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Abstract: Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively
participate in different pain conditions, including trigeminal neuropathic pain, whose clinical
treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1
channels by means of the antagonist ADM_12 in trigeminal neuropathic pain, in order to identify
possible therapeutic targets. A single treatment of ADM_12 in rats 4 weeks after the chronic
constriction injury of the infraorbital nerve (IoN-CCI) significantly reduced the mechanical allodynia
induced in the IoN-CCI rats. Additionally, ADM_12 was able to abolish the increased levels of
TRPA1, calcitonin gene-related peptide (CGRP), substance P (SP), and cytokines gene expression
in trigeminal ganglia, cervical spinal cord, and medulla induced in the IoN-CCI rats. By contrast,
no significant differences between groups were seen as regards CGRP and SP protein expression in
the pars caudalis of the spinal nucleus of the trigeminal nerve. ADM_12 also reduced TRP vanilloid
type-1 (TRPV1) gene expression in the same areas after IoN-CCI. Our findings show the involvement
of both TRPA1 and TRPV1 channels in trigeminal neuropathic pain, and in particular, in trigeminal
mechanical allodynia. Furthermore, they provide grounds for the use of ADM_12 in the treatment of
trigeminal neuropathic pain.
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1. Introduction

Trigeminal neuralgia (TN) is a rare condition characterized by paroxysmal attacks of sharp pain,
frequently described as an “electric shock”. Up to 50% of patients with trigeminal neuralgia also
have continuous pain in the same territory, which results in greater diagnostic difficulties, higher
disability, and lower response to medical and surgical treatments [1]. Three diagnostic categories
of TN are identified by the recent classification of headache disorders: Classical (without apparent
cause other than neurovascular compression), secondary (caused by an underlying neurological
disorder), and idiopathic (no cause is found) [2]. TN has a negative impact on activities of daily living,
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with up to 45% of patients being absent from usual daily activities for 15 days or more, and one third
suffering from mild-to-severe depression [3]. Medications for TN exist, but they are poorly tolerated
or ineffective. For this reason, multiple surgical approaches have been developed, but a portion of
patients are refractory to both medical and surgical approaches [4,5]. Hence, there is need for further
investigation into the mechanisms underlying pain in TN in order to identify new, possibly more
effective, therapeutic targets.

In recent years, transient receptor potential (TRP) channels have attracted much attention in
the pain field. These channels are non-selective cation channel proteins, widely distributed in many
tissues and cell types, localized in the plasma membrane and membranes of intracellular organelles [6].
The TRP ankyrin type-1 (TRPA1) channels, mainly expressed with the vanilloid type-1 (TRPV1),
are localized in a subpopulation of C- and Aδ-fibers of neurons located in the dorsal root ganglia
(DRG) and trigeminal ganglia (TG) that produce and release neuropeptides, such as substance P
(SP), neurokinin A, and calcitonin gene-related peptide (CGRP) [7–9]. Many experimental studies,
from genetic knockouts to pharmacological manipulation models, reported a critical involvement of
TRPA1 channels in different aspects of pain [10] and a role in several models of nerve injury, such as the
lumbar spinal nerve ligation [11], and sciatic nerve injury by chronic constriction or transection [12–14].
In these models, it was demonstrated that an up-regulation of TRPA1 is associated with mechanical
and thermal hyperalgesia, a condition reversed by TRPA1 antagonists [15,16]. In a recent study,
Trevisan and colleagues [17] reported that pain-like behaviors are mediated by the TRPA1 channel
in an animal model of TN based on the constriction of the infraorbital nerve (IoN) via the increased
oxidative stress by-products released from monocytes and macrophages that gather at the site of
nerve injury.

The aim of this study was to further investigate the role of TRP channels in trigeminal neuropathic
pain induced by the model of a chronic constriction injury of the IoN (IoN-CCI) [18]. More specifically
we evaluated: (i) The modulatory effect of TRPA1 antagonism, by means of ADM_12 treatment,
on IoN-CCI-induced allodynia; (ii) the levels of TRPA1 and TRPV1 mRNA in specific cerebral and
peripheral areas involved in trigeminal sensitization, with particular attention to changes in expression
levels of genes coding for CGRP, SP, and cytokines after TRPA1 antagonism; and (iii) the expression of
CGRP and SP proteins in the Spinal Nucleus of trigeminal nerve pars caudalis (Sp5C).

2. Results

2.1. ADM_12 Effect on Behavioral Response

In agreement with Deseure and Hans [18], 5 days after surgery, the two groups of rats that
underwent IoN-CCI displayed a lack of responsiveness to ipsilateral mechanical stimulation testing
(MST) of the IoN territory (Figure 1A). At day 12, the hyporesponsiveness was recovering to be
replaced at day +26 by a significant increase in the MST response score as compared to the two Sham
groups (Figure 1A). On day +27, the administration of the TRPA1 antagonist treatment in operated rats
(IoN-CCI2 group) reduced the response score of the mechanical stimulation compared to the IoN-CCI1
group (injected with saline) (Figure 1B); whereas, ADM_12 treatment in sham-operated rats (Sham2
group) did not change the mechanical response. It is of note that the response to MST in the IoN-CCI2
group was significantly different between day +26 (before ADM_12 injection) and +27 (after drug
treatment) (Figure 1C).
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Figure 1. Mechanical stimulation testing (MST): (A) Mean response score to Von Frey hair stimulation 
of the ligated/sham infraorbital nerve (IoN) territory, on pre-operative day (PO) and on +5, +12, +18, 
and +26 days post operation. Data is expressed as mean ± SEM. Two-way ANOVA followed by 
Bonferroni post-hoc test, * p < 0.05 and *** p < 0.001 for chronic constriction injury of the infraorbital 
nerve (IoN-CCI) groups vs. Sham groups. Drug treatment effect on MST: (B) Mean response score to 
Von Frey hair stimulation on day +27, 1 h after ADM_12 (or saline) treatment. Data is expressed as 
mean ± SEM. One-way ANOVA followed by Tukey’s Multiple Comparison Test, * p < 0.05 vs. Sham1 
and Sham2, *** p < 0.001 vs. IoN-CCI1. (C) Comparison of the IoN-CCI2 group without treatment (day 
+26) and after ADM_12 treatment (on day +27). Data is expressed as mean ± SEM. Paired Student’s t 
test, §§§ p < 0.001 vs. day +26. 

2.2. ADM_12 Effect on Gene Expression 

The expression of Trpa1, calcitonin-related polypeptide alpha (Calca), and preprotachykinin-A, 
(PPT-A) was evaluated in the TG and cervical spinal cord (CSC) ipsilateral (ipsi) and contralateral 
(contra) to the IoN ligation, and in the medulla in toto. Because of the strong relationship between 
TRPA1 and TRPV1 channels [19–21], we also investigated the Trpv1 mRNA expression levels in the 
same areas. 

2.2.1. Trpa1 mRNA Expression 

In the ipsilateral TG and CSC, and in medulla region, Trpa1 mRNA expression levels were 
significantly increased in the IoN-CCI1 group compared with Sham1 and Sham2 groups (Figure 2). 
The increased mRNA levels were significantly reduced after treatment with ADM_12 in IoN-CCI rats 
(IoN-CCI2 group) in the same regions (Figure 2). ADM_12 administration did not provoke any 
changes in sham-operated rats. 

A significant difference in mRNA levels, both in TG and CSC, was detected between sides in the 
IoN-CCI1 group; whereas, there was no difference between groups when comparing Trpa1 mRNA 
levels on the contralateral side of TG and CSC (Figure 2A,B). 

Figure 1. Mechanical stimulation testing (MST): (A) Mean response score to Von Frey hair stimulation
of the ligated/sham infraorbital nerve (IoN) territory, on pre-operative day (PO) and on +5, +12, +18,
and +26 days post operation. Data is expressed as mean ± SEM. Two-way ANOVA followed by
Bonferroni post-hoc test, * p < 0.05 and *** p < 0.001 for chronic constriction injury of the infraorbital
nerve (IoN-CCI) groups vs. Sham groups. Drug treatment effect on MST: (B) Mean response score to
Von Frey hair stimulation on day +27, 1 h after ADM_12 (or saline) treatment. Data is expressed as mean
± SEM. One-way ANOVA followed by Tukey’s Multiple Comparison Test, * p < 0.05 vs. Sham1 and
Sham2, *** p < 0.001 vs. IoN-CCI1. (C) Comparison of the IoN-CCI2 group without treatment (day +26)
and after ADM_12 treatment (on day +27). Data is expressed as mean ± SEM. Paired Student’s t test,
§§§ p < 0.001 vs. day +26.

2.2. ADM_12 Effect on Gene Expression

The expression of Trpa1, calcitonin-related polypeptide alpha (Calca), and preprotachykinin-A,
(PPT-A) was evaluated in the TG and cervical spinal cord (CSC) ipsilateral (ipsi) and contralateral
(contra) to the IoN ligation, and in the medulla in toto. Because of the strong relationship between
TRPA1 and TRPV1 channels [19–21], we also investigated the Trpv1 mRNA expression levels in the
same areas.

2.2.1. Trpa1 mRNA Expression

In the ipsilateral TG and CSC, and in medulla region, Trpa1 mRNA expression levels were
significantly increased in the IoN-CCI1 group compared with Sham1 and Sham2 groups (Figure 2).
The increased mRNA levels were significantly reduced after treatment with ADM_12 in IoN-CCI
rats (IoN-CCI2 group) in the same regions (Figure 2). ADM_12 administration did not provoke any
changes in sham-operated rats.

A significant difference in mRNA levels, both in TG and CSC, was detected between sides in the
IoN-CCI1 group; whereas, there was no difference between groups when comparing Trpa1 mRNA
levels on the contralateral side of TG and CSC (Figure 2A,B).
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Figure 2. Trpa1 mRNA expression in trigeminal ganglia (TGs) (A), cervical spinal cord (CSC) (B), and 
medulla (C). Data is expressed as mean + SEM. One way analysis of variance (ANOVA) followed by 
Tukey’s Multiple Comparison Test or Two-way ANOVA followed by Bonferroni post-hoc test, *** p 
< 0.001 vs. Sham1 and Sham2 (ipsi), °°° p < 0.001 vs. IoN-CCI1 (ipsi), ^^^ p < 0.001 vs. IoN-CCI1 
(contra). 

2.2.2. Trpv1 mRNA Expression 

In the ipsilateral TG and CSC, and in the medulla region, Trpv1 mRNA expression levels were 
significantly increased in the IoN-CCI1 group compared with Sham1 and Sham2 groups (Figure 3). 
The mRNA levels of Trpv1 were also significantly higher in the IoN-CCI1 group in the contralateral 
CSC when compared to Sham groups (Figure 3B), though this increase was less marked than the 
increase observed on the ipsilateral side. The increased mRNA levels in these areas were significantly 
reduced by ADM_12 treatment in CCI rats (IoN-CCI2 group) in ipsilateral TG and CSC, and in 
medulla in toto (Figure 3). ADM_12 administration did not provoke any changes in sham-operated 
rats. 

A significant difference was seen between the ipsi- and contralateral side (both in TG and CSC) 
in the IoN-CCI1 (Figure 3A,B). 

Figure 2. Trpa1 mRNA expression in trigeminal ganglia (TGs) (A), cervical spinal cord (CSC)
(B), and medulla (C). Data is expressed as mean + SEM. One way analysis of variance (ANOVA)
followed by Tukey’s Multiple Comparison Test or Two-way ANOVA followed by Bonferroni post-hoc
test, *** p < 0.001 vs. Sham1 and Sham2 (ipsi), ◦◦◦ p < 0.001 vs. IoN-CCI1 (ipsi), ˆˆˆ p < 0.001 vs.
IoN-CCI1 (contra).

2.2.2. Trpv1 mRNA Expression

In the ipsilateral TG and CSC, and in the medulla region, Trpv1 mRNA expression levels were
significantly increased in the IoN-CCI1 group compared with Sham1 and Sham2 groups (Figure 3). The
mRNA levels of Trpv1 were also significantly higher in the IoN-CCI1 group in the contralateral CSC
when compared to Sham groups (Figure 3B), though this increase was less marked than the increase
observed on the ipsilateral side. The increased mRNA levels in these areas were significantly reduced
by ADM_12 treatment in CCI rats (IoN-CCI2 group) in ipsilateral TG and CSC, and in medulla in toto
(Figure 3). ADM_12 administration did not provoke any changes in sham-operated rats.
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Two-way ANOVA followed by Bonferroni post-hoc test, *** p < 0.001 vs. Sham1 and Sham 2 (ipsi), °°° 
p < 0.001 vs. IoN-CCI1 (ipsi), ^^^ p < 0.001 vs. IoN-CCI1 (contra), # p < 0.05 vs. Sham1 and Sham2 
(contra). 
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Figure 3. Trpv1 mRNA expression in TGs (A), CSC (B), and medulla (C). Data is expressed as mean
+ SEM. One way analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test or
Two-way ANOVA followed by Bonferroni post-hoc test, *** p < 0.001 vs. Sham1 and Sham 2 (ipsi),
◦◦◦ p < 0.001 vs. IoN-CCI1 (ipsi), ˆˆˆ p < 0.001 vs. IoN-CCI1 (contra), # p < 0.05 vs. Sham1 and
Sham2 (contra).
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A significant difference was seen between the ipsi- and contralateral side (both in TG and CSC) in
the IoN-CCI1 (Figure 3A,B).

2.2.3. Calca mRNA Expression

In the ipsilateral TG and CSC, and in the medulla region, Calca mRNA expression levels were
significantly increased in the IoN-CCI1 group compared with Sham1 and Sham2 groups (Figure 4).
Moreover, Calca mRNA levels in IoN-CCI1 and IoN-CCI2 groups were also significantly increased
in the contralateral TG as compared to Sham groups (Figure 4A). The increased mRNA levels were
significantly reduced after treatment with ADM_12 in IoN-CCI2 rats in ipsilateral TG and CSC, and in
medulla in toto (Figure 4). ADM_12 administration did not provoke any changes in sham-operated
rats (Figure 4).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 22 

 

 
Figure 4. Calca mRNA expression in TGs (A), CSC (B), and medulla (C). Data is expressed as mean + 
SEM. One way analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test or 
Two-way ANOVA followed by Bonferroni post-hoc test, *** p < 0.001 vs. Sham1 and Sham2 (ipsi), °° 
p < 0.01 and °°° p < 0.001 vs. IoN-CCI1 (ipsi), ^ p < 0.05 and ^^^ p < 0.001 vs. IoN-CCI1 (contra), # p < 
0.05 and ## p < 0.01 vs. Sham1 and Sham2 (contra). 

2.2.4. PPT-A mRNA Expression 

In the ipsilateral TG and CSC, and in the medulla region, PPT-A mRNA expression levels were 
significantly increased in the IoN-CCI1 group compared with Sham1 and Sham2 groups (Figure 5). 
The increased mRNA levels were significantly reduced after treatment with ADM_12 in IoN-CCI rats 
(IoN-CCI2 group) in the same regions (Figure 5). ADM_12 administration did not cause any changes 
in sham-operated rats. 

A significant difference was seen between the ipsi- and contralateral side (both in TG and CSC) 
in the IoN-CCI1 group, as well as in the IoN-CCI2 group at the TG level; whereas, there was no 
difference between groups on the contralateral side of TG and CSC (Figure 5A,B). 

Figure 4. Calca mRNA expression in TGs (A), CSC (B), and medulla (C). Data is expressed as mean
+ SEM. One way analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test or
Two-way ANOVA followed by Bonferroni post-hoc test, *** p < 0.001 vs. Sham1 and Sham2 (ipsi),
◦◦ p < 0.01 and ◦◦◦ p < 0.001 vs. IoN-CCI1 (ipsi), ˆ p < 0.05 and ˆˆˆ p < 0.001 vs. IoN-CCI1 (contra),
# p < 0.05 and ## p < 0.01 vs. Sham1 and Sham2 (contra).

A significant difference was seen between the ipsi- and contralateral side (both in TG and CSC) in
the IoN-CCI1 group (Figure 4A,B).

2.2.4. PPT-A mRNA Expression

In the ipsilateral TG and CSC, and in the medulla region, PPT-A mRNA expression levels were
significantly increased in the IoN-CCI1 group compared with Sham1 and Sham2 groups (Figure 5).
The increased mRNA levels were significantly reduced after treatment with ADM_12 in IoN-CCI rats
(IoN-CCI2 group) in the same regions (Figure 5). ADM_12 administration did not cause any changes
in sham-operated rats.

A significant difference was seen between the ipsi- and contralateral side (both in TG and CSC) in
the IoN-CCI1 group, as well as in the IoN-CCI2 group at the TG level; whereas, there was no difference
between groups on the contralateral side of TG and CSC (Figure 5A,B).
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Figure 5. PPT-A mRNA expression in TGs (A), CSC (B), and medulla (C). Data is expressed as mean 
+ SEM. One way analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test or 
Two-way ANOVA followed by Bonferroni post-hoc test, * p < 0.05 and *** p < 0.001 vs. Sham1 and 
Sham2 groups (ipsi), °°° p < 0.001 vs. IoN-CCI1 group (ipsi), ^^^ p < 0.001 vs. IoN-CCI1 group (contra), 
§§§ p < 0.001 vs. IoN-CCI2 (contra). 

2.2.5. IL-1beta, IL-6, and TNF-alpha mRNA Expression 

Since the effects of the surgery, and consequently of the TRPA1 antagonist, on the transcript 
levels were seen mainly at the ipsilateral side, the cytokines mRNA expression was not evaluated 
contralaterally.  

Interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha mRNA expression levels were 
significantly increased in all the areas under evaluation in the IoN-CCI1 group compared with Sham1 
and Sham2 groups (Figure 6). Such increases were significantly reduced after treatment with 
ADM_12 in IoN-CCI rats (IoN-CCI2 group) in the same regions (Figure 6). 

2.3. ADM_12 Effect on Neuropeptide Protein Expression 

CGRP and SP protein expression was evaluated in Sp5C on both sides. A slight, but not 
significant difference in the density of immunoreactive fibers for CGRP and SP protein was observed 
between the ipsilateral and contralateral side in both the IoN-CCI1 and IoN-CCI2 groups (Figure 7). 
No significant change was seen between sham and operated rats (Figure 7). ADM_12 administration 
did not induce any change in CGRP and SP expression either in sham or in CCI operated rats (Figure 
7). 

Figure 5. PPT-A mRNA expression in TGs (A), CSC (B), and medulla (C). Data is expressed as mean
+ SEM. One way analysis of variance (ANOVA) followed by Tukey’s Multiple Comparison Test or
Two-way ANOVA followed by Bonferroni post-hoc test, * p < 0.05 and *** p < 0.001 vs. Sham1 and
Sham2 groups (ipsi), ◦◦◦ p < 0.001 vs. IoN-CCI1 group (ipsi), ˆˆˆ p < 0.001 vs. IoN-CCI1 group (contra),
§§§ p < 0.001 vs. IoN-CCI2 (contra).

2.2.5. IL-1beta, IL-6, and TNF-alpha mRNA Expression

Since the effects of the surgery, and consequently of the TRPA1 antagonist, on the transcript
levels were seen mainly at the ipsilateral side, the cytokines mRNA expression was not
evaluated contralaterally.

Interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha mRNA expression levels were
significantly increased in all the areas under evaluation in the IoN-CCI1 group compared with Sham1
and Sham2 groups (Figure 6). Such increases were significantly reduced after treatment with ADM_12
in IoN-CCI rats (IoN-CCI2 group) in the same regions (Figure 6).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  8 of 22 
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IoN-CCI1, # p < 0.05 vs. Sham1. 

 
Figure 7. (A) Optical density (OD) values of calcitonin gene-related peptide (CGRP) with 
representative photomicrographs of CGRP immunoreactive fibers in the spinal nucleus of trigeminal 
nerve pars caudalis (Sp5C) ipsilateral (ipsi) and contralateral (contra) of Sham1 and IoN-CCI1 groups. 
(B) OD values of substance P (SP) with representative photomicrographs of SP immunoreactive fibers 
in the Sp5C ipsilateral (ipsi) and contralateral (contra) of Sham1 and IoN-CCI1 groups. Data is 

Figure 6. mRNA expression of IL-1beta (A), IL-6 (B), and TNF-alpha (C) in ipsilateral TG and CSC,
and in medulla in toto. Data are expressed as mean + SEM. One way analysis of variance (ANOVA)
followed by Tukey’s Multiple Comparison Test, *** p < 0.001 vs. Sham1 and Sham2, ◦◦◦ p < 0.001 vs.
IoN-CCI1, # p < 0.05 vs. Sham1.
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2.3. ADM_12 Effect on Neuropeptide Protein Expression

CGRP and SP protein expression was evaluated in Sp5C on both sides. A slight, but not significant
difference in the density of immunoreactive fibers for CGRP and SP protein was observed between the
ipsilateral and contralateral side in both the IoN-CCI1 and IoN-CCI2 groups (Figure 7). No significant
change was seen between sham and operated rats (Figure 7). ADM_12 administration did not induce
any change in CGRP and SP expression either in sham or in CCI operated rats (Figure 7).
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Figure 7. (A) Optical density (OD) values of calcitonin gene-related peptide (CGRP) with representative
photomicrographs of CGRP immunoreactive fibers in the spinal nucleus of trigeminal nerve
pars caudalis (Sp5C) ipsilateral (ipsi) and contralateral (contra) of Sham1 and IoN-CCI1 groups.
(B) OD values of substance P (SP) with representative photomicrographs of SP immunoreactive
fibers in the Sp5C ipsilateral (ipsi) and contralateral (contra) of Sham1 and IoN-CCI1 groups. Data is
expressed as mean + SEM. Two-way analysis of variance (ANOVA) followed by Bonferroni post-hoc
test. Scale bar: 100 µm.

3. Discussion

The pathways of trigeminal neuropathic pain are poorly understood. Experimental evidences
suggest a strong involvement of TRPA1 in different patterns of neuropathic pain, and recently its role
was also demonstrated in a trigeminal neuropathic pain model [17].

Here we evaluated the role of TRPA1 channels in an animal model of trigeminal neuropathic pain
(IoN-CCI model), investigating the effects of the TRPA1 antagonist ADM_12 on mechanical allodynia,
and neurochemical and transcriptional changes.

ADM_12 was previously shown to revert in vivo the Oxaliplatin-induced neuropathy [22]. At the
trigeminal level, ADM_12 was able to reduce orofacial pain in a model of temporomandibular joint
inflammation [23], and to counteract trigeminal hyperalgesia in a model of migraine pain, together with
decreased Trpa1 and neuropeptide mRNA expression levels in specific areas implicated in trigeminal
pain [24].
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3.1. Behavioral Response

Infraorbital nerve injury in rats leads to the development, in the ipsilateral side, of a
hyporesponsiveness to mechanical stimulation within the first week post operation, followed by
a hyperresponsiveness, that according to several studies [18,25], reflects a condition of mechanical
allodynia. This biphasic response is probably related to the demyelination process, occurring in
the early post-operative period, and remyelination process, that occurs in the late post-operative
period [26]. Compared to the above cited papers [18,25,26], the time needed in this study to develop
allodynia was somewhat longer. This may have been the result of small differences in the degree of
nerve constriction; indeed, different degrees of IoN constriction have been shown to produce different
time courses in isolated face grooming behavior [27], and this can also be true for mechanical allodynia.

The allodynic response of operated rats was abolished after treatment with the TRPA1 antagonist
ADM_12, suggesting that the blockade of TRPA1 channels located on the trigeminal afferents
prevented the release of neuropeptides (CGRP and SP) [28,29], thus resulting in a reduced neurogenic
inflammation, and ultimately nociceptor sensitization [30]. Accordingly, Wu and colleagues reported
an increase in TRPA1 protein, as well as TRPV1 channels, in the Sp5C region of rats that underwent
IoN-CCI surgery [31], confirming their involvement in this process. An additional mechanism
is represented by the reduction in the release of pro-inflammatory factors via the inhibition of
TRPA1 located on glial cells in the nervous system, as suggested by our results, in which we
observed a reduction of the IL-1beta, IL-6, and TNF-alpha transcripts that possibly parallel protein
expression [32–34], which could account for reduced glial cells activation [32]; or via the inhibition
of TRPA1 located on non-neuronal cells, such as keratinocytes and macrophages, in the tissues
surrounding the damaged nerve [35]. Pro-inflammatory mediators released in the tissues that
surround the damaged nerve, and glial cell activation, are indeed known to play a crucial role
in the pathophysiology of neuropathic pain [36,37]. Glial activation and pro-inflammatory cytokines
are associated with the onset of neuropathic pain symptoms such as allodynia or hyperalgesia [38–42].

The involvement of TRPA1 in mechanosensation has been extensively studied; both genetic
deletion of TRPA1 and its pharmacological blockade abrogate mechanical pain-like behaviors [17,43,44].
Recently, Trevisan and colleagues [17] confirmed the critical role played by TRPA1 channels in
mechanical allodynia induced by trigeminal neuropathic pain; conversely, in a model of sciatic
nerve injury, Lehto and co-workers [45] reported a non-significant involvement of these channels
in the mechanical sensitivity. On the other hand, other authors showed that TRPA1 blockade
attenuated mechanical hypersensitivity following spinal injury [46,47] or neuropathic pain induced
by chemotherapeutic agents [48,49]. Altogether these observations suggest that mechanical allodynia
might be differently mediated by TRPA1 channels depending on the type of pain, site of damage,
or distribution profile in TG and DRGs [50]. Moreover, the different responses observed in the
experimental models could also be related to the different TRPA1 antagonists used, that may inhibit
the channel through binding at different sites, with specific regulatory mechanisms [51].

3.2. Trpa1 and Trpv1 mRNA Expression

Chronic constriction injury of the IoN produced a marked increase in the Trpa1 and Trpv1 mRNA
expression in central and peripheral areas ipsilaterally, and a slight increase even at the contralateral
side, compared to the sham group. This contralateral increase is probably due to activation of
inflammatory processes occurring after nerve injury, which can also affect the contralateral side [52].
The elevated TRP transcripts are accompanied by increased IL-1beta, IL-6, and TNF-alpha mRNA levels
in the medulla region, and ipsilateral TG and CSC. It is known that TRPA1 and TRPV1 channels can
be sensitized by inflammatory agents, causing up-regulation of these channels [53–55]. For example,
Trpa1 expression has been shown to be up-regulated by TNF-alpha and IL-1 alpha via transcriptional
factor hypoxia-inducible factor-1α [56]. Similarly, TNF-alpha can up-regulate TRPV1 protein and
mRNA in DRG and TG neurons [57,58]; one of the suggested pathways for Trpv1 regulation is the
p38 mitogen-activated protein kinase pathway [59], which may also be partly involved in Trpa1
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expression [60]. As regards TRPA1, its activation seems to depend on the activation of the nuclear
factor-κB signaling pathway [61].

Furthermore, an important role in neuropathic pain seems to be played by oxidative stress [62–64],
whose components can directly activate TRPA1 channels [65], thereby contributing to inflammation in
a TRPA1-dependent manner. Indeed, it was recently found that trigeminal neuropathic pain behaviors
were mediated by TRPA1 targeted by oxidative stress by-products released from monocytes and
macrophages surrounding the site of the nerve injury [17].

In agreement with our study, an up-regulation of Trpa1 and Trpv1 mRNA levels, as well as
protein levels in TG, DRGs, and dorsal horns, has been seen in different models of neuropathic
pain [11,47,60,66–71]. Increased mRNA levels may reflect an increase in functional TRPA1 and TRPV1
channels [72,73].

The increased mRNA levels detected in our experiments in CSC and medulla may have different
origins: Trpv1 mRNA undergoes bidirectional axon transport along primary afferents [74], and the
same could be true for Trpa1, since both TRPV1 and TRPA1 are (co-)expressed, not only on peripheral,
but also on central terminals of primary afferent neurons where their activation can lead to the release
of transmitters that promote the sensitization of postsynaptic pain transmission pathways [75–78].
In addition, Trpv1 mRNA could originate from GABAergic interneurons and glial cells in the rat dorsal
horn, which are known to express TRPV1 [69,79].

Systemic administration of ADM_12 markedly reduced the mRNA expression levels of both
TRPs induced by IoN ligation. The effect of drug treatment on mRNA transcripts is likely to be due
to an indirect effect rather than a direct one. It can be reasonably hypothesized that the effect of
ADM_12 on TRPA1 mRNA expression is indirectly due to the blockade of the channel, located either
on neuronal and non-neuronal cells, which is followed by two events. On one side, the reduction of
calcium (Ca2+) entry provokes a reduced activation of second messenger (Ca2+ dependent) molecules
(e.g., via the phospholipase C/Ca2+ signaling pathway and Ca(2+)/calmodulin-dependent protein
kinase II [CaMKII]) and interfering with the Ca2+-interacting proteins [80,81], with the consequent
reduction in transcriptional rate; for example, through the CaMK—cAMP response element-binding
protein (CaMK—CREB) cascade. The other event that follows TRPA1 antagonism is the reduction in
neuropeptide (CGRP and SP) release [28,29], and pro-inflammatory agents from neuronal fibers and
non-neuronal cells. In this frame, we hypothesize that ADM_12 may break off a self-feeding loop in
which TRPA1 channels are directly activated or sensitized by Ca2+ [51,81], endogenous substances
produced by intracellular Ca2+ elevation [82], and pro-inflammatory molecules [83–85], and indirectly
by the activation of nociceptive fibers caused by neuropeptide-induced neuroinflammation.

Moreover, we can also speculate that since TRPA1 and TRPV1 functions may be influenced by
each other [20,86,87], a re-organization in the expression and nature of these channels after nerve
injury [88–90] enabled ADM_12 to modulate TRPV1 channels as well. Although a physical interaction
between these two channels may be questionable, even if some studies described it in vitro [19,21],
many studies reported a functional interaction between them [20,86,91–93]. For instance, Masuoka
et al. [87] showed in DRG neurons that TRPA1 channels suppress TRPV1 channel activity, possibly
through the regulation of basal intracellular calcium concentration, and that the TRPA1 sensitization,
induced by inflammatory agents, enhance TRPV1-mediated currents [87].

These observations, including our data, show a relationship between these two TRP channels,
although more information and studies are needed to understand the precise mechanisms of this
putative interaction.

3.3. Neuropeptide Expression

After nerve injury, an inflammatory process leads to the release of many pro-inflammatory
mediators, which participate in peripheral sensitization, promoting an excessive release of
neurotransmitters [94]. Together with the inflammatory process, neuropeptides and degenerative
changes affecting the nervous fibers are also crucial peripheral mechanisms [95].
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In our experimental setting, the mRNA expression levels of genes coding for CGRP (Calca) and
SP (PTT-A) markedly increased in the central areas containing the Sp5C, as well as in the TG ipsilateral
to the IoN ligation. Interestingly, Calca mRNA expression in IoN ligated rats was also elevated on the
contralateral TG. It has been shown that projections from the TG reach the medullary and cervical
dorsal horns on both sides [96,97], and that unilateral TG stimulation activates neurons in both ipsi-
and contralateral Sp5C [98,99].

One of the mechanisms that could contribute to neuropeptide expression is the CaMK—CREB
cascade, which is probably triggered following TRP channel activation [100], and that may represent
the target mechanism for the observed inhibitory effect of ADM_12 on the mRNA expression of
CGRP and SP. The blockade of TRP channels, which co-localize with CGRP and SP in the trigeminal
neurons [7,101], can inhibit Calca and PPT-A mRNA expression, thus reducing the neuropeptide
release and the trigeminal sensitization process. The data supports the pivotal involvement of CGRP
and SP in the delivery and transmission of pain sensation to the central nervous system, and their
role in trigeminal pain syndrome. In fact, an increased concentration of neuropeptides was found in
the cerebrospinal fluid and venous blood of patients with trigeminal neuralgia compared to healthy
controls [102,103].

In this frame, it was quite surprising that we did not detect any significant difference in
neuropeptide protein expression at the Sp5C level, neither among groups, nor between sides. Lynds
and co-workers [104] reported no differences in neuropeptide (CGRP and SP) levels between ipsi- and
contralateral TG two weeks after IoN transection injury, while Xu and colleagues [105] described a
reduction of CGRP and SP protein levels in the ipsilateral caudal medulla eight days after partial IoN
ligation. Taken together, these findings suggest that in our model the neuropeptide release at central
sites might have taken place at early time points after surgery, and therefore went undetected since we
only measured it on day +27, or alternatively, that CGRP and SP are mostly involved at the peripheral
terminals [26]. These apparently contrasting findings prompt the need for specifically targeted studies
in order to investigate in more depth the role of neuropeptide release in central and peripheral sites in
this model of trigeminal neuropathic pain.

3.4. Limitations of the Study and Future Perspectives

We evaluated changes of behavioral responses and mRNA expression after a short period (1 h) of
drug exposure. This approach may be questionable, however there are many studies that support our
observations. For instance, the mRNA expression of metabotropic glutamate receptors was found to
be upregulated 1 h after treatment in mice DRG neurons [106]. Ambalavanar et al. [107] were able to
detect changes in CGRP mRNA levels in rat’s TG even 30 minutes after complete Freund’s adjuvant
injection. Furthermore, Nesic and co-workers [108] reported change in the mRNA signal of cytokines
1 h after treatment with MK-801, a NMDA receptor antagonist, in the spinal cord of rats subjected to
spinal cord injury.

Nevertheless, to elucidate and confirm the present findings, additional experiments with different
techniques are necessary. It will be interesting to evaluate in this model the effects of ADM_12 at later
time points, as well as after chronic treatment. Another limitation of the present study is the absence of
a time course of the expression of CRGP and SP. This was motivated by the ethical and organizational
need to keep the number of rats as low as possible. However, based on the present findings, it seems
important to address in future studies the parallel evaluation of mRNA and protein expression of
CGRP and SP in order to elucidate more clearly the role of these neuropeptides in peripheral and
central sites.
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4. Materials and Methods

4.1. Animals

Male Sprague-Dawley rats (Charles River, weighing 225–250 g at arrival) were used following the
International Association for the Study of Pain (IASP)’s guidelines for pain research in animals [109].
Animals were housed in groups of 2 with water and food available ad libitum, and kept in a
colony room (humidity: 45 ± 5%; room temperature: 21 ± 1 ◦C). Rats were kept under a reversed
12:12 h dark/light cycle (lights on at 20 h). All procedures were in accordance with the European
Convention for Care and Use of Laboratory Animals, and were approved by the Ethical Committee for
Animal Testing (Ethische Commissie Dierproeven, ECD) of the University of Antwerp (number 2017-16,
approval 20/02/2017).

Rats were allowed to acclimate for 8 days to the housing conditions before the surgery;
they were habituated to the behavioral test procedure daily for three days before pre-operative
testing. Habituation and testing were conducted in a darkened room (light provided by a 60 W red
light bulb suspended 1 m above the observation area) with a 45 dB background noise.

4.2. Surgery

The IoN-CCI was performed as previously described [18,25,27]. Rats were anaesthetized
with pentobarbital (60 mg/kg, intraperitoneally (i.p.)) and treated with atropine (0.1 mg/kg, i.p.).
The surgery was performed under direct visual control using a Zeiss operation microscope (×10–25).
The rat’s head was fixed in a stereotaxic frame and a mid-line scalp incision was made, exposing the
skull and nasal bone. The edge of the orbit was dissected free, and the orbital contents were deflected
with a cotton-tipped wooden rod to give access to the left IoN, which was loosely ligated with two
chromic catgut ligatures (5-0) (2 mm apart). The scalp incision was closed using polyester sutures (4-0;
Ethicon, Johnson & Johnson, Belgium). In sham operated rats, the IoN was exposed using the same
procedure, but the nerve was not ligated.

4.3. Mechanical Stimulation Testing (MST)

Baseline data were obtained 1 day before surgery. Following surgery, rats were tested on
post-operative days +5, +12, +18, +26, and +27 (Figure 1). A graded series of five Von Frey hairs
(0.015 g, 0.127 g, 0.217 g, 0.745 g, and 2.150 g) (Pressure Aesthesiometer®, Stoelting Co, Chicago, IL,
USA) were applied by an experimenter who was blind to animal and treatment groups, within the IoN
territory, near the center of the vibrissal pad [25,110–113]. Von Frey hairs were applied in an ascending
order of intensity either ipsi- or contralaterally. The scoring system described by Vos [25] was used
to evaluate the rats’ response to the stimulation (Table 1). For each rat, and at every designated time,
a mean score for the five von Frey filaments was determined.

Table 1. Response categories with the corresponding score values.

SCORE TYPE OF RESPONSE
0 no response
1 detection: the rat turns the head toward the stimulating object and the stimulus object is then explored

2 withdrawal reaction: the rat turns the head slowly away or pulls it briskly backward when the
stimulation is applied; sometimes a single face wipe ipsilateral to the stimulated area occurs

3
escape/attack: the rat avoids further contact with the stimulus object, either passively by moving its
body away from the stimulating object to assume a crouching position against the cage wall,
or actively by attacking the stimulus object, making biting and grabbing movements

4 asymmetric face grooming: the rat displays an uninterrupted series of at least three face-wash strokes
directed toward the stimulated facial area
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4.4. Drug and Experimental Plan

The TRPA1 antagonist ADM_12, synthesized in the Laboratory of Prof. Cristina Nativi (University
of Florence, Italy) and characterized by a high binding constant versus TRPA1 [23], was dissolved in
saline and administered intraperitoneally (i.p.) at the dose of 30 mg/kg in a volume of 1 ml/kg [22–24].

The animals were randomly allocated in four groups of 12 animals each and assigned to different
experimental sets, as shown in Table 2.

Table 2. Experimental groups and number (N) of animals per group that underwent the mechanical
stimulation test (MST). The samples of the subsets were processed for the real time polymerase chain
reaction (RT-PCR) or immunohistochemistry (IHC).

EXPERIMENTAL GROUPS Surgery Treatment on Day +27 MST RT-PCR IHC

Sham1 Sham saline N = 12 N = 6 N = 6
Sham2 Sham ADM_12 N = 12 N = 6 N = 6

IoN-CCI1 IoN-CCI saline N = 12 N = 6 N = 6
IoN-CCI2 IoN-CCI ADM_12 N = 12 N = 6 N = 6

On day +27, sham and operated rats were treated with ADM_12 or saline 1 h prior to the MST
(Figure 8). The timing was chosen on the basis of previous studies reporting a significant effect of acute
ADM_12 treatment on behavioral responses [22–24]. At the end of the behavioral test, each rat was
sacrificed with an i.p. overdose of pentobarbital (150 mg/kg). A subset of 6 rats per experimental group
served for the detection of gene expression levels by means of real time polymerase chain reaction
(RT-PCR); another subset of 6 animals per experimental group underwent the immunohistochemical
evaluation of protein expression (Table 2).
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4.5. Real Time-PCR

The trigeminal ganglia (TG), cervical spinal cord (CSC, C1-C2 level), and medulla (bregma,
−13.30 to −14.60 mm; Paxinos and Watson 4th edition), containing the Sp5C, of each animal were
quickly removed after completing the MST on day +27 and frozen at –80 ◦C. Samples were then
processed to evaluate the expression levels of the genes encoding for TRPA1 (Trpa1), TRPV1 (Trpv1),
CGRP (Calca), SP (PPT-A), IL-1beta (IL-1beta), IL-6 (IL-6), and TNF-alpha (TNF-alpha). mRNA levels
were analyzed by RT-PCR, as previously described [24,114,115]. After tissue homogenization by means
of ceramic beads (PRECELLYS, Berthin Pharma, Montigny-le-Bretonneux, France), total RNA was
extracted with TRIzol®reagent (Invitrogen, Carlsbad, California, USA) and quantified by measuring
the absorbance at 260/280 nm using a nanodrop spectrophotometer (Euroclone, Pero (MI), Italy).
Following cDNA generation with the iScript cDNA Synthesis kit (BIO-RAD, Hercules, California,
USA), gene expression was analyzed using the Fast Eva Green supermix (BIO-RAD). Primer sequences
were obtained from the AutoPrime software (http://www.autoprime.de/AutoPrimeWeb) (Table 3).
The amplification was performed through two-step cycling (95–60◦C) for 45 cycles with a Light Cycler
480 Instrument RT-PCR Detection System (Roche, Milan, Italy). The expression of the housekeeping
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gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), remained constant in all the experimental
groups considered. All samples were assayed in triplicate.

Table 3. Primer sequences.

Gene Forward Primer Reverse Primer

GAPDH AACCTGCCAAGTATGATGAC GGAGTTGCTGTTGAAGTCA
Trpa1 CTCCCCGAGTGCATGAAAGT TGCATATACGCGGGGATGTC
Trpv1 CTTGCTCCATTTGGGGTGTG CTGGAGGTGGCTTGCAGTTA
Calca CAGTCTCAGCTCCAAGTCATC TTCCAAGGTTGACCTCAAAG

PPT-A GCTCTTTATGGGCATGGTC GGGTTTATTTACGCCTTCTTTC
IL-1beta CTTCCTTGTGCAAGTGTCTG CAGGTCATTCTCCTCACTGTC

IL-6 TTCTCTCCGCAAGAGACTTC GGTCTGTTGTGGGTGGTATC
TNF-alpha CCTCACACTCAGATCATCTTCTC CGCTTGGTGGTTTGCTAC

4.6. Immunohistochemistry

According to Terayama et al. [116] and Panneton et al. [117], the central afferent innervations
of the IoN are mostly distributed in (but not restricted to) the dorsal and lateral part of the Sp5C,
projecting to all the laminae. The pattern of CGRP and SP protein related to the painful component of
the IoN was investigated in the superficial laminae of the Sp5C.

Immediately after the MST test, animals were anaesthetized and perfused transcardially with
phosphate buffered saline (PBS) and 4% paraformaldehyde. The medullary segment containing
the Sp5C, between +1 and −5 mm from the obex, was removed and post-fixed for 24 h in
the same fixative; subsequently, samples were transferred in solutions of sucrose at increasing
concentrations (up to 30%) during the following 72 h. All samples were cut transversely at 30
µm on a freezing sliding microtome. CGRP and SP protein expression was evaluated using the
free-floating immunohistochemical technique, as previously reported [24]. For CGRP we used an
anti-rabbit antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) at a dilution of 1:3200, and
an anti-rabbit antibody (Chemicon, Temecula, CA, USA) at a dilution of 1:5000 for SP; both primary
antibodies were incubated for 24 h at room temperature. After incubation at room temperature with
the secondary biotinylated antibody (Vector Laboratories, Burlingame, CA, USA) and the avidin-biotin
complex (Vectastain, Vector Laboratories), sections were stained with the peroxidase substrate kit DAB
(3′3′-diaminobenzidine tetrahydrochloride) (Vector Laboratories, Burlingame, CA, USA).

The area covered by CGRP and SP immunoreactive fibers in the Sp5C ipsilateral and contralateral
to the surgery (12 sections per animal), was expressed as optical density (OD) values [24,114,118],
acquired using an AxioSkop 2 microscope (Zeiss) and a computerized image analysis system
(AxioCam, Zeiss, Göttingen, Germany) equipped with dedicated software (AxioVision Rel 4.2, Zeiss,
Göttingen, Germany). All sections were averaged and reported as the mean + SEM of OD values.

4.7. Statistical Evaluation

Data from recent studies [18,27] was used to calculate the required number of animals per
experimental group to obtain a statistical power of 0.80 at an alpha level of 0.05, and a difference of at
least 20% in behavioral responses after IoN-CCI surgery. The calculations were done using software
(Lenth RV. Java Applets for Power and Sample Size) retrieved on 8 April 2013, from http://www.stat.
uiowa.edu/~rlenth/Power, which estimated a sample size of 12 rats per experimental group.

Statistical analysis was performed with the GraphPad Prism program (GraphPad Software,
San Diego, California, USA). In the MST, for each rat and at every designated time, a mean score
for the five Von Frey hairs was determined. The IoN-CCI rats were compared to the sham-operated
rats. For mRNA levels, results were analyzed using the ∆∆Ct method to compare expression of genes
of interest with that of GAPDH, used as control gene. All data was tested for normality using the
Kolmogorov–Smirnov normality test and considered normal. Differences between groups, or between

http://www.stat.uiowa.edu/~rlenth/Power
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ipsilateral and contralateral sides, were analyzed by one-way analysis of variance (ANOVA) followed
by Tukey’s Multiple Comparison Test, or by means of two-way ANOVA followed by Bonferroni
post-hoc test, respectively. Differences between two groups were analyzed by the Paired student’s t
test. A probability level of less than 5% was regarded as significant.

5. Conclusions

Antagonism of the TRPA1 channel by means of ADM_12 attenuates experimentally-induced
mechanical allodynia [17,119] in a reliable animal model of trigeminal neuropathic pain. Allodynia is
one of the major clinical features of trigeminal neuropathic pain [120,121], thus the modulation of the
TRPA1 channel may represent a suitable therapeutic target [122,123], and ADM_12 a possible tool, in
trigeminal neuropathic pain management. As a corollary, our data also suggests a possible role for
TRPV1 channels in the behavioral and biomolecular responses related to trigeminal neuropathic pain.
Further exploration of the mechanisms underlying the antinociceptive effects of TRPA1, and studies
directed to better understand the relationship between TRPA1 and TRPV1, would improve our
understanding of the complex nociceptive processing in trigeminal neuropathic pain.
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Abbreviations

CaMKII Ca(2+)/calmodulin-dependent protein kinase II
Calca calcitonin-related polypeptide alpha
CGRP calcitonin gene-related peptide
CREB cAMP response element-binding protein
CSC cervical spinal cord
DRG dorsal root ganglia
GAPDH glyceraldehyde 3-phosphate dehydrogenase
IL interleukin
IoN infraorbital nerve
IoN-CCI chronic constriction injury of the infraorbital nerve
MST mechanical stimulation testing
OD optical density
PPT-A preprotachykinin-A
RT-PCR real time polymerase chain reaction
SP substance P
Sp5C spinal nucleus of trigeminal nerve pars caudalis
TG trigeminal ganglia
TN trigeminal neuralgia
TNF-alpha tumor necrosis factor alpha
TRP transient receptor potential
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