0.6581633 0.8395062 0.8435374

31 Gene signature 0.994898 0.9938272 0.957672

Derived from the Grasso Data

Data were downloaded from Grasso et al.,. ROC statistics were computed in an evaluation sample set having established the weighting for genes in the signature
using logistic regression in a test sample set. We report the area under the curve (AUC) for each transcript and for the signature for each of three pairwise
comparisons as generated using the R package ROCR.
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capture microdissection generated by Tomlins et al. [5]
and the other contained expression array data from pri-
mary and metastatic tumours from multiple tissue sites
generated by Ramaswamy et al. [6].
The Tomlins dataset consisted of various refined sub-

groups based on isolation of cell sub-populations including
stromal fractions, epithelial fractions, localised prostate can-
cer and hormone-naïve and refractory metastatic disease.
The Ramaswamy et al. dataset consisted of cancers from 14
organ sites with paired normal samples as well as normal
tissues. In each dataset, we asked whether our signatures
and sub-signatures could discriminate between the sample
groups. To determine this, we first assessed the mean fold-
change in the expression of each gene signature in each
sample group in both datasets (Additional file 9: Table S7).
We then performed a Fischer’s Exact test to identify signa-
tures that were capable of discriminating between localised
prostate cancer, metastatic prostate cancer and the other
sample groups defined in all three published studies –
Varambally et al., Tomlins et al., and Ramaswamy et al.
(refer to Materials and Methods for more detail on sub-
groups/sample types) (Additional file 10: Table S8). Gene
ontologies were assigned to these statistically significant
gene clusters and the clustering is represented in a heatmap
for the classifying modules combining both the Tomlins
and Ramaswamy sample sets (Figure 1 and Additional files
10 and 11: Tables S8 and S9 for gene ontology annotations).
The smallest gene signature (dist.0.6.34) capable of subclus-
tering localised prostate cancer from other samples in all
three datasets consisted of 71 genes (Additional file 12).
This small signature was a sub-component of the original
signature 1 (101.6.1). The most significantly enriched bio-
logical process associated with these genes was vascular
smooth muscle contraction (hsa04270: Vascular smooth
muscle contraction, p-value 2x10−3) (Table 5). The four
genes within this signature that were individually most sig-
nificantly overexpressed in localised prostate cancers com-
pared to benign tissues and metastatic cases were an
oncogenic transcription factor, v-myc avian myelocytomato-
sis viral oncogene homolog (MYC), a proteoglycan capable
of sequestering transforming growth factor beta called
fibromodulin (FMOD), a mitochondrial enzyme associated
with fatty acid metabolism called glycine N-acyltransferase-
like protein 1 (GLYATL1) and an extraneuronal monoamine
transporter called solute carrier family 22 member 3
(SLC22A3). MYC has been shown to be overexpressed in
prostate cancer [18] and to drive tumourigenesis in a trans-
genic model of the disease [19]. Fibromodulin has not been
widely studied in cancer and has not been implicated in
prostate cancer. It is, however, known to be significantly
overexpressed in chronic lymphocytic leukemia (CLL) ver-
sus normal B lymphocytes [20] and associated with a resist-
ance signature to DNA damage-induced apoptosis in CLL
[21]. Furthermore, the expression of fibromodulin is known
to be induced in leiomyoma in response to TGF-beta
through Smad and MAP kinase signalling [22]. GLYATL1
has not been associated with cancers. SLC22A3 has been re-
ported to be overexpressed in localised prostate cancer at
the transcript level when compared to benign tissue [5].
The other genes within this coexpression signature

were downregulated in prostate cancers versus benign
tissue and the majority were myosins, such as myosin,
heavy polypeptide 11, smooth muscle (MYH11), myocar-
din (MYOCD), and myosin, light chain 9, regulatory
(MYL9)thus accounting for the pathway enrichment for
vascular smooth muscle contraction. As prostate cancer
progresses to more advanced stages there is a depletion
of stromal cells from the tissue and this perhaps explains
the dominant contribution from downregulated muscle-
associated genes to the signature and also other features
of pathway enrichments particularly of the focal adhesion
classification [23]. In order to determine whether our sig-
nature was consistent across more recent datasets, we
downloaded an exon-array dataset generated by Taylor
et al., and also The Cancer Genome Atlas (TCGA) data
recently generated using high-throughput transcript se-
quencing of prostate cancers [24] (data generated by the
data generated by the TCGA Research Network: http://
cancergenome.nih.gov/). MYC and GLYATL1 remain sig-
nificantly overexpressed features (>1.3 fold) within these
signatures in both datasets (Figure 2) with the vast major-
ity of other gene transcripts downregulated including
those enriched in the KEGG pathway analysis for vascular
smooth muscle contraction.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
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Whilst our 71 gene signature mainly contains differen-
tially expressed genes that are downregulated in cancers
versus benign tissues, most prostate cancer biomarkers that
are currently under evaluation are overexpressed transcripts
and proteins in the disease state. Consequently, we next
sought to evaluate genes that were overexpressed in local-
ised prostate cancers in signatures 1-4 more thoroughly in
other datasets. There were 97 annotated gene transcripts in
total overexpressed (Additional file 13). We had previously
performed pathway analyses on signatures 1-4 which in-
cluded both up- and downregulated genes (Tables 1, 2, 3
and 4). We now repeated this solely for the 97 overexpressed
genes and this yielded pathway enrichment for O-glycan
biosynthesis (hsa00512: O-glycan biosynthesis, p-value
0.009) as the most significant KEGG enrichment (Table 6).
To further refine this gene set, we then interrogated

the Oncomine compendium of expression array data to
determine which of these 97 genes are significantly over-
expressed in at least three additional independent pros-
tate cancer datasets when a Top 1% overexpression
threshold was applied together with a p-value threshold
of 1x10−4 [25]. Thirty three annotated genes, around
one-third of the 97-gene set fulfilled these criteria. This
included 3 of the 4 overexpressed genes (MYC,
GLYATL1 and SLC22A3) in the 71 gene signature sub-
grouping prostate cancers in the Varambally, Tomlins
and Ramaswamy studies (highlighted in bold in Additional
file 13). This 33 gene set also included four of the five gly-
cosylating enzymes (UDP N-acetylglucosamine pyrophos-
phorylase 1 (UAP1), glucosaminyl (N-acetyl) transferase 1,
core 2 (GCNT1), beta-1,3-glucuronyltransferase 1 (B3GAT1)
and RAP1 GTPase activating protein 2 (RAP1GAP2/
GARNL4)) contributing to the ontology enrichment for
glycan biosynthesis in the larger 97 gene set. Notably,
others and we have recently reported that UAP1 and
GCNT1 are overexpressed in prostate cancer tissue using
immunohistochemistry. In addition, an aminosugar conju-
gate, O-linked N-acetylglucosamine (O-GlcNAc), is also
significantly elevated in prostate cancer [26,27]. Further-
more, the UAP1 transcript has also been reported to be de-
tectable in urine and plasma samples as a component of a
multi-gene signature [28]. Additionally, UDP sugar conju-
gates have been identified as elevated in prostate cancers
through metabolomics and O-linked N-acetylglucosamine
is an overexpressed prostate cancer tissue biomarker, which
can be conjugated to a variety of proteins to affect their sta-
bility and activity including c-Myc [29,30]. Consequently,
the presence of these genes encoding glycosylating enzymes
within this signature has been partly validated in tissue at
the proteins level and suggests that more systematic profil-
ing of glycoproteins may reveal new biomarkers.
Biologically, it is interesting to consider what might con-

tribute to the increased expression of these genes in pros-
tate cancers. Prostate cancer is driven by the dysregulated
expression and activity of a number of transcription fac-
tors. The most notable example is the androgen receptor
but others are overexpressed through chromosomal rear-
rangements and gene fusions as well as copy number vari-
ation as prostate cancer develops and progresses. This in
turn has a significant impact on the expression of gene
targets for these transcription factors and makes it plaus-
ible that a proportion of overexpressed genes reflect
changes in transcription factor expression and activity. In
this context, it is noteworthy that a total of five transcrip-
tion factors were present in this group of 33 annotated
genes ((single-minded family bHLH transcription factor 2
(SIM2), MYC, distal-less homeobox 1 (DLX1), homeobox
C6 (HOXC6) and v-ets avian erythroblastosis virus E26
oncogene homolog (ERG)).
c-Myc is a well-established oncogenic transcription fac-

tor, which is overexpressed through chromosomal amplifi-
cation on 8q24 but also through post-translational events,
which may include glycosylation of the N-terminal trans-
activation and concomitant antagonism of proteasomal
degradation [18,31,32]. ERG is part of a highly prevalent
gene fusion affecting chromosome 21 and driven by the
activity of the AR [33]. It is overexpressed in around 50%
of prostate cancers through a chromosomal rearrange-
ment, which fuses it to the upstream androgen receptor-
dependent regulatory element controlling TMPRSS2 ex-
pression. SIM2 overexpression is associated with changes
in transcriptional control affecting other loci on chromo-
some 21 [34,35]. Target genes for MYC and ERG have been
extensively explored in clinical and cell-line datasets using
expression array profiling with targeted knockdown and
overexpression in prostate cancer cells. These approaches
have linked MYC to processes including ribosome biogen-
esis and splicing and ERG to cell motility and migration,
respectively [36-38]. Whilst the 33 genes did not include
significant number of established MYC target genes, several
reported ERG target were present including B3GAT1,
phospholipase A1 member A (PLA1A) and collagen, type
IX, alpha 2 (COL9A2) [39]. In addition, there were a num-
ber of direct AR targets including UAP1 and GCNT
[30,40]. Importantly, whilst the AR is the principal tran-
scription factor driving all stages of prostate cancer devel-
opment, its target genes cannot be easily inferred by
coexpression with the AR in contrast to ERG relative to
ERG target genes. Target genes for HOXC6, SIM2 and
DLX1 are less well defined in prostate cancers but given
the presence of ERG and AR target genes within this gene-
set it is highly likely that they also contribute, being tran-
scription factors, to the expression of some of these genes.
A more systematic understanding of the interplay between
these transcription factors and dependent gene networks
will emerge in future studies. This will require targeting the
expression of the transcription factors in experimental
model systems and profiling concomitant changes in
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transcription factor recruitment, chromatin architecture
and gene expression.
In the interim, however, it was possible to infer co-

dependency based on co-clustering of genes in clinical sam-
ples. We did so in two additional datasets, an exon-array
dataset generated by Taylor et al. and a transcriptomic
dataset generated for prostate cancer through high-
throughput sequencing by the The Cancer Genome Atlas
(TCGA) (Figure 3). In both datasets, we were able to firstly
reconfirm the ability of these 33 genes to discriminate be-
tween localised prostate cancer and benign tissue samples
(Figure 3). Secondly, ERG co-clustered within these 33
genes with bona fide target genes such as B3GAT1 and
PLA1A corroborating a contribution at least from ERG to
this prostate cancer-specific overexpression signature [39].
Intriguingly, another transcription factor, DLX1, also co-
clustered with ERG raising the possibility of a transcription
A B

Figure 3 Heatmaps confirming the clustering ability of the 33-gene s
and the TCGA RNA-seq dataset for prostate cancer (TCGA-PRAD). The
prostate cancer exon-array dataset (Taylor et al.), and B. TCGA RNA-seq dat
transformed, normalized for high level mean and variance and hierarchical
columns. The colour coded bars indicate expression values and the clinical
factor hierarchy in which early emergence of an ERG gene
fusion may trigger aberrant expression of other develop-
mental transcription factors.
Currently prostate-specific antigen (PSA)/kallikrein 3

(KLK3) is the most widely used protein biomarker for
prostate cancer. The androgen receptor (AR) is the most
significant transcription factor driving prostate cancer,
but is also expressed at high levels in untransformed lu-
minal epithelial cells and therefore is predominantly
used as a transcript biomarker associated with metastatic
disease and concomitant copy-number amplification
[41]. Gene fusions have been detected which signifi-
cantly elevate the transcript levels of ETS transcription
factors and the most prevalent example in prostate can-
cer is the TMPRSS2-ERG fusion [33]. Detection of the
fusion has been reported in biological fluids including
urine samples [42].
ignature in a prostate cancer exon-array dataset (Taylor et al.)
33-gene signature was applied to two independent datasets, A. a
aset for prostate cancer (TCGA-PRAD). Expression values were log2
ly clustered using Euclidian distance. Genes are rows and samples are
grouping for each sample as defined in the keys.



Figure 4 Receiver operating characteristic (ROC) curves for discrimination between localised prostate cancer and benign cases,
metastatic and benign cases and metastatic and prostate cancers using a 31-gene signature (row 1), AR (row 2), ERG (row 3) and KLK3
(row 4).
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Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Workflow for the identification of robust gene signatures and gene sets for clustering prostate cancer cases. In step 1, we identified all
statistically significant differentially expressed Affymetrix array probes in a small dataset consisting of 13 macrodissected clinical samples encompassing
localised benign prostatic hyperplasia, localised prostate cancer and metastatic disease (GSE3325). We then generated gene signatures from these based on
gene coexpression at varying stringency thresholds. These gene signatures were then applied to two additional datasets, a microdissected dataset (Tomlins
et al.) and a multi-tissue site cancer and metastatic dataset (Ramaswamy et al.). A large number of the coexpression gene signatures clustered localised
prostate cancers from metastatic disease and prostate metastases from other sample sets. The most compact gene signature able to do so consisted of 71
genes (A) and we assessed its expression pattern in two additional datasets, an exon-array dataset (Taylor et al.) and in a RNA-sequenced dataset (TCGA-
PRAD). Few of the genes in the significant coexpression gene signatures were overexpressed genes in localised prostate cancers. In the second phase of the
study, we abstracted all of the overexpressed genes and refined this down to a set of 33 genes based on significant overexpression in additional publicly
available prostate cancer microarray datasets housed within the Oncomine database (B). These genes also effectively clustered benign versus cancer cases in
an exon-array dataset (Taylor et al.) an expression microarray dataset (Grasso et al.) and a RNA-sequenced dataset (TCGA-PRAD) (C and D). In conclusion, it is
possible to generate gene classifiers of clinical prostate cancer from a small dataset of macrodissected samples with the capacity to classify larger sequenced
and microdissected datasets based on clinical characteristics.
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To assess the performance of the 33-gene signature in
comparison to KLK3/PSA, AR and ERG we interrogated
an additional independent expression array dataset gen-
erated by Grasso et al., and consisting of benign tissue,
localised prostate cancer and metastatic cases [43]. This
dataset was generated using two different array plat-
forms on distinct sets of samples (Methods section).
Cysteine-rich secretory protein-3 (CRISP3) was excluded
from the signature due to missing values in the datasets
for this gene and prostate cancer antigen 3 (PCA3) was
not represented on the arrays leaving a 31-gene signa-
ture for evaluation. In the first phase of the signature
evaluation we assessed the weighted contribution of each
gene in the signature using a logistical regression model
on a training dataset consisting of the samples profiled
on an Agilent oligo microarray platform. We then used
the samples profiled on a second platform, the 4x44K
Agilent microarray to evaluate the performance of the
signature and compared this to KLK3, ERG and AR.
Three pairwise sample comparisons were undertaken -
benign versus localised prostate cancer, benign versus
metastatic cases and localised prostate cancers versus
metastatic cases. Whilst all three transcripts and the sig-
nature discriminated between metastatic samples and
benign tissue with good specificity and sensitivity as
reflected in an area-under-the-curve (AUC) ranging
from 0.83 for the AR to 0.99 for the signature, only the
signature provided an AUC of ≥ 0.95 for all three pair-
wise comparisons (Table 7). Since both the AR and
KLK3 are expressed in both untransformed prostate cells
and prostate cancer it is perhaps not surprising that nei-
ther yielded an AUC of >0.65 in discriminating between
localised prostate cancer and benign tissue samples. By
contrast ERG expression is driven by a cancer-associated
gene fusion and the AUC was 0.81 (Table 7). AR is amp-
lified and overexpressed in metastatic prostate cancers
and this likely explains the higher AUC for this marker
(0.84) in discriminating metastatic cases from localised
prostate cancers [41]. KLK3/PSA was also higher, 0.87,
in this context. ERG by contrast whilst consistently
overexpressed in the majority of localised prostate can-
cers is of variable utility as a prognostic marker accord-
ing to the study cohort examined associating variously
positively or negatively with progression and metastasis
[44-46]. In our evaluation the AUC for ERG in discrim-
inating localised prostate cancer from metastatic cases
was 0.61, performing more poorly than as a discrimin-
ator of localised prostate cancer from benign tissue sam-
ples. The AUC differences between the markers and the
signature in each pairwise comparison of the sample sets
was also visualised in receiver operating characteristic
(ROC) curves (Figure 4). These comparisons highlight
the importance of using a multi-gene signature since no
single gene provides robust discrimination at all stages
of the disease, no doubt reflecting changes in the under-
lying biological drivers during disease progression. We
provide in addition AUC values for each individual gene
and array probe for each of the pairwise sample compar-
isons in the test set (Additional file 14: Table S12) and
the validation set (Additional file 15: Table S13). Al-
though beyond the scope of this paper we hope that this
will assist in further evaluation of the signature by re-
searchers in the field.

Conclusions
In conclusion, in this study we have used a multi-step ap-
proach to refine gene signatures derived from diverse tran-
script detection platforms and sample types in order to
arrive at a robust gene signature able to discriminate be-
tween PCa and benign tissue (Figure 5). This is the first
time that this has been attempted and demonstrates that
value exists in transcript signatures generated from
amongst the earliest microarray studies right through to
high-throughput sequencing. In brief, beginning with a
small expression array dataset consisting of 13 macrodis-
sected samples, we have been able to derive gene signatures
capable of subclustering localised PCa and metastases in a
larger microdissected and a multi-cancer dataset (Figure 5).
This highlights that there are valuable gene transcript sig-
natures that can be robust despite cellular heterogeneity in
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PCa and the evolution of transcript detection technologies.
In addition, we have discovered that gene transcripts that
are significantly overexpressed within these signatures are
also overexpressed in much more recently acquired exon-
array and sequence-based TCGA data, transcript detection
platforms that were unavailable when the Varambally,
Tomlins and Ramaswamy studies were undertaken
(Figure 5). Finally, we have evaluated the performance of
these transcripts as a signature in discriminating between
benign tissue samples, localised PCa and metastatic disease
in an additional dataset generated by Grasso et al. ROC
curves reveal that the signature exceeds the performance of
ERG, KLK3 or the AR as a classifier. Intriguingly, one third
of these genes are glycosylating enzymes and transcription
factors. PCa is significantly driven by a transcription factor,
the AR, but there is increasing evidence of contributions by
others and of interplays between them and indeed our sig-
nature does not include the AR itself. However, it includes
both established examples (MYC and ERG) but also others
that have so far been less studied (SIM2, DLX1 and
HOXC6). Mechanistically, future work will investigate this
transcriptional co-dependency in more detail and clinically
these signatures will be further evaluated in clinical cohorts.
Additional files

Additional file 1: Figure S1. W(C) values generated from branch
length thresholds plotted against the number of clusters produced for
single, average, complete, ward and mcquitty agglomerative hierarchical
and divisive clustering methods.

Additional file 2: Table S1. Annotated Affymterix probes for
differentially expressed genes in localised prostate cancer and metastatic
tumours. Genes differentially expressed within dataset GSE3325. Columns
1 and 2 represent Affymetrix probe identifiers and gene symbols,
respectively. Columns 3-5 represent mean probe signals for benign,
prostate cancer and metastatic samples. Columns 6-9 represent a linear
fold change and corresponding p-value for each contrast. Genes are
ranked based on overexpression in localised prostate cancer versus
benign tissue. Differential expression and associated statistical significance
(p-values) have been calculated as described in the methods/supplementary
methods section.

Additional file 3: Figure S2. H(X) GO bit values generated from branch
length thresholds plotted against the number of clusters produced for
single, average, complete, Ward and Mcquitty agglomerative hierarchical
and divisive clustering methods.

Additional file 4: Table S2. Differentially expressed genes within
Varambally dataset (accession number GSE3325) grouped into
coexpression signatures using the Ward agglomerative method. Genes
are ranked based on overexpression in localised prostate cancer versus
benign tissue. Annotation includes the cytogenetic locus for each gene
and the gene name. Coexpression modules are defined at multiple
branch thresholds. Nine branch thresholds were used. Dist.0.6 represents
the most compact modules at the highest stringency threshold and
dist.101.6 representing the least compact modules at the lowest
stringency threshold. Numbers attributed to each gene within each
branch threshold define membership of a distinct coexpression module.
With reference to the main text ‘signature 1’ corresponds to 101.6.1,
‘signature 2’ corresponds to 101.6.2, ‘signature 3’ corresponds to 101.6.3
and ‘signature 4’ corresponds to 101.6.4.
Additional file 5: Table S3. Differentially expressed genes comprising
signature 1. Genes within signature 1 and sub-signatures defined at more
stringent branch thresholds are ranked based on overexpression in
localised prostate cancer within dataset GSE3325. Annotation includes
the cytogenetic loci, gene names and unigene modules.

Additional file 6: Table S4. Differentially expressed genes comprising
signature 2. Genes within signature 2 and sub-signatures defined at more
stringent branch thresholds are ranked based on overexpression in
localised prostate cancer within dataset GSE3325. Annotation includes
the cytogenetic loci, gene names and unigene modules.

Additional file 7: Table S5. Differentially expressed genes comprising
signature 3. Genes within signature 3 and sub-signatures defined at more
stringent branch thresholds are ranked based on overexpression in
localised prostate cancer within dataset GSE3325. Annotation includes
the cytogenetic loci, gene names and unigene modules.

Additional file 8: Table S6. Differentially expressed genes comprising
signature 4. Genes within signature 4 and sub-signatures defined at more
stringent branch thresholds are ranked based on overexpression in
localised prostate cancer within dataset GSE3325. Annotation includes
the cytogenetic loci, gene names and unigene modules.

Additional file 9: Table S7. Fold-change in coexpressed gene
signatures derived from Varambally et al., in samples from a laser capture
microdissected prostate cancer dataset and a multi-cancer dataset. All
signatures and sub-signatures generated from Varambally et al. were
tested for enrichment in individual samples from two additional datasets
– a laser-capture microdissected prostate cancer dataset generated by
Tomlins et al., and a multi-cancer dataset generated by Ramaswamy
et al., Column A and B are collectively signature identifiers indicating the
threshold for coexpression (column A) and the signature/module number
(column B). Column C indicates the overall direction of the fold-change
indicating overexpression (‘induced’) or downregulation (‘repressed’). Only
signatures achieving a fold-change of at least two-fold are listed.
Columns C through to CX represent individual samples from the Tomlins
study. The data are listed sample-by-sample in order of clinical
progression beginning with prostatic intraepithelial neoplasia (‘PIN’)
cases and progressing to localised prostate cancer (‘Primary Carcinoma’),
followed by metastatic hormone naïve cases and finally metastatic
hormone refractory samples. The GSM accession code provided for each
sample is traceable through the NCBI GEO data repository from which
the data were downloaded. Finally there are columns representing
pairwise sample comparisons between metastatic hormone refractory
and naïve samples. Fold-change information for the data for samples
from Ramaswamy et al. is represented in column CY onwards.

Additional file 10: Table S8. Significance values and overall direction
of the differential expression of gene signatures derived from Varambally
et al., in samples from a laser capture microdissected prostate cancer
dataset and a multi-cancer dataset. All gene signatures are classified with
aggregate p-values, overall gene ontology assignments and a descriptor
of overexpression (‘induced’) or underexpression (‘repressed’) normalised
to benign specimens from GSE3325. Laser capture microdissected
material is subgrouped as described in the original publication and in the
methods section incorporating prostatic intraepithelial neoplasia (PIN),
localised prostate cancer (PCA), hormone refractory (HR), metastatic
hormone refractory (MET_HR) and metastatic hormone naïve disease
(MET_HN). In addition gene signatures are defined as sub-signatures of
larger signatures generated using lower stringencies/broader branching
thresholds, the relationship between gene signatures at different
thresholds is indicated in columns X-AE. The number of genes within
each coexpression module is given in the column entitled ‘moduleSize.
varambally’. The numbers of corresponding mapped genes in the other
data sets are indicated in columns Y and W. Gene ontology assignments
for each signature are provided in column AF.

Additional file 11: Table S9. Gene composition and ontology
assignments to statistically significant gene signatures. Sheet one lists the
gene signatures and the genes that comprise them which are capable of
clustering sample groups within the Tomlins and Ramaswamy datasets
(Fischer’s exact test < 0.05 p-value). Sheet two lists the GO terms associated
with each significant discriminatory gene signature (<0.05 p-value). The
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discriminatory groups shown here mirror those depicted in the heatmap in
Figure 1. Sheet three summarises the GO terms that are significant
discriminators of important clinical sample groupings within the Tomlins and
Ramaswamy datasets.

Additional file 12: Table S10. A 71-gene signature capable of
subclustering localised prostate cancer cases across multiple datasets.

Additional file 13: Table S11. Overexpressed genes in localised prostate
cancer versus benign tissue within the entire set of differentially expressed
genes in the Varambally dataset (GSE3325).

Additional file 14: Table S12. AUC values for individual probes for ERG,
KLK3, AR and the gene signature in the test dataset from Grasso et al.

Additional file 15: Table S13. AUC values for individual probes for
ERG, KLK3, AR and the gene signature in the evaluation dataset from
Grasso et al.
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