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Abstract

Islet autoantibodies are predominantly measured by radioassay to facilitate risk assessment

and diagnosis of type 1 diabetes. However, the reliance on radioactive components, large

sample volumes and limited throughput renders radioassay testing costly and challenging.

We developed a multiplex analysis platform based on antibody detection by agglutination-

PCR (ADAP) for the sample-sparing measurement of GAD, IA-2 and insulin autoantibodies/

antibodies in 1 μL serum. The assay was developed and validated in 7 distinct cohorts (n =

858) with the majority of the cohorts blinded prior to analysis. Measurements from the ADAP

assay were compared to radioassay to determine correlation, concordance, agreement,

clinical sensitivity and specificity. The average overall agreement between ADAP and radio-

assay was above 91%. The average clinical sensitivity and specificity were 96% and 97%.

In the IASP 2018 workshop, ADAP achieved the highest sensitivity of all assays tested at

95% specificity (AS95) rating for GAD and IA-2 autoantibodies and top-tier performance for

insulin autoantibodies. Furthermore, ADAP correctly identified 95% high-risk individuals

with two or more autoantibodies by radioassay amongst 39 relatives of T1D patients

tested. In conclusion, the new ADAP assay can reliably detect the three cardinal islet

autoantibodies/antibodies in 1μL serum with high sensitivity. This novel assay may improve

pediatric testing compliance and facilitate easier community-wide screening for islet

autoantibodies.
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Introduction

Type 1 diabetes (T1D) is a chronic autoimmune disease, characterized by progressive destruc-

tion of pancreatic islet beta cells. T1D affects millions of Americans, with over 70,000 new

cases arising each year. Over the past 20 years, the number of reported cases of T1D has dou-

bled due to the global increase in incidence rate [1]. Symptomatic T1D often coincides with

diabetic ketoacidosis (DKA), requiring emergency clinical intervention. The complications

and chronic treatment of T1D impose major physical, emotional and financial burdens on

people with diabetes and their families [2].

The presence of two or more islet autoantibodies defines the earliest stage of T1D [3]. Early

identification of these Stage 1 individuals reduces the risk of DKA by permitting timely glyce-

mic control, and facilitates enrollment in clinical trials during a critical window when patients

still harbor islet cell function and are more likely to respond favorably to immunomodulatory

intervention [4].

Furthermore, classical metrics based on body mass index (BMI) and age have reduced pre-

dictive power due to rising obesity among children and adolescents and an increased recogni-

tion of new-onset T1D in adults. Islet autoantibodies can thus aid in diabetes type

differentiation and confirmation of autoimmune diabetes for optimal treatment [5].

Currently, radioassay remains the most common tool to detect islet autoantibodies. Radio-

assay preserves antigen conformations, permitting detection of cognate autoantibodies with

high sensitivity. However, a solution-phase autoantibody assay that does not require radioac-

tive components, decreases the blood volume consumption and increases assay throughput

(e.g. shorter time to result) could greatly improve testing capacity and compliance, especially

in pediatric populations.

Alternative methods such as ELISAs have been developed to address some of the limitations

of radioassay; however, they do not detect insulin autoantibodies, one of the earliest biomark-

ers for type 1 diabetes, and still consume 20–50 μL of serum per autoantibody [6–8]. Other

multiplex approaches such as nanoparticle enhanced immunoassays and electrochemical

luminescence (ECL) assays require specialized instrumentation for assay readout, sample pre-

treatment or longer time-to-result (>16 hr) [5, 9–13]. Thus, detection of islet autoantibodies

for disease diagnosis and risk screening can benefit substantially from a sample-sparing, non-

radioactive, multiplexed, highly sensitive/specific assay that is easily deployable in routine clin-

ical laboratories.

Antibody detection by agglutination-PCR (ADAP) represents a new platform to measure

multiple antibodies/autoantibodies with high sensitivity [14, 15]. The ADAP assay leverages

the multivalency of antibodies/autoantibodies to aggregate antigen-DNA conjugates into close

proximity, positioning them for ligation upon introduction of a “bridge oligo” which is com-

plementary to both DNA strands. In this way, the PCR-amplifiable DNA is only formed upon

binding of autoantibodies to their antigens, and PCR readout directly reflects this binding

event. The agglutination and ligation steps of ADAP therefore help to circumvent issues other

PCR-based immunoassays have faced by requiring binding events to generate a “turn-on” sig-

nal, rather than having DNA attached directly to the antibody as in immuno-PCR. Together,

these innovative aspects of ADAP increase the fidelity of this PCR-based assay by dramatically

reducing background and improving signal. Additionally, this simple assay does not require

any washing and centrifugation protocols to remove unbound secondary reporters.

Herein, we report the development and large-scale testing of an improved ADAP method

to measure multiple islet autoantibodies in 1 μL serum samples that meets the requirements

for T1D. The assay was tested in multiple blinded study cohorts, including subjects with T1D,

their relatives and individuals with other diseases (S1 Table). The sample-sparing assay helps
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promote testing compliance, and allows researchers to preserve precious samples for a wide

range analyses such as transcriptome, genome, metabolism and cellular immunity to facilitate

immune signature identification [16, 17].

Results

The ADAP assay is capable of measuring antibodies against islet antigens

To develop an ADAP assay to measure islet autoantibodies with high accuracy, we needed to

produce high quality antigen-DNA conjugate probes (Fig 1A). To that end, recombinant full

length glutamic decarboxylase (GAD), full length insulin and cytoplasmic part of islet antigen-

2 proteins (IA-2, amino acid 604–979) that contained major epitopes for islet autoantibodies

were obtained. The first challenge we encountered was the susceptibility of proteins to aggre-

gation and potential denaturation under the standard DNA installation process by SMCC

(succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate) chemistry, likely due to the

fact that these autoantigens were highly conformational and contained several hydrophobic

regions. This issue was effectively mitigated by reducing the molar ratio of SMCC over pro-

teins, and high quality two DNA per protein conjugates were obtained as affirmed by UV-VIS

spectroscopy and SDS-PAGE characterization (S1 Fig).

The second challenge that remained to be addressed was whether the installation of DNA

on these autoantigens had blocked epitopes critical for antibody binding. To evaluate this

impact, we obtained polyclonal antibodies against GAD, IA-2 and insulin from immunized

animals. We chose polyclonal antibodies as opposed to monoclonals, because they contain

more diverse epitope binding specificities, thus better mimicking real-world heterogeneity and

complexity. Much to our satisfaction, we observed strong concentration dependent curves for

all three antibodies (Fig 1B). The fact that each conjugate only generated signals toward cog-

nate antibodies also demonstrated the strong specificity of the multiplex detection system.

Nevertheless, animal-derived antibodies may be different in nature to autoantibodies from

actual patients. Thus, we further characterized the ADAP T1D assay with a panel of 200 con-

trol and 120 established T1D patients (S2 Fig). Reassuringly, the signal distribution between

patients versus controls reached statistical significance (p<0.05). We then set the assay cutoffs

to 99 percentile of the controls, and used several study cohorts described below to indepen-

dently evaluate the performance of the system. These data together demonstrated the first evi-

dence that ADAP assay could detect multiple disease relevant antibodies while only

consuming 1μL of samples.

Finally, clinical specimens may be hemolyzed or lipemic, posing a challenge for antibody

detection systems. As PCR-based assays were known to be sensitive to contaminant inhibitors

in the samples, it was of great interest to characterize the ADAP method under these challeng-

ing conditions. Therefore, hemoglobin, lipids and bilirubin were spiked into T1D and normal

control serum samples at various concentrations. Satisfactorily, GAD, IA-2 and insulin signals

in the T1D specimens remained largely unchanged under all conditions, and the normal

serum samples showed consistently low signals close to the zero baseline (Fig 1C and S3 Fig).

Notably, spiked samples with highest hemoglobin, lipids and bilirubin concentration appeared

more perturbed beyond typical hemolysis or lipemic specimens. The ability of ADAP to with-

stand such large quantities of interfering substances stems from the ligation step, where the

3μL of sample/conjugate mixture was expanded into 117μL of ligation solution. This volumet-

ric dilution greatly reduced the impact of potential inhibitors on downstream PCR steps.

These data further strengthen the applicability of the ADAP T1D methods for difficult sample

types.
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Fig 1. Schematic of sample-sparing ADAP assay for detection of multiple islet autoantibodies and the analytical characterization. (A) The workflow of ADAP is

consisted of three steps. First, 1μL of serum is incubated with islet antigen conjugate probes harboring distinct DNA barcode pairs for 30 min. The multivalency of target

autoantibodies agglutinates the cognate antigen-DNA conjugate pairs into close proximity. Secondly, the addition of a ligase and a bridge oligonucleotide reunites the

two-separated barcode pairs into a full length amplicon. Finally, the ligated product is PCR amplified and then quantified with distinct primer pairs in the RT-PCR.

Since each antigen-DNA conjugate only has one primer binding site and thus not PCR amplifiable on its own, no washing or centrifugation step is needed to remove

unreacted probes. (B) The multiplex ADAP assay detected cognate antibodies without cross-reactivity. From left to right, antibodies from immunized animals against

GAD, IA-2 and insulin were serially diluted and assayed by ADAP. The x-axis displays the quantities of the antibodies in the sample. The y-axis is ΔCt calculated by the

difference of Ct value between the sample and a blank (S7 Fig). Signals for GAD, IA-2 and insulin antibodies are color coded in blue, orange and green respectively.

Error bars represent standard deviation from triplicate, but for many data points are too small to be visualized. (C) Tolerance of ADAP for common blood contaminant

was investigated by spiking hemoglobin at various concentration in T1D and healthy serum. No interference is observed up to 500 mg/dL of hemoglobin.

https://doi.org/10.1371/journal.pone.0242049.g001
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Taken together, a careful and stepwise development process has led to a sample-sparing

multiplex assay that can detect antibodies related to T1D even in the presence of common

blood contaminants.

Sample-sparing ADAP T1D assay performance in an assay validation panel

Beyond the strong analytical foundation above, the clinical performance of ADAP remained to

be evaluated. To this end, we obtained archived serum samples from type 1 diabetes patients

(n = 30) and healthy controls (n = 39) from the Benaroya Research Institute (cohort 1). These

samples had been analyzed by gold standard radioassays, offering a unique opportunity to

benchmark ADAP performance. For this cohort, those performing and analyzing the ADAP

assay were not masked to disease status or radioassay results.

We first compared autoantibody signals measured by the multiplex ADAP T1D assay and

radioassay (Fig 2B). The Cohen’s kappa test showed that the κ coefficient were 0.89, 0.92 and

0.86 for GAD, IA2 and insulin autoantibodies/antibodies, indicating high concordance.

Fig 2. Clinical performance of ADAP assay in an evaluation cohort of T1D and healthy control. (A) The ROC curves of ADAP showed AUC of 0.94 (95%CI: 0.89–

0.99), 0.82 (95%CI: 0.71–0.93) and 0.95 (95%CI: 0.90–1.00) for GAD, IA-2 and insulin antibodies/autoantibodies respectively. The samples were also analyzed by

radioassay and showed corresponding AUC of 0.92 (95%CI: 0.85–0.99), 0.80 (95%CI: 0.68–0.92) and 0.95 (95%CI: 0.88–1.00). (B) Comparison plots of ADAP and

radioassay signals. The x-axis displays radioassay signals in logarithm scales. The y-axis shows ADAP signal in ΔCt. The use of logarithm was necessary as ΔCt is a

logarithmic parameter. (For instance, consider a sample of ΔCt value 2 and another sample of ΔCt of 4, their amplicon quantities differ by 4 fold (24/22) rather than 2

fold). The horizontal and the vertical dash lines denote ADAP and radioassay cutoff thresholds respectively. T1D sample data is shown in blue circle, whereas health

serum signal is shown in red square. A total of 30 T1D and 39 control was analyzed without blinding.

https://doi.org/10.1371/journal.pone.0242049.g002
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Similarly, the overall agreement ranged from 93%-97% for three autoantibodies/antibodies.

Beyond from concordance, the correlation analysis revealed Pearson’s R coefficients of 0.82,

0.69 and 0.88 for GAD, IA-2 and insulin autoantibodies, respectively.

The clinical sensitivity and specificity were 93% and 100% for ADAP compared to 93% and

98% for radioassay. In addition, the area under the curve (AUC) of the receiver operating char-

acteristic (ROC) curves were 0.94 (95%CI: 0.89–0.99), 0.82 (95%CI: 0.71–0.93) and 0.95 (95%

CI: 0.90–1.00) for GAD, IA2 and insulin autoantibodies/antibodies respectively (Fig 2A).

Notably, the ROC curves of ADAP largely overlapped with those from radioassays (p>0.05),

implying similar accuracy. Thus, these the results demonstrated that the ADAP assay could

detect multiple islet autoantibodies/antibodies in 1μL serum with results consistent and con-

cordant with radioassays.

Sample-sparing ADAP T1D assay performance in the international Islet

Autoantibody Standardization Program (IASP) 2018

With the solid in-house validation results, we next sought to rigorously evaluate the sample-

sparing ADAP assay in a blinded manner by participating in the Islet Autoantibody Stan-

dardization Program (IASP) [18]. Firstly, the IASP study featured participants from over 30

laboratories from 17 countries. Secondly, aside from gold standard radioassays, other assays

including ELISA, ECL, microarray, luciferase-based immunoprecitation system (LIPS) and

Luminex microbeads also participated. Thirdly, each laboratory received a panel of coded

serum from 43 new onset T1D, 7 first degree relatives of T1D with multiple islet autoanti-

bodies and 90 normal controls. Notably, the new onset T1D samples were collected within

14 days of treatment so that any observed insulin autoantibodies were not simply antibodies

against therapeutically-administered insulin. Finally, since the sample panel sent to each

laboratory was coded differently, cross-comparing results between labs was not possible

without the key from the committee. The IASP study was therefore an ideal approach to

understand the capability of ADAP to detect disease relevant autoantibodies with no or

minimal bias.

The unmasked results from the IASP committee revealed class-leading performance for

ADAP (Table 1). The sensitivity of the ADAP assay at 95% specificity (termed AS95) were

88%, 74% and 66% for GAD, IA-2 and insulin autoantibodies respectively. When compared to

all participating assays by AS95, the sample-sparing ADAP assay had the highest reported sen-

sitivity for GAD and IA2 autoantibodies. For insulin autoantibodies, the ADAP AS95 value

was 66% while the highest reported AS95 value was 68%. The IASP results definitively affirmed

the high performance of the sample-sparing ADAP type 1 diabetes assay in detecting islet auto-

antibodies in 1μL serum samples.

Table 1. The ADAP assay performance in IASP 2018 study.

Islet cell Autoantibody Standardization Program (IASP) 2018

AS95 (Sensitivity at 95% specificity)

GAD Ab IA-2 Ab Insulin Ab

ADAP 88% 74% 66%

Reported Maximum 88% 74% 68%

The sensitivity at 95% specificity of ADAP is shown at the top, whereas the bottom values shows highest reported

sensitivity among all participating laboratories worldwide using various testing methods. A total of 43 T1D, 7 high-

risk relatives of T1D and 90 controls were analyzed with blinding.

https://doi.org/10.1371/journal.pone.0242049.t001
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Evaluation of sample-sparing ADAP T1D assay using blinded T1D and

T2D samples

Previous cohorts were based on T1D and normal controls. Generally a healthy individual with

low risk factors rarely receives testing for islet autoantibodies. Instead, measurement was more

likely to occur when a person developed a metabolic condition such as glucose intolerance.

To characterize the ADAP performance in such setting, we obtained a panel of masked

serum samples derived from 20 individuals with T1D and 30 with T2D from the Benaroya

Research Institute (cohort 3). The results were sent out to BRI investigators who then

unmasked the samples and provided disease status and radioassay signals for analysis (Fig 3A).

For GAD, IA-2 and insulin autoantibodies/antibodies, the AUC of ROC were 0.92 (95%CI:

0.83–1.00), 0.83 (95%CI: 0.70–0.95) and 0.97 (95%CI: 0.92–1.00) (Fig 3B), the Cohen’s κ coef-

ficient of concordance with radioassays were 0.80, 0.73, 0.87, the overall agreement with radio-

assays were 92%, 92% and 92%, and the Pearson’s correlation coefficient R were 0.86, 0.71 and

0.79, respectively. Subjects with T1D from this cohort were all positive for at least one autoanti-

body by ADAP and radioassays. On the other hand, 97% and 87% of samples from T2D

Fig 3. Validation of ADAP performance in a cohort of T1D and T2D samples. (A) The ROC curves of ADAP showed AUC of 0.92 (95%CI: 0.83–1.00), 0.83 (95%CI:

0.70–0.95) and 0.97 (95%CI: 0.92–1.00) for GAD, IA-2 and insulin antibodies/autoantibodies respectively. The samples were also analyzed by radioassay and showed

corresponding AUC of 0.91 (95%CI: 0.82–1.00), 0.72 (95%CI: 0.56–0.87) and 0.90 (95%CI: 0.79–1.00). (B) Comparison plots of ADAP and radioassay signals. The x-axis

displays radioassay signals in logarithm scales. The y-axis shows ADAP signal in ΔCt. The horizontal and the vertical dash lines denote ADAP and radioassay cutoff

thresholds respectively. T1D sample data is shown in blue circle, whereas health serum signal is shown in red square. This cohort included 20 T1D and 30 T2D, and was

analyzed with blinding.

https://doi.org/10.1371/journal.pone.0242049.g003
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patients were negative for all three autoantibodies by ADAP and radioassay respectively. The

results indicated that ADAP had at least as good performance as standard assays in this clini-

cally relevant population.

Validation of samples-sparing ADAP T1D assay with control samples from

patients without diabetes

Apart from testing in patients with metabolic conditions, we wished to further evaluate the

specificity of ADAP in a challenging cohort comprised of subjects with active inflammation.

Therefore, we obtained 60 coded serum samples from the Mayo Clinic (Cohort 5). This panel

was consisted of 20 T1D serum samples, 20 normal controls, 14 samples from patients with

hyperglobulinemia and 6 with systemic lupus erythematosus (SLE). Sera from patients with

hyperglobulinemia exhibit elevated immunoglobulin levels due to acute or chronic infection

and posed a challenge for traditional immunoassay analysis [19], while sera of SLE patients

often possess poly-reactive autoantibodies arising from multisystem inflammation [20, 21].

The ADAP assay correctly identified all 20 of the T1D diagnosis samples and 37 of 40 con-

trol samples (Table 2). Only three hyperglobulinemia serum samples showed single positive

signals for GAD autoantibodies close to the cutoffs. Their ADAP signals over cutoff ratios (S/

C) were 1.35, 1.92 and 2.68. Since GAD autoantibodies are commonly associated with neuro-

logical disorders such as Stiff-person syndrome [21], it is possible that hyperglobulinemia

patients could harbor such autoantibodies as well. To our knowledge, the frequency of GAD

autoantibodies in the setting of hyperglobulinemia has not been rigorously characterized and

reported in the literature.

To further compare the correlation and concordance of ADAP to radioassay performed at

the Mayo Clinic, we received another 80 coded serum samples (Cohort 6). These samples were

fully blinded, and originally submitted for testing at the Mayo Clinic to establish T1D diagno-

sis. For GAD, IA2 and insulin autoantibodies/antibodies, the concordance coefficients κ with

radioassay were 0.75, 0.83, 0.82, while overall agreement was 88%, 96% and 91%, and Pearson’s

correlation coefficients (R) were 0.93, 0.93 and 0.93 respectively (S4 Fig).

Table 2. Analysis of a challenging sample cohort with ADAP assay.

Suspected T1D Control SLE HG

GAD Ab

Rad + Rad - Rad + Rad - Rad + Rad - Rad + Rad -

ADAP+ 7 2 0 0 0 0 0 3�

ADAP- 0 11 0 20 0 6 0 11

IA-2 Ab

Rad + Rad - Rad + Rad - Rad + Rad - Rad + Rad -

ADAP+ 6 1 0 0 0 0 0 0

ADAP- 0 13 0 20 0 6 0 14

INS Ab

Rad + Rad - Rad + Rad - Rad + Rad - Rad + Rad -

ADAP+ 9 4 0 0 0 0 0 0

ADAP- 0 7 0 20 0 6 0 14

A total of 20 T1D, 20 controls, 6 systemic lupus erythematosus (SLE) and 14 hyperglobulinemia (HG) serum samples were included in this cohort to determine the off-

target propensity of ADAP in a population with autoimmune and/or inflammatory disorders. Only 3 HG patients showed GAD autoantibodies by ADAP (�The HG

samples have not been tested by radioassays, and were presumed to be radioassay negative). This cohort was analyzed with blinding. Radioassay was abbreviated as Rad.

https://doi.org/10.1371/journal.pone.0242049.t002
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Taken together, the results showed that the sample-sparing ADAP T1D assay identifies

autoantibodies sensitively with high specificity even within a complex patient population with

a variety of potentially confounding diseases.

Evaluation of sample-sparing ADAP T1D assay in an at-risk cohort

In addition to confirmation of T1D diagnosis, islet autoantibodies have important utility for

identification of high-risk individuals [3, 4]. Subjects with two or more islet autoantibodies are

categorized as high-risk, because they have a lifetime risk of developing T1D approaching

100% [3]. Our previous validation efforts focused on analyzing samples from T1D patient

post-diagnosis. Since autoantibody titers and epitope patterns may change as the disease pro-

gresses [22], we then further investigated ADAP performance in sera from pre-symptomatic

at-risk subjects.

We obtained 39 coded serum samples from at-risk relatives of T1D patients from Stanford

Medical School (Cohort 7). These serum samples were analyzed by radioassay in a reference

laboratory. The sample’s autoantibody patterns were masked at the time of ADAP analysis.

The result in the heatmap (Fig 4) showed that ADAP successfully detected 95% of high risk

relatives with two or more autoantibodies by radioassays. Notably, among these radioassay

double positive patients, 6 were triple positive by ADAP.

Intriguingly, for relatives initially classified as having a lower risk of progression (i.e. being

single autoantibody positive by radioassay), ADAP reclassified 6 of these individuals to auto-

antibody negative. Two of them were low insulin autoantibody positive and four of them were

low GAD autoantibody positive by radioassays. Future analysis of longitudinal samples, such

as those from DAISY, TEDDY and TrialNet, are required to further investigate whether this

reclassification can help improve the predictive accuracy of disease progressor versus non-

progressor.

We also further obtained coded sera from 18 new onset T1D, 32 established T1D and 50

controls from Stanford School of Medicine. Consistent with previous results, ADAP correctly

identified control patients to be negative for islet autoantibodies, and detected the majority of

radioassay positive T1D samples with a tendency to identify additional positivity (S5 Fig).

Combined, the data demonstrated that ADAP can faithfully identify high-risk patients

using just 1 μL of serum—a tiny volume that may greatly enhance screening compliance in

pediatrics.

Cross-cohort analysis of results between sample-sparing ADAP and

radioassay

To summarize the results from the aforementioned cohorts, we first analyzed the accuracy of

ADAP. The clinical sensitivity of ADAP ranged from 93%-100% and the specificity from 93%-

100% (S2 Table). Then we pooled the data from those cohorts tested by radioassay at the same

reference laboratory (cohort 1, 3 and 6), and showed that AUC of ROC were 0.91 (CI95%:

0.87–0.95), 0.82 (CI95%: 0.76–0.88) and 0.95 (CI95%: 0.92–0.98) for GAD, IA-2 and insulin

autoantibodies/antibodies by ADAP, while the AUC of ROC were 0.91 (CI95%: 0.86–0.95),

0.83 (CI95%: 0.77–0.89) and 0.96 (CI95%: 0.93–0.99) for the same autoantibodies/antibodies

by radioassays (S6 Fig). They largely overlapped and were statistically indistinguishable.

In addition, we also analyzed autoantibody patterns identified by ADAP and radioassays

based on T1D status (Table 3). This analysis excluded IASP cohort 2 since the radioassay data

of individual samples from participating laboratories were not public available. For new onset

and established patients, ADAP and radioassays pattern were largely consistent, and ADAP

correctly identified an additional 4–5% of patients considered autoantibody negative by
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radioassay. Importantly, 95% of samples from high-risk relatives were concordantly positive

for two or more autoantibodies by ADAP and radioassay.

In summary, the data demonstrated that the sample-sparing ADAP methodology could

reliably detect multiple islet autoantibodies in 1μL serum sample with strong performance.

Fig 4. Heatmap of islet autoantibody patterns in at-risk T1D. Serum samples (n = 39) were analyzed by ADAP (left)

and radioassay (right). ADAP and radioassay data was divided by corresponding cutoffs and plotted according to the

color key at the bottom. Patients positive for two or more autoantibodies are at high-risk of progression to clinical

onset of T1D. Radioassays identified 20 high-risk individuals, and 19 of those were also positive by ADAP, indicating

ADAP’s ability for risk identification using 1μL of serum sample. This cohort was analyzed with blinding.

https://doi.org/10.1371/journal.pone.0242049.g004
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Discussion

Islet-cell immunoassays remain the technological fulcrum for efforts to diagnose and predict

autoimmune diabetes. In this study, we developed and rigorously validated a multiplex islet

autoantibody assay that can use as little as 1μL of serum sample. Through analysis of 7 cohorts

comprised of 858 samples, we established the high performance of the assay in samples from

relatives of T1D, as well as new-onset and established T1D. In particular, the high sensitivity of

the assay was affirmed in the IASP 2018 study. The assay exhibited high specificity in analysis

of samples containing excessive potentially interfering substances, such as hemoglobin, lipids

and bilirubin, underscoring the resilience of the assay in measuring islet autoantibodies in

challenging sample types. In addition, the assay also retained satisfactory specificity when test-

ing healthy controls and diverse samples derived from type 2 diabetes, hyperglobulinemia and

SLE patients. Notably, the assay also showed promise for risk screening by reliably identifying

high-risk relatives with two or more autoantibodies.

It was noted that the control groups had differences in age, gender or races than the cases

for few of the cohorts. Since the prevalence of islet autoantibodies was minimally dependent

on these factors [23, 24], the difference should have marginal impact on the observed sensitiv-

ity and specificity. Indeed, the high sensitivities and specificities of the assay were observed in

several well matched cohorts, such as the fully matched IASP 2018 study (cohort 2).

ADAP utilizes a unique mechanism for autoantibody detection. Firstly, ADAP detects all

immunoglobulin isotypes, such as IgG, IgM and IgA [14, 15], whereas classic radioassay

employs protein A as the precipitation agent that binds strongly with IgG and variably with

Table 3. Number of people found autoantibody positivity by the multiplex ADAP and radioassay.

At-risk ADAP

3 Ab 2 Ab 1 Ab 0 Ab

Radioassay 3 Ab 6 - - - 6

2 Ab 7 6 1 - 14

1 Ab 1 - 6 6 13

0 Ab - - - 6 6

14 6 7 12

New onsets ADAP

3 Ab 2 Ab 1 Ab 0 Ab

Radioassay 3 Ab 11 - - - 11

2 Ab 2 2 - - 4

1 Ab - - - - 0

0 Ab - 1 - 2 3

13 3 0 2

Established ADAP

3 Ab 2 Ab 1 Ab 0 Ab

Radioassay 3 Ab 64 15 1 - 80

2 Ab 25 89 13 - 127

1 Ab 3 22 41 - 66

0 Ab - 1 7 21 29

92 127 62 21

Data from all of the assay validation cohort were pooled, except for IASP 2018 (cohort 2) because radioassay data for

individual samples was not public available. There were a total of 39 at-risk relatives of T1D, 18 new onset T1D and

182 established T1D included in the analysis.

https://doi.org/10.1371/journal.pone.0242049.t003
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IgA and IgM. Therefore, ADAP might identify autoantibody-positive patients that are not

detected using current methods. Secondly, ADAP has been shown to be 100 to 10,000 times

more analytically sensitive than conventional immunoassays [11, 12]. ADAP might therefore

identify very low quantities of autoantibodies that would otherwise be missed by existing

assays. Thirdly, ADAP demands at least two binding events between autoantibodies and anti-

gens to trigger signal generation. Therefore cross-reactive autoantibodies such as those from

SLE patient are likely rendered silent in the ADAP assay. Combined, these unique features of

ADAP could explain its different comparative performance to radioassay for GAD, IA-2 and

insulin autoantibodies.

For each autoantibody, the overall agreement between ADAP and radioassays were mostly

above 90% across all cohorts. For those 10% of samples showing discrepant results, ADAP had

a higher chance of identifying additional autoantibodies. For instance, among all T1D samples,

ADAP identified an additional 25 GAD autoantibody positives, whereas radioassay detected 6

extra GAD positive samples. These additional ADAP positivity were likely a result of enhanced

ADAP sensitivity since the sample signals were close to the cutoffs. Similarly, ADAP identified

an additional 13 IA-2 and 15 insulin autoantibodies positive, whereas radioassay detected 4

and 9 negative in ADAP respectively. Consistent with these observations, ADAP’s ability to

identify additional positivity may have contributed to its high performance in the IASP study.

Apart from ADAP, several research groups have developed and implemented non-radioac-

tive assays for islet autoantibody measurement. Multiplex ELISA (also known as the three-

screen ELISA) relies on a familiar ELISA workflow and instrumentation [8, 25]. It generates a

single composite signal in the presence of GAD, IA-2 or ZnT8 autoantibodies. Confirmatory

re-testing by radioassay is necessary to uncover insulin autoantibodies and to discriminate

between individual autoantibody types and titers. Another example is the multiplex electro-

chemiluminescence assay (ECL). The ECL employs an acid dissociation step to process the

serum sample, which is then incubated overnight (>16 hr) with probes before subsequent sig-

nal analysis for GAD, IA-2 and insulin autoantibodies [9–13]. Recently, this method was

expanded to measure 7 autoantibodies in a single assay [13].

The multiplex ADAP assay is unique in that it leverages highly sensitive PCR amplification

to further reduce the required sample volume for accurate analysis down to 1 μL of serum,

eliminates the acid-dissociation step, and substantially reduces the assay incubation time

down to 30 min. The sample-sparing (1 μL) feature is not only ideal for pediatric patients who

may not be amenable to large volume blood draws, but also saves precious residual volume

from samples for use in studies of genetic, transcriptomics, metabolic and cellular analyses.

The non-radioactive and operationally simple workflow can significantly increase assay

throughput. Lastly, ADAP relies on a commonly available real-time quantitative PCR (RT-

qPCR) thermocycler for assay readout, thus eliminating the capital burden of acquiring spe-

cialty instrumentation.

The extensive validation of the ADAP assay presages a path to further expand its research

and clinical utility. This includes large-scale longitudinal studies to more fully characterize the

additional unique value of ADAP autoantibody signals in prediction of T1D risk and further

comparative studies of ADAP to ELISA, ECL and other assay formats. Finally, incorporation

of ZnT8 may also enhance the performance of the multiplex ADAP islet autoantibody assay

[26]. It is noted however that ZnT8 autoantibody is rarely the lone autoantibody seen in isola-

tion in subjects that progress to clinical diabetes [27, 28].

In summary, we report the development and validation of an ADAP assay as a sample-spar-

ing and high-performing option for detecting islet autoantibodies. The method may also be

applicable to other autoimmune diseases, as the DNA barcoding nature of ADAP made it pos-

sible to expand beyond currently 3-plex to encompass additional autoantigens. Importantly,
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the reduction of blood draw volume and the ability to reveal multiple autoantibodies with

exceptional sensitivity and specificity from a single 1 μL sample may improve biomarker dis-

covery, clinical trial enrollment and patient care in the pediatric population. If these favorable

attributes are widely validated, the assay will become a valuable research and clinical tool for

T1D and other immunological diseases.

Materials and methods

Materials

The full length GAD65 from RSR (#rGAD/FR/1) and insulin from Sigma Aldrich (#91077)

were full-length recombinant proteins produced in yeast. The IA-2 antigen from RSR (#rIA2/

FR/1) was a recombinant protein fragment from amino acid 604–979 produced in E. Coli.

Polyclonal GAD antibodies were purchased from R&D systems (#AF2247). IA-2 antibodies

were from Proteintech (#10584-1AP). Insulin antibodies were from Abcam (#14042). Plati-

num Taq polymerase (#10966026) and SYBR qPCR 2X master mix (#4385610) was purchased

from Thermo Fisher. Hemoglobin (#H7379), bilirubin (#B4126) and intralipid (#I141) were

purchased from Sigma Aldrich. Dithiothreitol (DTT #202090) and sulfo-SMCC (#22122) were

purchased from Life Technologies. DNA ligase (#A8101) was purchased from Lucigen. Other

reagents are detailed in the method sections as appropriate.

Study population

Clinical samples used in this study were collected after written informed consent and with

Institutional Review Board (IRB) approval at respective centers as appropriate. All of the clini-

cal specimens in this study were received by Enable Biosciences as de-identified coded samples

and determined by certified IRB professional (C.I.P.) from Western IRB to be exempt from

the IRB review in 2017. A followed up IRB review (#20180015, Panel 05 from Western IRB)

further approved Enable’s use of de-identified specimens for the study. Serum samples were

obtained from multiple sources (S1 Table).

In cohort 0, serum from 200 healthy individuals and 120 established T1D patients were

used to determine the assay cutoff thresholds. The healthy serum samples were provided by

the Benaroya Research Institute (BRI) and BioIVT (median age of 33 years, 54% male, and

40% White). The established T1D serum samples were provided by the T1D Exchange (T1DX)

from the “Metformin therapy for overweight adolescents with type 1 diabetes

(NCT01881828)” clinical trial (median age of 15.4 years, 29% male, 78% White, a median dis-

ease duration of 7.1 years).

In cohort 1, the BRI provided archived serum from 30 established T1D patients (median

age of 32 years, 57% male, 77% White, median duration of diseases:17.7 years) and 39 healthy

control (median age of 33 years, 44% male, 72% White) to preliminarily evaluate the assay per-

formance. This cohort was not blinded to those performing the assays.

In cohort 2, the coded IASP 2018 samples were received from the IASP Committee and the

University of Florida [18] to compare performance with other laboratory in a blinded fashion.

This cohort included 43 new-onset T1D samples within 14 days of diagnosis (median age of 14

years, 65% male, 86% white Caucasian, disease duration < 14 days), 7 multi-autoantibody pos-

itive first degree relatives of T1D (median age of 16 years, 43% male, 100% White) and 90

matched controls (median age of 20 years, 49% male, 77% White).

In cohort 3, the BRI provided coded serum samples from 20 established T1D (median age

of 23 years, 35% male, 85% White, median disease duration of 15.2 years) and 30 type 2 diabe-

tes (median age of 47 years, 33% male, 67% White) serum samples to evaluate ADAP perfor-

mance in an independent blinded cohort.
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In cohort 4, the Mayo Clinic provided blinded samples, including 20 serum from estab-

lished T1D patients, 20 serum from normal controls, 6 from systemic lupus erythematosus

(SLE) and 14 from hyperglobulinemia (HG). All these samples were remnant test samples

from the Neuroimmunology Laboratory. In cohort 5, the Mayo Clinic further provided 80

coded remnant serum from established T1D patients.

In cohort 6, serum samples from Stanford University were collected at the Lucile Salter

Packard Children Hospital. The samples included 32 established T1D patients (median age of

17 years, 56% male, median disease duration of 6 years), 18 new onset T1D (median age of

11.5 years, 44% male, median disease duration of 45 days), 39 first and second degree relatives

of T1D (median age of 17 years, 44% male) and 50 normal controls (median age of 14 years,

46% male). The samples were analyzed in a blinded fashion.

Radioassays

Radioassay testing for GAD, IA-2 and insulin autoantibodies of samples from the BRI and

Stanford was performed by the Barbara Davis Center. The radioassay cutoffs for the Barbara

Davis Center were 20 DK units/mL, 5 DK units/mL and 0.010 (index) for GAD, IA-2 and insu-

lin autoantibodies, respectively (S4 Table). The radioassay cutoffs for the Neuroimmunology

Laboratory at the Mayo Clinic were 0.02 (index) for all three autoantibodies. Cutoffs for radio-

assays were exclusively established by respective centers according to their clinical practice

[29–31] and used directly in this study without further modifications. We did not re-deter-

mine the cutoffs of radioassays using samples from this study.

Synthesis of islet cell antigen-DNA conjugates

For GAD65 and IA-2 conjugates, the proteins were buffer exchanged in reaction buffers (55

mM sodium phosphate, 150 mM sodium chloride, 20 mM EDTA, pH 7.2) to make 1 mg/mL

solutions. A 1 μL solution of 8mM Sulfo-SMCC (Thermo Scientific) was added to 10 μL of the

protein solution. The reaction mixture was incubated at room temperature for 2 h. Thiolated-

DNA (Integrated DNA Technologies) was suspended in reaction buffers to 100 μM. A 3 μL

solution of thiolated-DNA solution and 4 μL of 100 mM solution of DTT were mixed to

reduce dimerized thiolated-DNA to monomer forms. The solution was then incubated at 37˚C

for 1 h. The excess sulfo-SMCC in protein mixtures and DTT in thiolated-DNA were removed

by 7K MWCO Zeba spin column (Thermo Fisher). The thiolated-DNA and protein solutions

were then pooled and incubated overnight at 4˚C. The DNA-to-protein incubation ratio was

3-to-1 for all proteins. Finally, protein-DNA conjugates were purified by 30 kDa MWCO filter

(Millipore). Conjugate concentrations were determined by BCA assay (Life Technologies).

Conjugation efficiencies were analyzed by SDS-PAGE and silver staining as described previ-

ously. DNA-to-protein ratios of the conjugates were estimated by UV-VIS absorption and typ-

ically fell in the range of 2-to-1. Protein-DNA conjugates were stored at 4˚C for short-term

usage or aliquoted for long-term storage at -80˚C. The insulin conjugate synthesis condition

has been detailed elsewhere [11].

ADAP type 1 diabetes assay

DNA barcoded islet antigens were used in the antibody detection by agglutination-PCR

(ADAP) assay to measure GAD, IA-2 and insulin autoantibodies/antibodies in a single sample

(Fig 1A). Briefly, 1 μL of serum sample was incubated with 2 μL conjugate mixtures (contain-

ing 1 femtomole of GAD, IA-2 and insulin-DNA conjugates) at 37˚C for 30 min. Then, 116 μL

of ligation mix (20 mM Tris, 50 mM KCl, 20 mM MgCl2, 20 mM DTT, 25 μM NAD, 0.025 U/

μl ligase, 100 nM connector) was added and incubated at 30˚C for 15 min. Then, 25 μL of
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ligated solution was mixed with PCR master mix that contained all primer pairs and amplified

under standard thermocycling conditions (95˚C for 10 min, 95˚C for 15 sec, 56˚C for 30 sec,

12 cycles). The pre-amplified products were then quantified by different primer pairs in a

96-well qPCR plate. SYBR green-based qPCR was performed on a Bio-Rad CFX96 real-time

PCR detection system (95˚C for 10 min, 95˚C for 30 sec, 56˚C for 1 min, 40 cycles). Instead of

using the common cycle threshold (Ct) as readout, the ADAP assay readout ΔCt is defined as

the Ct value of the blank control minus the Ct value of the actual sample (S7 Fig). The ΔCt for

each DNA amplicon/primer pair was calculated accordingly. Therefore, ADAP achieved mul-

tiplex quantification of multiple antibody targets from a single sample.

The value of ΔCt is proportional to the initial amplicon concentrations in the PCR plate

well, which in turn is proportional to the amount of target antibody present in the samples.

The ΔCt offers significant reproducibility as the subtraction of blank control Ct and sample Ct

cancels out any potential drift across runs.

The thresholds of positivity of the multiplex ADAP assay for GAD, IA-2 and insulin auto-

antibodies were determined by testing 200 healthy control (cohort 0). The GAD, IA-2 and

insulin cutoffs were set at 99th percentile of ΔCt from the normal controls, and were 2.39, 2.68

and 1.05 respectively. The same cutoffs were applied for all of the cohorts.

Assay reproducibility

The intra-assay variation of ADAP was evaluated by measuring 5 replicates of samples on the

same plate, whereas inter-assay variations were determined by testing 5 replicates of samples

on 5 different days. The intra- and inter-assay variations were below 15% for autoantibody

positive samples.

Data analysis

PRISM (version 8.1.1) and XLSTAT software (version 2018.1) were used for data and statistical

analysis. For the Pearson’s correlation analysis, radioassay signals were logarithmically trans-

formed. The use of logarithm was necessary as ΔCt is a logarithmic parameter. (For instance,

consider a sample of ΔCt value 2 and another sample of ΔCt of 4, their amplicon quantities dif-

fer by 4 fold (24/22) rather than 2 fold). The ROC analysis were performed to evaluate accuracy

of ADAP and radioassays. For the concordance analysis, we used Cohen’s kappa statistics.

Clinical sensitivity were calculated by dividing the number of T1D patients positive for at least

one autoantibody by the total number of T1D patients, while the clinical specificity were calcu-

lated as the number of control patients negative for all autoantibodies divided by the total

number of control patients. Two-tailed P values with an alpha of 0.05 were used as the cutoff

for significance.

Supporting information

S1 Fig. Representative SDS-PAGE of antigen-DNA conjugates. Lane 1: Unconjugated GAD

protein. Lane 2 and 3: GAD protein conjugated with DNA. Up shifts were observed due to

increased molecular weight after chemical conjugation.

(TIF)

S2 Fig. ADAP signals in cohort 0 of 120 T1D and 200 control serum samples. The signal

distribution reached statistical significance between T1D (blue) and control (red) populations

for all three autoantibodies (�p<0.05). The horizontal dash line represented cutoffs at the 99th

percentile.

(TIF)
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S3 Fig. ADAP was tolerant for varying concentration of lipids and bilirubin. (A) Varying

concentrations of lipids were spiked into T1D and control serum. The normal lipid level

should be lower than 200 mg/dL No interference is observed up to 3000 mg/dL of hemoglobin.

(B) Varying concentrations of bilirubin were spiked into T1D and control serum. The normal

bilirubin level should be lower than 1.2 mg/dL. No interference is observed up to 6.6 mg/dL of

bilirubin.

(TIF)

S4 Fig. Analysis of 80 T1D serum samples from Mayo Clinic. The x-axis displays radioassay

signals in logarithm scales. The y-axis shows ADAP signal in ΔCt. The horizontal and the verti-

cal dash lines denote ADAP and radioassay cutoff thresholds respectively. ADAP identified

additional positive samples.

(TIF)

S5 Fig. Analysis of at-risk, new onset and established T1D serum samples from Stanford

School of Medicine. The x-axis displays radioassay signals in logarithm scales. The y-axis

shows ADAP signal in ΔCt. The horizontal and the vertical dash lines denote ADAP and radio-

assay cutoff thresholds respectively. Data from each sample group is color coded (blue circle

for established T1D, purple diamond for new onset T1D, green triangle for at-risk relatives of

T1D, red square for control).

(TIF)

S6 Fig. ROC plots of pooled raw data from cohort 1, 3 and 6. The ROC curves of ADAP

showed AUC of 0.91 (95%CI: 0.87–0.95), 0.82 (95%CI: 0.76–0.88) and 0.95 (95%CI: 0.92–0.98)

for GAD, IA-2 and insulin antibodies/autoantibodies respectively. The samples were also ana-

lyzed by radioassay and showed corresponding AUC of 0.91 (95%CI: 0.86–0.95), 0.83 (95%CI:

0.77–0.89) and 0.96 (95%CI: 0.94–0.99). The AUC between ADAP and radioassay was not sta-

tistically distinguishable. Noted that cohort 4 and cohort 5 were not included since their radio-

assays were performed by Mayo Clinic, whose assay performance had not been correlated with

those at Barbara Davis Center.

(TIF)

S7 Fig. Representative real-time quantitative PCR (qPCR) curves for ADAP experiments.

In a standard qPCR experiment, fluorescent values (arbitrary unit au, y-axis) would gradually

increase as PCR cycling went on (Cycle number, x-axis). For instance, here we illustrated rep-

resentative qPCR curves for T1D serum samples using GAD-DNA conjugates. The Ct value of

qPCR was defined as the cycle number where fluorescent readout of the sample equaled a

defined threshold fluorescent value (black horizontal dash line). The Ct value of T1D positive

serum was 19.86 (Ct1, blue vertical dash line), whereas Ct value of healthy samples was 28.80

(Ct2, pink vertical dash line) and buffer only blank were 29.09 (Ct3, green vertical dash line).

The ΔCt of an ADAP experiment was defined as the Ct value difference between a sample and

a blank control. Therefore, the ΔCt for T1D serum will be 9.23 (29.09–19.86), and ΔCt for

healthy serum will be 0.29 (29.09–28.80). A larger ΔCt indicated that the sample contained

higher amount of PCR amplicons, which then reflected the presence of higher amount of anti-

bodies/autoantibodies.

(TIF)

S1 Table. Summary of patient cohorts involved in this study. Cohort 0 was the assay training

cohort used to establish the assay cutoff thresholds. Cohort 1 to cohort 6 were assay validation

cohorts. Notably, cohort 2 was from the Islet Autoantibody Standardization Program (IASP).

Sensitivity and specificity of all participating methods in IASP were made public available by
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the committee but not individual data points, and thus IASP cohort is not included in those

cross-cohort analysis requiring individual sample signals.

(DOCX)

S2 Table. Summary of clinical performance of ADAP assay across cohorts. Sensitivity is

defined as the percentage of T1D samples with one or more autoantibodies. Specificity is

defined as the percentage of control or non-T1D samples without any autoantibodies. Noted

that in cohort 6, 39 relatives of T1D were excluded from the analysis, as they have yet devel-

oped any clinical symptoms for definitive diagnosis.

(DOCX)

S3 Table. Summary of correlation, concordance and agreements between ADAP and

radioassay across cohorts. As noted above, the radioassay signals for individuals samples

from participating laboratory are not publicly available. Thus, the correlation, concordance

and agreement was not reported for that cohort.

(DOCX)

S4 Table. Cutoffs for various assays involved in the study. The cutoffs of radioassays per-

formed by the Barbara Davis Center and Mayo Clinic were established by each center accord-

ing to their routine clinical practice and the procedures have been reported previously [8–10].

We did not re-determine the cutoffs of radioassays using any samples from this study.

(DOCX)
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