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Abstract

Pathogens have evolved smart strategies to invade hosts and hijack their immune

responses. One such strategy is the targeting of the host RhoGTPases by toxins or viru-

lence factors to hijack the cytoskeleton dynamic and immune processes. In response to this

microbial attack, the host has evolved an elegant strategy to monitor the function of viru-

lence factors and toxins by sensing the abnormal activity of RhoGTPases. This innate

immune strategy of sensing bacterial effector targeting RhoGTPase appears to be a bona

fide example of effector-triggered immunity (ETI). Here, we review recently discovered

mechanisms by which the host can sense the activity of these toxins through NOD and

NOD-like receptors (NLRs).

Introduction

The detection of microbes by the innate immune system is central to host immunity. Recent stud-

ies have highlighted the role of the innate immune monitoring of RhoGTPases activity to sense

virulence factors targeting RhoGTPases. This is in contrast to the detection of microbial-associated

molecular patterns (MAMPs) via pattern recognition receptors (PRRs) which monitors the struc-

tural motifs of microbes [1]. The sensing of virulence factors targeting RhoGTPases is based on

the detection of the abnormal activity of the host RhoGTPases. This feature is related to effector-

triggered immunity (ETI) that initially emerged from phytopathology studies [2,3]. Both systems

play critical roles: While the sensing of microbial structural motifs expressed by most microbes

would enable to sense all kinds of microbes, the detection of microbial virulence factors expressed

by pathogens would enable an increased immune response specifically against pathogens.

ETI was proposed to monitor the function of microbial virulence factors (i.e., effectors and

toxins) by sensing their activity [3–7]. Over the last 10 years, a major contribution to the iden-

tification of ETI in animals came from the study of virulence factors targeting RhoGTPases

and their interplay with innate immune sensors such as NOD and NOD-like receptor (NLR)

family members.

More than 30 virulence factors target RhoGTPases [8,9]. The mammalian RhoGTPase fam-

ily consists of about 20 members, and the best characterized subfamilies are Rho, Rac, and

Cdc42 [10]. Rho proteins are molecular switches that control a wide range of cellular processes

including inflammation, cell death as well as tissue homeostasis [11]. Mutations of RhoGT-

Pases or dysregulation of their activities have been linked to immune deficiencies, neurological
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disorders, or cancers [12–14]. The targeting of RhoGTPases by virulence factors was firstly

shown to confer to pathogens a selective advantage by counteracting the innate immune

responses. This encompasses the inhibition of phagocytosis and migration as well as modula-

tion of innate immune pathways [15]. Pathogens have evolved multiple strategies to manipu-

late the RhoGTPase cycle. These can be divided in 2 groups: the RhoGTPase-activating toxins

and the toxins inactivating RhoGTPases. Here, we review the molecular mechanism by which

the host immune system senses the virulence factors that target RhoGTPases and discuss the

implications of these sensing mechanisms.

RhoGTPase-targeting toxins and virulence factors: Hijacking

cellular signaling

RhoGTPases are one of the preferential targets of virulence factors, probably because of their

critical role in innate immune responses. RhoGTPases have been shown to be critical regula-

tors of the innate immune response via their contribution to phagocytosis and migration as

well as the production of reactive oxygen species via NADPH oxidase [16]. RhoGTPases cycle

between an active GTP-bound and an inactive GDP-bound stage which is regulated by the

GTPase-activating protein (GAP), guanine nucleotide exchange factor (GEF), and guanosine

nucleotide dissociation inhibitor (GDI) [17].

Bacteria use 2 types of strategies to manipulate the host RhoGTPases: (1) they use virulence

factors mimicking the RhoGTPases regulators (GAP, GEF, or GDI); and (2) they utilize viru-

lence factors endowed with enzymatic activities modifying host RhoGTPases [18]. These mod-

ifications result in either activation or inhibition of RhoGTPases, both of which affect the actin

cytoskeleton and the bacterial uptake by phagocytic or non-phagocytic cells. The advantages of

manipulating RhoGTPases for pathogens have been extensively studied [19–21]. Here, going

through the looking glass, we will describe how these manipulations of RhoGTPases are sensed

by the innate immune system.

Sensing RhoGTPase activation to trigger a transcriptional

antimicrobial response

Microbial activation of RhoGTPases induces the transcription of pro-inflammatory cytokine-

and chemokine-coding genes. Interestingly, the Salmonella virulence factor SopE, a GEF for

Rac and Cdc42, has been found to activate different signaling pathways converging on gene

transcription. Firstly, Salmonella expressing SopE and SopE2 activates JNK, p38, and Erk

MAPK, leading to NF-κB activation [22]. Interestingly, by activating Rac1 and Cdc42, SopE

was shown to trigger the activation of NOD1 and Rip2 which drives cytokine production [23].

More recently, SopE has been found to activate a Cdc42-Pak1 axis leading to TAK1- and

TRAF6-dependent NF-κB activation [24]. Further studies would be required to determine

whether these 3 pathways are interlinked or occur separately during infection. An interesting

example of an antimicrobial response triggered by RhoGTPases activation is the CNF1 toxin.

The CNF1 toxin of uropathogenic Escherichia coli is a deamidase that was shown to trigger a

protective antimicrobial response by activating the Rac2GTPase, which, in turn, activates the

IMD-Relish and Rip1/2 kinases-NF-κB signaling pathways in Drosophila and mammalian

cells, respectively [4,25].

Sensing the inactivation of RhoGTPases by the Pyrin inflammasome

The mefv gene (coding for the Pyrin protein) was discovered through its involvement in auto-

inflammatory syndromes such as familial Mediterranean fever (FMF) [26,27]. Recent studies
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have shown a host protective function for the Pyrin inflammasome by monitoring the activity

of virulence factors that inactivate RhoGTPases. The immune detection of bacterial toxins that

modify the host RhoGTPases is of major importance to restrain bacterial infection. This detec-

tion system was first suggested by studies showing that TcdA and TcdB toxins from Clostrid-
ium difficile were able to induce Caspase-1 activation and interleukin (IL)-1ß maturation [28].

The Pyrin inflammasome was later shown by Shao and colleagues to be the sensor for RhoGT-

Pase-inhibiting toxins. They revealed that not only TcdA and TcdB toxins but also VopS (from

Vibrio parahaemolyticus), IbpA (from Histophilus somni), TecA (from Burkholderia cenocepa-
cia) are detected by the Pyrin inflammasome. It is noteworthy that these toxins inactivate the

RhoGTPases via 4 different mechanisms: glycosylation, ADP ribosylation, AMPylation, and

deamidation [29–32]. Shao and colleagues reported that the catalytically inactive mutant of

TcdB failed to activate the inflammasome, indicating the importance of sensing activity rather

than conserved structural motifs. Interestingly, the toxin TcsL (from Clostridium sordellii) that

inactivates Rac and Cdc42 but not RhoA failed to activate the Pyrin inflammasome, suggesting

that Pyrin monitors the activation status of RhoA specifically [30]. It is now accepted that the

Pyrin inflammasome senses the activity of RhoGTPase-inactivating virulence factors via a sig-

naling cascade involving Ser/Thr kinases and modifications of microtubule stability. At steady

state, Pyrin interacts with 14-3-3 proteins which maintain the receptor in an inactive form.

RhoA inhibition by toxins results in 14-3-3 dissociation from Pyrin in a Pyrin phosphorylation

status-dependent manner [31]. Park and colleagues revealed that the RhoA-interacting

kinases, protein kinase N1 (PKN1) and N2 (PKN2), phosphorylate human Pyrin on Ser208

and Ser242 (Ser205 and Ser241 on murine Pyrin) and trigger 14-3-3-Pyrin interaction to

maintain the inactive status of the Pyrin inflammasome [32]. Inactivation of RhoA by bacterial

toxins abolishes the Pyrin phosphorylation on Ser205/Ser241 by PKN1/2 and the subsequent

14-3-3 interaction and, as a consequence, activates the Pyrin inflammasome and triggers IL-1ß

secretion [31,32] (Fig 1). Interestingly, macrophage infection by C. difficile, expressing TcdA

and TcdB, triggers pyroptotic cell death in a GSDMD-dependent manner [33]. Other virulence

factors inactivating RhoGTPases have been shown to be sensed by the Pyrin inflammasome

(Table 1). Murine macrophages infected with Yersinia pseudotuberculosis expressing YopE

and YopT, 2 virulence factors inhibiting RhoA, trigger Ser205 dephosphorylation of Pyrin and

IL-1ß secretion [34]. Yersinia provides a striking example of the virulence factor interplay that

probably resulted from host–pathogen coevolution. Indeed, Yersinia injects the effector YopM

that binds and activates PKN1/2 and RSK kinases to trigger Pyrin phosphorylation, thus pre-

venting Pyrin inflammasome activation and thereby counteracting the Pyrin sensing of

RhoGTPase-inactivating toxins [35–37]. Interestingly, the YopO virulence factor (YpkA in

Yersinia pestis) has a RhoGDI domain that inhibits RhoA as well as Rac [38,39]. Further stud-

ies would determine whether it could participate to this interplay by triggering the activation

of Pyrin. Another step in this host–pathogen coevolution process is the selection of human

Pyrin mutations. These mutations render Pyrin insensitive to YopM and may have been evolu-

tionarily selected to resist infection by Y. pestis, the causative agent of the plague [36]. In indi-

viduals carrying activating Pyrin mutations, the increased activity might have conferred a

selective advantage against pathogens [40]. However, these mutations are also responsible for

Pyrin-dependent autoinflammatory disorders [32]. The microtubule dynamics also play a role

in the Pyrin inflammasome activation. Microtubules act downstream of Pyrin dephosphoryla-

tion and dissociation from 14-3-3 proteins [31,41]. Despite the clinical importance of drug tar-

geting microtubules (such as colchicine) in Pyrin-dependent autoinflammatory disorders, the

mechanisms involved in microtubule regulation of the Pyrin inflammasome are not fully

understood.
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Sensing of RhoGTPase activation through the NLRP3

inflammasome

In 2004, Tschopp and colleagues established that NLRP3 is able to assemble into an

NLRP3-ASC-Caspase-1 inflammasome that is responsible for autoinflammatory disorders

Fig 1. Sensing of RhoGTPase-modifying toxins by Pyrin and NLRP3 inflammasomes. (Left) The Pyrin inflammasome is activated in response to RhoA inhibition by

several bacterial toxins. At steady state, active RhoA induces the activation of PKN1/2 that phosphorylates (P) Pyrin (on Ser205 and Ser241) and triggers 14-3-3—Pyrin

interaction to maintain Pyrin inactive. Inhibition of RhoA by virulence factors disrupts this interaction leading to Pyrin inflammasome activation and subsequent IL-1ß

maturation and GSDMD cleavage into GSDMD-N. GSDMD-N anchors to the plasma membrane and triggers IL-1ß secretion and pyroptotic cell death. The

involvement of ESCRT-mediated membrane repair during Pyrin-dependent pyroptosis is not yet defined. (Right) The NLRP3 inflammasome senses Rac2 activation by

bacterial virulence factors. Downstream of Rac2 activation, the Pak1/2 kinases phosphorylate (P) NLRP3 on Thr659 allowing the inflammasome assembly, and

subsequent IL-1ß maturation. Is this context, IL-1ß secretion is GSDMD independent and does not trigger cell death but may involve another GSDM and/or an ESCRT-

dependent membrane repair mechanism. GSDM, gasdermin; GSDMD, gasdermin D; IL, interleukin.

https://doi.org/10.1371/journal.ppat.1009504.g001
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[42]. Further studies reveal that NLRP3 inflammasome plays a role in metabolic diseases such

as diabetes, atherosclerosis, and gouty arthritis [43–46]. It is thought that the main physiologi-

cal function of NLRP3 inflammasome is to sense pathogen- and metabolic-triggered danger

signals. The contribution of the NLRP3 inflammasome in protecting the host against infec-

tious agents has recently emerged. The NLRP3 inflammasome is activated by several triggers

such as pore-forming toxins, extracellular ATP, crystalline structures, and mitochondrial dam-

age, but its role in ETI only recently emerged from study of RhoGTPase-activating toxins

[45,47–50]. NLRP3 is regulated by phosphorylation and ubiquitination, which control its sta-

bility and subcellular localization, conformational changes, and its interaction with inflamma-

some-related proteins such as the adaptor protein ASC and the regulator protein Nek7 [51].

Nek7 interacts with the carboxyl terminus leucin-rich repeat (LRR) of NLRP3 and triggers a

conformational change that is essential for NLRP3 oligomerization and inflammasome assem-

bly [52–54].

The CNF1 toxin is a bona fide RhoGTPase-activating toxin encoded by uropathogenic E.

coli. Interestingly, CNF1 has been shown to trigger an inflammatory immune response in vivo

and in cellulo using multiple models including Drosophila, mouse, and human [4,25,55,56].

This CNF1-triggered protective immunity and induced bacterial clearance was observed dur-

ing both Drosophila systemic infections and during mice bacteremia. While the CNF1-im-

mune response in Drosophila was restricted to the transcriptional antimicrobial peptide

expression, the CNF1-expressing E. coli triggered response in mice depended on Caspase-1

and IL-1 signaling [4,25]. Both CNF1 toxin and SopE virulence factor activating RhoGTPases

have been reported to trigger Caspase-1 activation and IL-1ß maturation and secretion, but

the inflammasome involved was only recently identified. The NLRP3 inflammasome has been

found to be the sensor of RhoGTPase activation induced by CNF1, SopE, and DNT toxins [47]

Table 1. Inflammasome sensing of RhoGTPase-targeting by bacterial toxins.

Toxin Pathogen Host target Modification Reference

Pyrin inflammasome RhoGTPase-inactivating toxins

C3 Clostridium botulinum
Clostridium limosum
Bacillus cereus
Bacillus thuringiensis

Rho ADP ribosylation Xu et al. (2014) [30]

TcdA C. difficile Rho, Rac, Cdc42 Glucosylation Gao et al. (2016) [31]

TcdB C. difficile Rho, Rac, Cdc42 Glucosylation Xu et al. (2014) [30]

VopS V. parahaemolyticus Rho, Rac, Cdc42 AMPylation Xu et al. (2014) [30]

IbpA H. somni Rho, Rac, Cdc42 AMPylation Xu et al. 2014 [30]

TecA B. cenocepacia Rho, Rac, Cdc42 Deamidation Aubert et al. (2016) [29]

YopT Y. pestis
Y. pseudotuberculosis
Yersinia enterocolitica

Rho, Rac, Cdc42 CAAX cleavage Medici et al. (2019) [34]

YopE Y. pestis
Y. pseudotuberculosis
Y. enterocolitica

Rho, Rac, Cdc42 GAP Medici et al. (2019) [34]

NLRP3 inflammasome RhoGTPase-activating toxins

CNF1 E. coli Rho, Rac, Cdc42 Deamidation Dufies et al. (2021) [47]

DNT Bordetella pertussis
Bordetella parapertussis
Bordetella bronchiseptica

Rho, Rac, Cdc42 Transglutamination Dufies et al. (2021) [47]

SopE Salmonella spp. Rac, Cdc42 GEF Dufies et al. (2021) [47]

GAP, RhoGTPase-activating protein; GEF, guanine nucleotide exchange factor.

https://doi.org/10.1371/journal.ppat.1009504.t001
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(Table 1). The NLRP3 inflammasome specifically senses the activation of Rac2. Downstream

of Rac2 activation, the p21-activated kinase (Pak) 1, and Pak2 are necessary for NLRP3 inflam-

masome sensing of CNF1, SopE, and DNT activities. The kinases Pak1/2 regulation of NLRP3

inflammasome activation was dependent on K+ efflux and occurred through NLRP3 phos-

phorylation on Thr659 which enables the recruitment of Nek7 and inflammasome assembly

and activation. During mice infections, both NLRP3 and Pak1 chemical inhibition or gene

knock-out prevented CNF1-induced bacterial clearance during bacteremia. In contrast to

other NLRP3 inflammasome activators, CNF1-triggered IL-1ß secretion was GSDMD inde-

pendent and did not induce pyroptotic cell death (Fig 1). Further studies will be necessary to

determine the mechanisms involved in IL-1ß secretion downstream of toxin-induced RhoGT-

Pase activation. An exciting possibility would be the involvement of other GSDM in the

CNF1-triggered IL-1ß secretion coupled with a cell death inhibition mechanism to control the

balance between cell death and inflammation as described for GSDMD and ESCRT machinery

that controls membrane repair [57,58]. In human monocyte-derived macrophages, the sensing

of the CNF1 toxin via the Pak/NLRP3 axis is conserved. However, further studies are needed

to determine the role of Pak and NLRP3 during infection in humans and whether Pak/NLRP3

signaling axis deficiencies are associated with increased susceptibility to infection. The NLRP3

sensing of virulence factors activating RacGTPases could better explain the coexistence within

the same bacteria of virulence factors with antagonistic activities toward RacGTPases such as

in Salmonella with SopE and SptP, respectively, GEF and GAP for RacGTPases [59].

Concluding remarks

Pyrin and NLRP3 inflammasome guarding of RhoGTPases share striking molecular similari-

ties such as the involvement of Ser/Thr kinases and precise phosphorylation sites to control

inflammasome activation. Interestingly, PKN phosphorylation inhibits the inflammasome,

while Pak phosphorylation activates the inflammasome. The fine-tuning of these Rho-regu-

lated innate immune sensing mechanisms is probably essential for the host in order to cope

with microbial infection and inflammation. The reason why the host innate immune system

uses 2 different inflammasomes to monitor RhoGTPase activity remains an open question.

The only easy answer is that the guarding of RhoGTPases is critical for host survival during

infection.

Acknowledgments

We thank Patrick Munro for critical reading of the manuscript. We acknowledge Abby Cut-

triss of the Office of International Scientific Visibility of Université Côte d’Azur for profes-
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56. Hoffmann C, Galle M, Dilling S, Käppeli R, Müller AJ, Songhet P, et al. In Macrophages, Caspase-1

Activation by SopE and the Type III Secretion System-1 of S. Typhimurium Can Proceed in the Absence

of Flagellin. PLoS ONE. 2010; 5. https://doi.org/10.1371/journal.pone.0012477 PMID: 20814576
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