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Simple Summary: Cancer-associated mortality largely depends on metastatic dissemination. Metas-
tasizing cancer cells exhibit drastic phenotypic changes, including the ability to migrate, invade
surrounding tissues, survive in the bloodstream, adapt to different microenvironments, and resist
to therapeutic treatments. These changes depend on the genetic reprogramming orchestrated by
relatively few players (transcription factors). Among the components of the dimeric transcription
factor AP-1, the nuclear oncoprotein Fra-1 is strongly implicated in metastasis mechanisms. There-
fore, Fra-1, along with other proinvasive transcription factors, represents an ideal therapeutic target.
However, as for other DNA-binding proteins, the design of inhibitory drugs is hampered by the
structural features of Fra-1. In this Review, after summarizing the Fra-1 functions and mechanisms
of accumulation in invasive tumors, we survey the possible application of multiple strategies and
emerging technologies aimed at the inhibition of Fra-1 expression and activity, to prevent metastatic
dissemination and therapeutic resistance.

Abstract: The genetic and epigenetic changes affecting transcription factors, coactivators, and
chromatin modifiers are key determinants of the hallmarks of cancer. The acquired dependence on
oncogenic transcriptional regulators, representing a major determinant of cancer cell vulnerability,
points to transcription factors as ideal therapeutic targets. However, given the unavailability of
catalytic activities or binding pockets for small-molecule inhibitors, transcription factors are gener-
ally regarded as undruggable proteins. Among components of the AP-1 complex, the FOS-family
transcription factor Fra-1, encoded by FOSL1, has emerged as a prominent therapeutic target. Fra-1
is overexpressed in most solid tumors, in response to the BRAF-MAPK, Wnt-beta-catenin, Hippo-
YAP, IL-6-Stat3, and other major oncogenic pathways. In vitro functional analyses, validated in
onco-mouse models and corroborated by prognostic correlations, show that Fra-1-containing
dimers control tumor growth and disease progression. Fra-1 participates in key mechanisms of
cancer cell invasion, Epithelial-to-Mesenchymal Transition, and metastatic spreading, by driving
the expression of EMT-inducing transcription factors, cytokines, and microRNAs. Here we survey
various strategies aimed at inhibiting tumor growth, metastatic dissemination, and drug resistance
by interfering with Fra-1 expression, stability, and transcriptional activity. We summarize several
tools aimed at the design and tumor-specific delivery of Fra-1/AP-1-specific drugs. Along with
RNA-based therapeutics targeting the FOSL1 gene, its mRNA, or cognate regulatory circRNAs, we
will examine the exploitation of blocking peptides, small molecule inhibitors, and innovative Fra-1
protein degraders. We also consider the possible caveats concerning Fra-1 inhibition in specific
therapeutic contexts. Finally, we discuss a recent suicide gene therapy-based approach, aimed at
selectively killing the Fra-1-overexpressing neoplastic cells.
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1. Introduction

The oncogenic transcription factors (TFs) were originally envisaged as ideal targets
for anticancer therapies [1], and encouraging preclinical/clinical results were obtained
by targeting the TFs harboring binding sites for small molecules, such as the Stat3 SH2-
phosphorylation domain and the hormone-binding domains of the steroid receptors. Never-
theless, besides the well-characterized DNA-binding domains, most TFs exhibit disordered
secondary structures and lack catalytic sites and binding pockets. Thus, differently from
therapeutically targeted receptors and cytoplasmic protein kinases, TFs are generally con-
sidered “undruggable”.

The AP-1 complex [2,3] results from dimerization between members of the JUN
(c-Jun, JunB, and JunD) and FOS (c-Fos, FosB, Fra-1, and Fra-2) families, along with other
transcription factors (ATF and Maf families). These proteins share the bZIP domain, in
which the DNA-contacting basic amino acid-rich region is flanked by the leucine zipper,
which mediates the dimerization, resulting in the large variety of JUN/FOS homo- and
hetero-dimers (Figure 1A).
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the crystal structure of c-Fos/c-Jun DNA-bound bZIP domain (PDB: 1FOS). The X-shaped alpha-
helical structure contains the LZ (gray) and the BR (purple), directly interacting with the DNA (red). 
LZ leucines (blue) and other hydrophobic residues (yellow) are indicated and the canonical hep-
tameric TRE (TPA-Response Element) sequence is reported (5′-TGA G/C TCA-3′). (B) 3D structure 
of human Fra-1. The model is based on the AlphaFold prediction method (available at the Al-
phaFold Protein Structure Database, https://alphafold.ebi.ac.uk/entry/P15407, accessed on 1 July 
2021). The N-terminus of the protein is on the upper left. The colors represent the per-residue model 
confidence score. Blue: very high. Light blue: confident. Yellow: low. Orange: very low. The blue-
colored predicted alpha-helix (from Ser101 to Pro175) encompasses the bZIP DNA-binding domain, 
while the other regions are likely unstructured, in absence of binding to Fra-1 interaction partners. 
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Recently, based on the machine-learning-based AlphaFold method [5], the structures
of each component of the human proteome have been predicted and made available [6].
As for the other FOS proteins, the Fra-1 structure can be modeled (with high to very high
confidence) only for the 70–80-aa region encompassing the DNA-binding bZIP region,
while most of the protein appears intrinsically unstructured (Figure 1B). Therefore, the
inherently disordered Fra-1 regions are likely to assume defined structures following the
Fra-1/AP-1 interaction with partner molecules.

Several AP-1 components are overexpressed and/or post-translationally modified in
response to the major oncogenic pathways. However, various lines of evidence, including
the genetic inactivation of individual JUN and FOS family members in onco-mouse models,
show that individual AP-1 proteins can exhibit cell context-dependent oncogenic or tumor
suppressor roles, as highlighted in a seminal review entitled: “AP-1: a double-edged sword
in tumorigenesis” [4]).

2. Structure, Regulation and Functional Roles of FOSL1/Fra-1
2.1. FOSL1/Fra-1 Structure and Regulation

Among FOS family members, the transcription factor Fra-1 is a major driver of cancer
cell invasion, EMT (Epithelial-to-Mesenchymal Transition), and metastasis (reviewed in [7–9]).
The 271 amino acids Fra-1 protein is encoded by the FOS-related gene FOSL1, localized
on chr11q13 [10].

FOSL1 is overexpressed in the aggressive variants of most solid tumors in response to
a variety of extranuclear (RTKs, RAS, and BRAF) and nuclear (MYC, AP-1) oncoproteins.
Stat3 and Tcf/Lef elements mediate cancer-associated FOSL1 induction in response to the
IL6 and Wnt-beta-catenin pathways, respectively (reviewed in [7–9]).

The sequential epigenetic events involved in FOSL1 transcriptional elongation depend
on both upstream and intronic enhancers, controlled by multiple nuclear oncoproteins, such
as c-Myc and AP-1. The pathway responsible for the ERK-induced recruitment of c-Myc
to the FOSL1 promoter in response to neuregulin (NRG1) has been recently elucidated in
breast cancer [11]. Multiple AP-1 binding sites mediate the FOSL1 positive autoregulation,
which amplifies the effect of Fra-1 posttranslational accumulation. The enhancer-associated
epigenetic reader BRD4 drives the recruitment of p-TEFb (positive-Transcription Elongation
Factor-b), which phosphorylates the RNAPII (RNA polymerase II) CTD (Carboxy-Terminal-
Domain), thus triggering transcriptional elongation by the release of the RNAPII paused
on the FOSL1 promoter [12] (Figure 2A). Notably, the FOSL1 intronic enhancer is part
of a much larger SE (Super Enhancer) region, identified by genome-wide analyses in
glioblastoma multiforme (GBM) [13], pancreatic, and colorectal cancer cells [14].
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Figure 2. (A) FOSL1 transcriptional and post-transcriptional regulation. The major oncogenic
pathways control the FOSL1 transcription through multiple TFs interacting with the FOSL1 promoter
region (AP-1, beta-catenin, TWIST1, SNAIL1, Elk, SRF, ATF, and CREB) or the intronic enhancer
(AP-1, MYC, TWIST1, and SNAIL1). The BRD4 association with acetylated histones drives the
recruitment of P-TEFb, which triggers transcriptional elongation by phosphorylating the CTD of
RNPII stalling on the FOSL1 promoter. The FOSL1 positive autoregulation is represented by the Fra-
1-containing heterodimers binding to AP-1 sites in the intronic enhancer region. miR-34a, miR-497,
and miR-19a-3p (green box) represent the oncosuppressor miRNAs targeting the Fra-1 mRNA 3′UTR.
Hsa_circ_0022924 indicates the circRNA encompassing the FOSL1 distal exon, containing the 3′UTR.
The dashed line represents the possible sponging of the miRNAs by Hsa_circ_0022924. (B) Fra-1
post-translational modifications. The diagram represents the major Fra-1 domains, including the basic
region (BR), leucine zipper (LZ) and the C-terminal destabilizer region (DEST) implicated in Fra-1
proteasomal degradation. The ERK- and RSK- phosphorylated (S252 and S265, respectively) and the
PKC-theta-phosphorylated (T223 and T230) residues, protecting Fra-1 from degradation, are shown
along with the (TBP-1-binding) region involved in proteasome association. The acetylated residue
(K116), localized in the BR and subjected to HDAC6-mediated deacetylation, negatively controls
the Fra-1/AP-1 DNA-binding activity (modified from [8]). (C) The major functionally characterized
target genes and neoplastic hallmarks controlled by Fra-1 in tumor progression.

FOSL1 is post-transcriptionally inhibited by multiple miRNAs (Figure 2A). Cancer-
associated downregulation of miR-34a/c and miR-15/16-family member miR-497 con-
tributes to the Fra-1-driven neoplastic cell invasion and EMT in breast and colorectal
cancer [15–17]. Downregulation of miR-19a-3p participates in Fra-1 accumulation in
TAMs (Tumor-Associated Macrophages) recruited to breast tumors microenvironment,
in which the miR-19a-3p-Fra-1-Stat3 pathway controls the macrophage polarization to-
wards the pro-neoplastic immunosuppressive M2 phenotype [18]. The regulatory mech-
anisms of miRNA activity include the competition for miRNA binding (sponging) per-
formed by several classes of non-coding RNAs, including the recently characterized circular
RNAs (circRNAs). Given their extraordinary stability, circRNAs represent highly effective
miRNA sponges [19]. Interestingly, the Genome Browser tracks for circRNAs show the
hsa_circ_0022924 [20] deriving from circularization of the FOSL1 distal exon and including
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the whole FOSL1 3′UTR. Therefore, this cirRNA is a candidate competing for endogenous
RNA (ceRNA) sponging the oncosuppressor miRNAs (miR-34 and miR-15/16 family mem-
bers, along with miR-19a-3p and miR-29a) that downregulate the expression of Fra-1 and
other oncoproteins.

The ubiquitin-independent turnover of Fra-1 is prevented by the phosphorylation of
S252 and S265 serine residues mediated by ERK2- and Rsk1, respectively [21], and by PKC-
theta-dependent phosphorylation of T223 and T230 threonine residues [22] (Figure 2B).
In turn, the Fra-1 stabilization in response to the RTK-RAS-RAF-MEK pathway indirectly
controls the stability of the c-Jun heterodimeric partner [23].

Accordingly, the BRAF and MEK inhibitors decrease Fra-1 protein accumulation by
directly affecting its stability and indirectly abrogating the Fra-1/AP-1-mediated tran-
scriptional autoregulation [24]. In addition, the ubiquitin-independent Fra-1 degradation
requires the Fra-1 phosphorylation-independent association with the proteasomal subunit
TBP-1 to mediate the proteasomal recognition of the poorly structured Fra-1 C-terminal
region [25] (Figure 2B).

2.2. Fra-1 in Tumor Growth, Invasion, and Metastasis

Fra-1 overexpression crucially contributes to cancer cell invasion in most solid tumors,
including adenocarcinoma (breast, lung, colon, pancreas, and thyroid), squamous cell
carcinomas, and non-epithelial cancers, such as melanoma, malignant mesothelioma, and
GBM (reviewed in [9]).

Fra-1 drives the morphological changes in cytoskeletal organization, loss of epithelial
polarization, increased motility, and invasiveness, which reflect different context-dependent
degrees of mesenchymal transformation, from partial to complete EMT [7]. Accordingly,
in breast and colorectal adenocarcinoma cell lines the Fra-1-dependent transcriptomes and
cistromes comprise well-characterized EMT-inducers, including tyrosine kinase receptors
(AXL), EMT-inducing cytokines (TGF-beta and IL-6), EMT-TFs (ZEB1 and ZEB2), and chro-
matin components (HMGA1) [26–31]. In addition to the EMT-related pro-invasive programs,
Fra-1 target genes control cell proliferation, survival, and anoikis resistance [32–38], as sum-
marized in (Figure 2C).

Fra-1 contributes to both autocrine and paracrine mechanisms of EMT and tumor angio-
genesis, by inducing multiple cytokines, including TGF-beta in breast and colorectal cancer
cells [29,30], and IL-6 and VEGF in the TAMs recruited to tumor microenvironment [18,39–41].

Fra-1 downstream effectors also include relevant non-coding transcripts. Fra-1 con-
trols the transcription of the broadly overexpressed onco-miRNA miR-21, which, in turn,
contributes to positive feedback loops with AP-1 in RAS-transformed cancer cells [42–44].
Another positive feedback is mediated by the Fra-1-dependent control of miR-134 in ovar-
ian cancer. miR-134 inhibits the Protein Phosphatase-1 (PP1) regulatory subunit SDS22,
thus potentiating the ERK and JNK MAPK signaling and Fra-1 accumulation and driving
cancer cell proliferation, migration, and invasion [45]. Non-coding RNAs also participate
to the Fra-1 dependent control of Epithelial to Mesenchymal Transition. For example, the
Fra-1-mediated induction of miR-221/222 controls the miR-221/222-TRPS1-ZEB2 pathway,
which promotes EMT in breast cancer cells [46].

Fra-1 plays a pivotal role in the dynamic balance between cancer and non-cancer stem
cells (CSCs). In breast cancer cells, the Twist- and Snail-mediated induction of FOSL1
results in Fra-1 accumulation, which drives the EMT-associated transition from non-CSCs
to CSCs [47]. In colorectal cancer cells, IL-6 potentiates the Fra-1 activity by inducing the
HDAC6-mediated Fra-1 deacetylation and accumulation (Figure 2B), resulting in the gain
of stem-like features, partially dependent on the Fra-1-mediated transactivation of the
NANOG promoter [48]. In NF1-mutant GBM tumors and cell lines, FOSL1 overexpression
has been recently implicated in the control of mesenchymal subtype and gain of stem-like
features. Accordingly, in a mouse model of GBM, FOSL1 deletion drives the transition from
mesenchymal to proneural transcriptional signature, along with decreased stemness and
tumor growth [49]
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2.3. Fra-1 as Prognostic Biomarker and Cancer Cell Addiction to Fra-1 Overexpression

RNA expression profiling and IHC data show the prognostic relevance of Fra-1 and/or
Fra-1-dependent transcriptomes. Time to recurrence and/or metastasis-free survival cor-
relate with Fra-1 expression (alone or in multivariate analyses) in a wide range of adeno-
carcinomas, including breast [29,34,36,50,51], colon [30,35,41,48], lung [37], pancreas [37],
cholangiocarcinoma [52], and squamous cell carcinomas, such as HNSCC (Head and Neck
Squamous Cell Carcinoma) [53,54], ESCC (Esophageal Squamous Cell Carcinoma) [55,56],
and OSCC (Oral Squamous Cell Carcinoma) [57]), along with non-epithelial cancers, such
as glioma [58].

Interestingly, in TNBC (Triple-Negative Breast Cancer), the gene signature (Fra-1
classifier) derived from experimentally determined Fra-1-transcriptomes exhibits predictive
value superior to most breast cancer prognostic classifiers [34]. Among the therapeutically
promising Fra-1-regulated genes in invasive breast cancer [34,36], ADORA2B renders the
Fra-1-overexpressing TNBCs vulnerable to Adenosine2b receptor inhibitors, such as the
common anti-asthmatic theophylline [34]. In multiple tumors, additional synthetic-lethal
interactions involve various “druggable” proteins, encoded by Fra-1 target genes and
coexpressed with FOSL1, including receptors (e.g., AXL and PLAUR) [28,59,60], cytokines
(e.g., IL6 and TGFB2) [26,29,30], and mitotic kinases (e.g., AURKA) [37].

The context-dependent roles of Fra-1 expression are pinpointed by the inhibitory
effects of FOSL1 downregulation on tumor growth, detectable in KRAS-mutated but not
in KRAS-wild type PDAC (Pancreatic Ductal AdenoCarcinoma) and LUAD (LUng ADe-
nocarcinoma) cells. As previously shown in RAS-transformed thyroid cells [61], Fra-1
knockdown induces G2-M arrest and apoptosis in KRAS-mutated LUAD cells. Accord-
ingly, the knockdown or pharmacological inhibition of Fra-1-controlled mitotic regulators
recapitulates the effects of FOSL1 loss. In KRAS-mutated, but not in KRAS-wild type lung
cancer cells, AURKA depletion selectively blocks cell proliferation and expression of mitotic
regulators (AURKA, CCNB1, HURP, TACC3, and PLK1), though AURKA overexpression is
insufficient to rescue all the effects of FOSL1-knockdown in KRAS-mutated cells [37].

Similarly, ID1 expression is prognostically relevant in KRAS-wild type but not in
KRAS-mutated LUAD. The ID1 effects on cell proliferation and mitotic machinery largely
depend on the ID1-mediated control of FOSL1. Interestingly, FOSL1 re-expression can
rescue the ID1-silenced phenotype in KRAS-mutated cells [62].

Along with KRAS mutation, loss of SMAD4 is a key event in pancreatic cancer progres-
sion and metastatic dissemination. Recently, a high-throughput screen for prometastatic
SMAD4 target genes has identified FOSL1, which is negatively regulated by SMAD4 direct
binding to the enhancer region of FOSL1. In turn, Fra-1 is necessary and sufficient to
recapitulate the effect of SMAD4 loss on metastatic lung colonization [63].

Cancer cell addiction to Fra-1-containing dimers is strongly supported by recent
unbiased CRISPR-Cas9 screens to identify dependencies in hundreds of genomically char-
acterized cell lines representing most human cancers [64].

According to the Broad Institute Project Achilles, 205/808 cancer cell lines depend on
FOSL1 expression, while the Sanger’s Cancer Dependency Map shows addiction to FOSL1
in 50/323 lines (https://score.depmap.sanger.ac.uk, accessed on April 2019). Remarkably,
FOSL1 is unique among FOS-family members, which (FOS and FOSB) are dispensable or
(FOSL2) essential in only 1/323 lines [65], thus supporting the choice of Fra-1—among FOS
proteins—as a target for therapeutic intervention.

2.4. Fra-1 in Drug Resistance and Drug Addiction Mechanisms

Together with the unique ability to seed new tumors, CSCs/TICs (Tumor-Initiating
Cells) are refractory to anticancer treatments (drug- and radiation-resistant) and so respon-
sible for clinical relapses [66]. The relationship between the EMT-associated transcriptional
reprogramming and the gain of stem-like features, including drug resistance [67], is well-
established. Therefore, therapeutic targeting of EMT-TFs via Fra-1 inhibition can not

https://score.depmap.sanger.ac.uk
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only contribute to the eradication of chemo-resistant CSC subpopulations [68], but also
antagonize the radiation-resistant CSCs fraction.

BET (Bromodomain and Extra-Terminal domain) inhibitors are currently investigated
in several clinical trials addressing hematological malignancies and solid tumors, including
breast cancer. The promising therapeutic perspectives of BET inhibitors are hampered by
multiple drug-resistance mechanisms, characterized in various preclinical models [69]. The
role of Fra-1-containing dimers is suggested by a recent study based on multi-omics profiling
and CRISPR functional screening, aimed at identifying the synthetic lethal and resistance
interactions with the BET bromodomain inhibitor JQ1 in TNBC. In these cells, Fra-1 regulates
its target genes mainly interacting with remote enhancers, which exhibit epigenomic and
transcriptional profiles specifically associated with breast cancer subtypes [51,70]. Proteomic
analyses by RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins)
show that Fra-1 participates in the BRD4-associated chromatin complexes. In addition, the
synthetic-lethal interactions highlight the roles of the Hippo and AXL pathways in the resistance
to the BRD4 inhibitor [71]. Significantly, Fra-1 cooperates with both the Hippo pathway, by
interacting with YAP/TAZ/TEAD target promoters [72–74]), and the Gas6/AXL pathway, by
transcriptionally inducing AXL [28,75]). Altogether, these data suggest that Fra-1 therapeutic
inhibition might antagonize the acquired resistance to BET inhibitors.

Fra-1 accumulation in melanoma results from the mutationally activated RAS-BRAF-
MEK-ERK pathway. Fra-1 triggers a switch in the expression of EMT inducers, involving the
ZEB2 and SNAI2 downregulation, associated with the upregulation of ZEB1 and TWIST1,
which drive the cancer cell reprogramming leading to melanocyte dedifferentiation and
gain of mesenchymal features [76]. As in mammary and breast cancer cells [27,29], the
ZEB1 promoter is regulated by Fra-1, and ZEB1 is a Fra-1 effector in melanoma cells [76].
High levels of ZEB1, correlating with Fra-1 expression and melanoma stemness markers
(MITFlo/p75hi in CSCs vs MITFhi/p75lo in non-CSCs) are implicated in intrinsic resis-
tance to BRAF and MEK inhibitors. In addition, ZEB1 is overexpressed in melanoma cells
with acquired drug resistance and in biopsies from patients relapsing while under treat-
ment [77]. Therefore, Fra-1 inhibition might counteract the intrinsic or acquired melanoma
resistance to BRAF and/or MEK inhibitors, by suppressing the ZEB1-regulated EMT-like
transcriptional programs.

Along with key EMT regulators (ZEB1 and AXL), Fra-1-containing dimers control the
transcription of several miRNAs involved in therapeutic resistance. In ovarian cancer, the
above-mentioned Fra-1-miR-134 autoregulatory loop causes decreased chemosensitivity to
adriamycin and etoposide, because of the miR-134 effect on phosphorylation of the H2AX
variant histone, which critically contributes to NHEJ-mediated DNA repair [45].

Although the above-described drug-resistance mechanisms point to Fra-1 inhibition as
a tool for restoring the responsiveness to treatments, in specific conditions Fra-1 inhibition
might be counterproductive.

In various neoplastic contexts, acquired resistance to targeted therapeutics depends on
the compensating overexpression of some upstream component(s) of the RTK-RAS-BRAF-
MEK-ERK signaling pathway. Drug removal results in in vitro growth arrest and in vivo
tumor regression, due to the toxic effect of the rebound hyperactivity of the MEK-ERK
pathway [78,79]. In melanoma cells exhibiting acquired vemurafenib resistance due to
increased BRAFV600E expression, drug removal causes proliferative arrest, which indicates
that drug-resistant cells have become addicted to vemurafenib [79]. Accordingly, melanoma
patients with acquired resistance exhibit partial therapeutic responses when re-challenged
with the same drug after interrupting the treatment [80].

The JunB/Fra-1 heterodimer contributes to the cell death caused by the overdose
of MAPK signaling. Following drug removal from dabrafenib- and trametinib-resistant
melanoma cells or EGFRi-resistant lung cancer cells, the Mek1/Erk2 rebound activity
drives the JunB and Fra-1 accumulation, which triggers proliferative arrest and/or cell
death [81]. In several MAPKi-resistant melanoma cell lines harboring different BRAF or
NRAS mutations, the ERK hyperphosphorylation induced by drug withdrawal stimulates
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the p38-Fra-1-CDKN1A signaling axis, which results in p21 accumulation and proliferative
arrest [82]. Moreover, conditioned media from drug-depleted vemurafenib-resistant cells
inhibit the growth of untreated cells, thus suggesting the role of some growth-inhibitory
secreted factor(s) regulated by Fra-1/JunB [83].

Therefore, in drug-addicted cells subjected to drug withdrawal, Fra-1 inhibition might
favor rather than inhibit cancer cell survival. Namely, the clinical benefits resulting from in-
termittent treatments with RTK, BRAF, or MEK inhibitors could be lost, if FOSL1 expression
is suppressed in coincidence with the proliferative arrest triggered by drug removal.

In addition to conventional and targeted therapies, CSCs are also refractory to im-
munotherapy, because of the upregulation of immune checkpoint inhibitors such as PD-L1,
associated with the presence of M2-polarized macrophages in tumor stroma [84]. Interest-
ingly, Fra-1-containing dimers are involved in both mechanisms. In KRAS-transformed
human bronchial epithelial cells, Fra-1 contributes to the escape from immune surveillance
by mediating the MEK-ERK-dependent induction of PD-L1 [85], while in TAMs, Fra-1
supports the polarization toward the M2 immunosuppressive phenotype [18,26].

2.5. Fra-1 in Drug Resistance and DNA Repair Mechanisms

In addition, other Fra-1-regulated mechanisms are implicated in resistance to targeted
therapeutics. Based on the synthetic lethality between the loss of PARP activity and BER
(Base Excision Repair) defects, PARP inhibitors, such as olaparib, allow the successful
treatment of BRCA1/2 mutated cancers, although ineffective in BRCA-wild-type tumors,
representing most (80–85%) of TNBCs. Remarkably, PARP1 has been identified among
118 chromatin-bound Fra-1 partners, by proteomic screening in TNBC cells [86]. The
interaction between PARP1 and Fra-1 results in reciprocal inhibition. Consequently, while
the olaparib-mediated PARP1 inhibition induces Fra-1 expression and activity, Fra-1 (and
c-Jun) knockdown sensitizes the TNBC cells to the proapoptotic activity of the PARP
inhibitor [87], thus suggesting that Fra-1 therapeutic inhibition could sensitize the BRCA-
wild-type TNBCs to treatments with PARP inhibitors.

In the next sections, we will examine several innovative strategies for targeting
FOSL1/Fra-1 at multiple levels, including the Fra-1/AP-1 DNA-binding activity, FOSL1
DNA sequence, and mRNA expression, Fra-1 stability, and transactivation mechanisms,
along with the recent application of Fra-1-based suicide gene therapies.

3. Therapeutic Targeting of FOSL1/Fra-1 in Neoplastic Cells
3.1. Targeting the Fra-1/AP-1 DNA-Binding Heterodimers

Both polypeptides and small molecule inhibitors have been exploited for interfering
with AP-1 activity by several strategies.

The first polypeptide inhibitor of AP-1 was represented by the c-Jun dominant-
negative derivative TAM67. This molecule, lacking the N-terminal transactivation domain
but retaining an intact DNA-binding domain (Figure 3A), forms homo- and hetero-dimers
able to bind to target sequences and suppress the endogenous AP-1 transcriptional activity
along with the TPA- or oncogene-induced transformation [88]. The effect of the AP-1
inhibition on neoplastic transformation was corroborated by the in vivo results, show-
ing that TAM67 transgenic expression prevents tumor progression in a skin chemical
carcinogenesis system [89].

In the dominant-negative polypeptide A-Fos, derived from the c-Fos bZIP domain, the
basic region is replaced with an acidic region, which strongly interacts with the basic region
of the JUN-family dimerization partners, to form very stable DNA binding-incompetent
heterodimers (Figure 3A). Transfected or adenovirally delivered A-Fos inhibits neoplastic
transformation [90] and antagonizes cisplatin resistance in ovarian cancer cells [91]. As for
the dominant-negative c-Jun, A-Fos activity has been evaluated by transgenic expression
of the dominant-negative c-Fos derivative in a skin carcinogenesis system, in which A-
Fos prevents the development of squamous lesions by inducing transdifferentiation into
sebaceous tumors [92].
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Figure 3. Inhibition of Fra-1/AP-1 DNA binding activity. (A) Polypeptide inhibitors. The recombinant
or synthetic polypeptides act as bZIP competitors. The JUN/FOS dimers are represented as X-shaped
coiled-coil structures, with the N- and C-terminal regions (not in scale) flanking the central DNA-binding
domain. The leucine zipper (LZ), basic region (BR) and the transactivation domain (TAD) domains
are indicated. Blue: JUN proteins, green: FOS proteins, Orange: Fra-1. TAM67 is a deletion mutant of
c-Jun lacking the N-terminal TAD. TAM67 acts as a dominant-negative on AP-1-dependent transcription
by sequestering the AP-1 proteins in inactive homo- and hetero-dimers. The 68-aa dominant-negative
A-Fos polypeptide, generated by replacing the BR of the c-Fos bZIP with an amphipathic 25-aa acidic
extension forms very stable heterodimers, which subtract from DNA-binding the JUN-family partners.
The Fos169-193/Tat48-57 polypeptide, encompassing a 25-aa segment derived from the c-Fos LZ forms
DNA binding-incompetent heterodimers with the JUN-family partners. The peptide is rendered cell-
permeable by fusion to the 10-aa Tat-derived Nuclear Localization Signal (NLS). The 39-aa Fra1W
(yellow), derived from the Fra-1 LZ, forming very stable Fra-1-Fra1W homodimers, specifically inhibits
the Fra-1/AP-1 activity by sequestering Fra-1 from its heterodimeric partners (the Fra1W-NLS-Tat
represents the cell-permeable derivative). (B) Small-molecule AP-1 inhibitors. The small-molecule
DNA-binding inhibitor T-5224 blocks the AP-1 binding by interacting with the basic region of the
JUN/FOS heterodimers. The small-molecule inhibitor veratramine specifically interacts with the TRE
site, thus preventing the AP-1 binding to DNA.

Since in A-Fos the basic residues are replaced with negatively charged amino acids,
incompatible with intracellular penetration of the naked protein, the A-Fos delivery requires
encapsulation into nanoparticles. This limitation, however, can be circumvented by using
smaller c-Jun-interacting peptides displaying stable interhelical hydrophobic interactions.
Promisingly, a c-Fos-derived (Fos169–193) peptide, containing multiple substitutions in the
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leucine zipper domain and made cell-permeable by fusion to the arginine-rich HIV-Tat NLS
(Tat48–57) (Figure 3A), efficiently enters the cell nuclei and inhibits proliferation in breast
cancer lines [93]. More recently, the same group has identified a potent and selective Fra-1
inhibitor, by a computational screening of a (>75 million) peptide library, by permutating
the sequence encompassing the five leucine zipper heptad repeats. About five hundred
in silico-selected (39-aa-long) candidate sequences were further screened in bacteria, by
PCA (Protein-fragment Complementation Assay). The selected peptide (Fra1W, Figure 3A)
shows a binding affinity for Fra-1 within a nanomolar range and does not homodimerize or
heterodimerize with the JUN-family members. Promisingly, the cell-permeable derivative
(Fra1W-NLS-Tat) inhibits the AP-1 activity in luciferase reporter assays [94].

Furthermore, several small molecules have been characterized as DNA-binding in-
hibitors by various approaches, including the in silico modeling of the 3D structure of
the bZIP domain of the DNA-bound AP-1 complex. From the best-matching decapep-
tide molecules, non-peptidic small-molecule inhibitors were synthesized by a scaffold-
hopping strategy [95].

Among the small-molecule AP-1 inhibitors (reviewed in [96] and represented in Figure 3B),
T-5224 has been validated in various preclinical models of non-neoplastic inflammatory and
degenerative diseases. The T-5224 therapeutic potential is largely dependent on the inhibition
of AP-1-regulated inflammatory cytokines and MMPs (Matrix-degrading MetalloProteases)
in models of rheumatoid arthritis [97] and intervertebral disk degeneration [98]. In addition,
T-5224 protects from bleomycin-induced lung fibrosis, in which, however, a major role is played
by Fra-2/AP-1 dimers in murine alveolar macrophages [99], while the Fra-1/AP-1 dimers
exert a protective effect [100] The anti-neoplastic efficacy has been evaluated in a mouse model
of HNSCC, in which T-5224 is able to inhibit cancer cell invasiveness and prevent lymph
nodal metastases [101].

The bZIP domains and the structure of the DNA-bound complexes are highly con-
served among JUN and FOS proteins, thus suggesting that T-5224, modeled on the c-Jun/c-
Fos heterodimer, can similarly inhibit the DNA binding by each JUN/FOS heterodimer.
Accordingly, T-5224 effectively inhibits AP-1 in TNBC cell lines predominantly express-
ing Fra-1 [102].

In addition, small molecules can act as AP-1 inhibitors by blocking the TRE sites
on DNA. The alkaloid veratramine, identified through virtual screening of a database
of natural compounds, selectively binds to the AP-1 target sequence (5′-TGACTCA-3′)
by interacting with the DNA minor groove (Figure 3B). Veratramine inhibits the AP-1-
DNA interaction and transformed features in EGF-treated mouse keratinocytes, without
interfering with MAPK signaling upstream to AP-1. Moreover, despite the structural
similarity with the Smo (Smoothened) inhibitor cyclopamine, veratramine does not affect the
Hedgehog pathway [103].

Given the lack of selectivity vs. individual dimers, both polypeptides and small
molecules can inhibit the activity of the AP-1 complex not only in cancer cells, in which
Fra-1 is a major component, but also in normal tissues, expressing at physiological levels a
large variety of AP-1 homo- and hetero-dimers. Notably, JunB, JunD, and c-Fos, can also
act as oncosuppressors rather than oncoproteins, depending on the oncogenic lesion and
affected cell type [4].

3.2. Targeting the FOSL1 Gene and Fra-1 mRNA

The drawbacks of global AP-1 inhibition highlight the importance of developing
Fra-1-specific drugs, which should represent better therapeutic bullets.

FOSL1 expression can be inhibited in cancer cells by several strategies, either irre-
versibly by gene editing, or reversibly by directly or indirectly targeting the Fra-1 mRNA.
Nevertheless, the non-viral tumor-specific delivery represents the bottleneck for most of
these strategies.

Recently, however, therapeutic editing of a breast cancer oncogene (LCN2, encoding
Lipocalin-2) has been achieved by using an innovative vehicle (tNLG: targeted-NanoLipoGel)
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for delivery of CRISPR-Cas9 plasmids in TNBC cells. After passing across the leaky tumor
endothelial barriers, the deformable tNLG particles are selectively delivered through a can-
cer cell-specific antibody and conjugated to the surface of the nanoparticles [104] (Figure 4).
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Figure 4. FOSL1 editing in TNBC cells: (A) The multilayer structure of the tumor-targeted nanolipogel
(tNLG) (modified from [104]). The plasmid-loaded hydrogel is coated with a lipid bilayer formed by
the zwitterionic DOPC and the anionic DSPE-PEG. The hydrophilic tail of the DSPE-PEG mediates the
binding of the ICAM-1 antibody, which allows for the specific delivery of plasmid vectors (or siRNAs)
to TNBC cells. (B) The gRNAs and Cas9 expression vectors are encapsulated in the tNLG nanoparticle.
The diagram shows the FOSL1 editing by a representative gRNA-Cas9 ribonucleoprotein complex
targeting the third exon, encoding the essential bZIP region.

The tNLG and similarly designed nanovectors can be utilized for FOSL1 therapeutic
editing in TNBC [26,31,44,47], by exploiting other cell surface molecules, in addition to
ICAM-1, for selectively targeting the Fra-1-overexpressing cells. Fra-1 inhibitors could
be delivered by using nanoparticles conjugated with antibodies or RNA aptamers [105]
binding to the cell surface receptors encoded by Fra-1 target genes (PLAUR, AXL, and
ADORA2B). PLAUR being both a target [60] and an upstream regulator [106] of FOSL1,
is one of the top co-expressed genes in a variety of solid tumors, including breast, lung,
colorectal, pancreas, liver, and thyroid adenocarcinoma (with correlation coefficients > 0.5,
according to cBioPortal RNA-seq data [107]).

Although most of the currently approved CRISPR/Cas9-based clinical trials are rep-
resented by CAR-T cell therapies against hematological malignancies, gene knockout
strategies are emerging as powerful antineoplastic tools. The lentiviral delivery of Cas9
and sgRNAs to cancer cells or tumor xenografts has allowed the selective inactivation of
the mutated KRAS allele [108]. FOSL1 is activated by overexpression rather than oncogenic
mutations. Consequently, given the impossibility to hit a mutated allele, Cas9 and sgR-
NAs need to be selectively delivered to cancer cells to prevent the possible detrimental
consequences of FOSL1 knockout in non-neoplastic cells.

Differently from FOSL1 knockout (Figure 4), FOSL1 knockdown (Figure 5) allows
reversible inactivation of Fra-1 expression.
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Figure 5. Inhibition of FOSL1 expression. Different inhibitory mechanisms of distinct oligonucleo-
tides (AMOs, miRNA mimics, siRNAs, and AsiCs) targeting the Fra-1 mRNA. AMOs: depending 
on the complementary mRNA region and oligonucleotide chemical modifications, the AMOs (An-
tisense Modified Oligonucleotides) can function by steric hindrance, to block the pre-mRNA splic-
ing or mature mRNA translation, or by triggering the RNAseH-mediated degradation of the DNA–
RNA (or gapmer–RNA) hybrid formed with the target transcript. siRNAs and miRNAs: both oligo-
nucleotides are incorporated in the cytoplasmic RISC complex. While the siRNAs trigger the endo-
nucleolytic cleavage of the fully complementary Fra-1 transcript, the partially complementary miR-
NAs induce translational repression and degradation of the Fra-1 mRNA (and other co-targeted 
transcripts). While the chemically modified AMOs (amphipatic, with hydrophobic groups exposed) 
exhibit good tissue distribution, the poorly distributed (hydrophilic) double-stranded siRNAs and 
miRNA mimics require encapsulation in liposomal nanoparticles, as in the case of the miR-34a-de-
rived drug (MRX34). AsiCs (Aptamer-linked small-interfering RNA Chimeras): these oligonucleo-
tides do not require encapsulation in liposomal carriers, since the internalization is mediated by the 
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Figure 5. Inhibition of FOSL1 expression. Different inhibitory mechanisms of distinct oligonucleotides
(AMOs, miRNA mimics, siRNAs, and AsiCs) targeting the Fra-1 mRNA. AMOs: depending on the
complementary mRNA region and oligonucleotide chemical modifications, the AMOs (Antisense
Modified Oligonucleotides) can function by steric hindrance, to block the pre-mRNA splicing or
mature mRNA translation, or by triggering the RNAseH-mediated degradation of the DNA–RNA (or
gapmer–RNA) hybrid formed with the target transcript. siRNAs and miRNAs: both oligonucleotides
are incorporated in the cytoplasmic RISC complex. While the siRNAs trigger the endonucleolytic
cleavage of the fully complementary Fra-1 transcript, the partially complementary miRNAs induce
translational repression and degradation of the Fra-1 mRNA (and other co-targeted transcripts).
While the chemically modified AMOs (amphipatic, with hydrophobic groups exposed) exhibit good
tissue distribution, the poorly distributed (hydrophilic) double-stranded siRNAs and miRNA mimics
require encapsulation in liposomal nanoparticles, as in the case of the miR-34a-derived drug (MRX34).
AsiCs (Aptamer-linked small-interfering RNA Chimeras): these oligonucleotides do not require
encapsulation in liposomal carriers, since the internalization is mediated by the binding of the
aptamer portion to the cell surface receptor. The release of siRNAs from the internalized AsiC
molecules is mediated by Dicer.
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The therapeutical potential of FOSL1 silencing has been proven in orthotopic mouse
models, in which the shRNA-mediated Fra-1 knockdown suppressed lung metastasis
and restored epithelial features of breast cancer cells [34]. Similar results were obtained
in other xenograft systems, derived from Fra-1-overexpressing colorectal or pancreatic
adenocarcinoma cells [35,37].

In these studies, however, Fra-1 accumulation was suppressed by shRNAs stably ex-
pressed in cultured cells before subcutaneous injection in animals. Although the expression
of an inducible Fra-1 shRNA showed that regression of established tumor xenografts can
be triggered by Fra-1 downregulation [37], Fra-1 silencing by exogenously administered
siRNAs has not been tested yet in preclinical models.

Despite the increasing number of clinically approved siRNA-based drugs [109], no
oligonucleotide pharmaceutical has been approved for neoplastic diseases. Among the
anti-cancer clinical trials registered on ClinicalTrials.gov at the end of 2020 and currently
in phase 1/2, 195 are based on ASOs (AntiSense Oligonucleotides), compared to only
17 siRNA-based trials. Inhibition of oncogenic transcription factors is the object of two
ongoing trials, aimed at testing the siRNA-mediated inhibition of c-Myc in multiple solid
tumors or hepatocellular carcinoma, and seven clinical trials dealing with Stat3-targeted
ASOs in advanced cancers [110]. All these drugs are delivered by liposomal carriers.

An interesting alternative is represented by the recently described siG12D LODER
(Local Drug EluteR), for selectively targeting the mRNA encoding the mutated KRASG12D.
In the siG12D LODER, the siRNA is incorporated in a biodegradable polymeric matrix,
to allow the slow release of the therapeutic oligonucleotide after implantation in pancre-
atic tumors [111].

While no clinical trial based on FOSL1 silencing has been registered so far, cancer
patients have been experimentally treated with the miR-34a oncosuppressor, which targets
the FOSL1 mRNA. Fra-1 downregulation contributes to the anti-invasive effect of ectopic
miR-34a re-expression in colorectal and breast cancer [15,16], thus suggesting the efficacy
of miR-34a-based drugs against Fra-1-overexpressing tumors. However, despite promising
results in preclinical models, the first-in-human trial of a liposomal miR-34a drug (MRX34)
in patients with advanced solid tumors has been terminated before completion of phase I,
because of serious adverse events [112]. Current efforts are aimed at chemical modifications
and delivery platforms, to prevent the systemic immune activation and maximize the cancer
cell-selective delivery of MRX34 and other therapeutic oligonucleotides [110,112].

As an alternative to treatment with MRX34 or similar miRNA mimics, the activity
of oncosuppressor miRNAs might be induced by inhibiting their corresponding compet-
ing endogenous RNAs (ceRNAs). Given the proposed role of circRNAs as therapeutic
targets [19], the knockdown of FOSL1 circRNA (hsa_circ_0022924), by siRNAs or LNAs
targeting the circRNA back splice site, might represent an alternative strategy for rescuing
the miRNA-mediated inhibition of Fra-1 expression.

Regarding the challenging delivery of RNA therapeutics, RNA aptamers, which do
not require encapsulation in nanovectors and similarly to antibodies facilitate the target-
specific delivery, represent a valid alternative to nanoparticles. The recently described AsiCs
(Aptamer-linked small-interfering RNA Chimeras) include an RNA-aptamer, mediating
the specific binding to the cancer cell surface, joined to a siRNA molecule aimed at silencing
the selected mRNA target (Figure 5). Following receptor-mediated internalization, release
from the endosomal compartment, and processing by the RNAi machinery, the AsiCs direct
the degradation of target transcripts [113]. Treatment with AsiCs mixtures, containing
several siRNAs targeting multiple regulators of tumor growth and immune responses,
is more efficient than single AsiCs, in mouse models of TNBC. The sequence shared by
distinct AsiCs includes the RNA aptamer binding to EpCAM (Epithelial Cell Adhesion
Molecule), overexpressed on most epithelial cancer cells [114,115]. In addition to EpCAM,
cell surface binding of Fra-1-specific AsiCs might be mediated by aptamers interacting with
the above-mentioned cell surface receptors, such as PLAUR, coexpressed with Fra-1.
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In addition to gene editing and siRNA-mediated silencing, FOSL1 can be inhibited
at the transcriptional level, by interfering with selected co-activators. Since the same co-
activators are also implicated in Fra-1 transactivation mechanisms, both aspects will be
discussed in the same section (see below).

3.3. Targeting the Fra-1 Protein Stability

Fra-1 can be downregulated at the post-translational level, by promoting protein degra-
dation. Several protein-kinases (ERK1/2, Rsk1, and PKC) induce the Fra-1 accumulation by
inhibiting the Fra-1 C-terminal destabilizer region (Figure 2B) and the cancer-associated Fra-
1 stability is phosphorylation-dependent. Remarkably, Fra-1 downregulation contributes to
the therapeutic effect of the drugs targeting the MAPK pathway [21,22,24]. Therefore, the
identification of protein-kinase inhibitors affecting Fra-1 half-life represents an appealing
avenue. Alternatively, Fra-1 destabilization could be obtained by recently developed tools
(protein degraders), aimed at the forced ubiquitylation and proteasomal degradation of
target proteins.

Recently, novel regulators of c-Myc stability in K-Ras-mutated pancreatic cancer cells
have been identified by an innovative fluorescence-based screening. The strategy relies
on the use of the EGFP-MYC fusion protein as a sensor of c-Myc stability for screening a
library of protein-kinase inhibitors (PKIS: Published Kinase Inhibitor Set) [116]. A simi-
larly designed Fra-1-based reporter has been instrumental in investigating the kinetics of
ERK activity in living cells [117]. The same construct can be adopted for high-throughput
screenings aimed at identifying novel signaling pathways and regulators of Fra-1 phos-
phorylation and half-life. The reporter cell lines can be generated by stable expression of a
reporter construct (FIRE: Fra-1-based Integrative Reporter of ERK), encoding the chimeric
protein formed by YFP fused to the 40-aa C-terminal Fra-1 destabilizer, in neoplastic cells
exhibiting constitutive MAPK activity driving expression of hyperphosphorylated stable
Fra-1 isoforms. Libraries of chemical compounds, such as collections of protein-kinase
inhibitors distributed in high-density microwell plates, will be screened by detecting the
YFP-associated fluorescence. The candidate Fra-1-destabilizing drugs (positive hits) are
revealed as a loss/reduction in yellow fluorescent signal (Figure 6A).

The structurally disordered Fra-1 C-terminal region (Figure 1B) might be directly or
indirectly (via-TBP-1 [25]) recognized by the proteasome, and the ERK/Rsk/PKC-mediated
phosphorylation might protect the protein from subsequent proteolytic degradation [21,25,118].
The evidence that Fra-1 protein stability was not affected in a non-ubiquitinable mutant protein
with all lysines replaced by arginines prompted to suggest that, as for c-Fos, ubiquitylation
is at least partially dispensable for Fra-1 catabolism [21]. These results agree with a previous
report, showing that overexpression of constitutive MEK1 in human non-neoplastic cells
(HEK293) induced both Fra-1 C-terminal phosphorylation and Fra-1 polyubiquitylation, thus
suggesting that polyubiquitylation could play roles unrelated to the control of the Fra-1 protein
half-life [119].

Recent findings, however, indicate that in several neoplastic cell contexts, polyubiqui-
tylation negatively controls the Fra-1 protein stability. The Ubiquitin-Specific Protease 21
(USP21) is a Fra-1 deubiquitinase contributing to Fra-1 accumulation in KRAS-transformed
colorectal cancer cells [120]. USP21 knockdown induces Fra-1 polyubiquitylation and
decreased stability in the same KRAS-transformed CRC cell line (HCT116) in which Fra-1
is stabilized by ERK-mediated phosphorylation [21,120]. Moreover, in a recent study, deal-
ing with a potential anti-tumor agent (xanthohumol) inhibiting ERK activity and Fra-1
accumulation in NSCLC cells, Fra-1 deubiquitylation has been causally linked to the ERK-
induced protein stabilization, as shown by the phosphomimetic mutation (S265D) causing
the decreased polyubiquitylation and the increased half-life of Fra-1 [121].
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Figure 6. Inhibition of Fra-1 protein stability: (A) Identification of Fra-1 destabilizers by fluorescence-
based high-throughput screening of chemical libraries. A cancer cell line expressing the hyper-
phosphorylated Fra-1 isoforms is stably transfected with the reporter construct (FIRE = Fra-1-based
Integrative Reporter of ERK), expressing the YFP fused to the Fra-1 C-terminal region. By automated
systems, libraries of protein kinase chemical inhibitors (e.g., the PKIS, Published Kinase Inhibitor
Set) are screened by cell-based assays based on readout detection of the YFP-associated fluorescence.
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The candidate Fra-1-destabilizing drugs (positive hits) are revealed as a loss/reduction in yellow
fluorescent signal. (B) Design of Fra-1 degraders. Three different molecules aimed at forcing the
Fra-1 polyubiquitylation and proteasomal degradation are represented. Left panel: TF-PROTAC.
The small-molecule ligand (VHLL) of the E3 ubiquitin ligase VHL is connected by a linker to a DNA
oligonucleotide encompassing the AP-1 binding sequence (TRE). After binding to the oligonucleotide
warhead, the AP-1 heterodimers are subjected to polyubiquitylation by the E2 ubiquitin-conjugating
enzyme recruited by the E3 ligase bound to the cognate ligand (VHLL). Since the TRE-binding
heterodimers can include each JUN and FOS family member, this strategy does not allow the selective
targeting of Fra-1. Middle panel: p-PROTAC (peptide-PROTAC). The small-molecule ligand of an
E3 ubiquitin ligase (e.g., VHLL) is connected by a linker to the Fra-1-binding peptide, represented
by the Fra1W, which specifically interacts with the Fra-1 leucine zipper (Figure 3A). The LZ-bound
PROTAC recruits Fra-1 to the E3 ligase, and the E2 ubiquitin-conjugating enzyme catalyzes the
Fra-1 polyubiquitylation. While the ubiquitin-tagged Fra-1 undergoes proteasomal degradation, the
p-PROTAC molecule is recycled. NLS: the HIV-Tat-derived basic Cell-Penetrating Peptide appended
to the Fra1W (Figure 3A), to allow the entry and nuclear localization in target cells. Right panel:
ARMeD (Antibody-Ring-Mediated Destruction). The Fra-1 degrader contains the 15KDa nanobody
fused to a portion of the ubiquitin E3 ligase RNF4. Following the nanobody-mediated binding
to substrate and RING activation, the chimeric molecule, containing the RNF4 NLS and RING
domain recruits the E2 ubiquitin-conjugating enzyme, which catalyzes the Fra-1 polyubiquitylation
and proteasomal degradation. The phospho-S252/S265-specific ant-Fra-1 nanobody is aimed at
selectively targeting the highly phosphorylated Fra-1 isoforms accumulated in cancer cells. In vivo
delivery of the ARMeD polypeptides can be mediated by expression vectors encapsulated in ad hoc
nanoparticles, as in Figure 4.

Despite the above-summarized discrepancies, possibly reflecting context-dependent
roles of Fra-1 polyubiquitylation, we envisage that, at least in part of the Fra-1-overexpressing
tumors, degradation of the C-terminally-phosphorylated Fra-1 isoforms can be triggered by
forced polyubiquitylation of the protein.

PROTACs (PROteolysis-TArgeted-Chimeras) are small bifunctional molecules acting
as bridges between target proteins and well-characterized substrate recognition subunits
(CRBN, VHL, and MDM2) for various ubiquitin–E2–E3–ligase complexes [122]. Targeted
proteasomal degradation of BRD4 has been obtained by a PROTAC in which a competitive
antagonist of the BET bromodomain (JQ1) is joined by a linker to a thalidomide molecule
recruiting the cereblon–ubiquitin–ligase complex. Remarkably, the BRD4-destabilizing
drug (dBET1), as well as the Stat3 degrader based on a thalidomide-linked molecule of a
Stat3 inhibitor, are significantly more effective than parental inhibitors, in murine models
of leukemia and lymphoma [123,124], thus highlighting the high therapeutic potential
of PROTACs.

Differently from BRD4 and Stat3, for most TFs the identification of ligands is hampered
by the lack of binding pockets. Promisingly, however, recruitment of transcription factors
by a novel type of degraders (TF-PROTACs), can be mediated by a DNA oligonucleotide
containing the TF target site joined by a linker to the VHLL (Von Hippel–Lindau Ligand).
Remarkably, the TF-PROTACs containing the NF-kB and E2F consensus sequences trigger
the degradation of cognate TFs and inhibit cancer cells proliferation [125]. Given the well-
characterized AP-1/TRE interaction, this approach is suitable for the design of AP-1-specific
PROTACs (Figure 6B, left section). However, as for the above discussed DNA-binding
inhibitors, the AP-1-specific TF-PROTACs will be unable to discriminate between distinct
TRE-binding dimers, thus prompting the importance of designing Fra-1-specific PROTACs.

An encouraging option is represented by the peptide-PROTACs (p-PROTAC) strategy
(reviewed in [126]), in which a peptide, attached via a linker to the E3 ubiquitin ligase
recruiting moiety, mediates the interaction with the target protein. The recently described
Fra1W ([94]), a peptidic inhibitor specifically interacting with the Fra-1 leucine zipper,
represents a promising candidate as substrate-interacting moiety to develop a Fra-1-specific
PROTAC (Figure 6B, middle section). Remarkably, a leucine-zipper-based p-PROTAC
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has been reported. The degrader molecule, targeting the CREPT (Cell-cycle-Related and
Expression-elevated Protein in Tumor) oncoprotein, relies on a 21-aa peptide warhead,
which homodimerizes with the target protein through a leucine zipper localized in the
C-terminal CREPT CCT (Coiled-Coil-Terminus) domain. In addition to the linker and the
VHL ligand, the CREPT-specific PROTAC includes a basic CPP (Cell-Penetrating Peptide),
driving the intracellular delivery of the degrader. The antiproliferative effect of this leucine
zipper-interacting cell-permeable PROTAC has been validated, both on in vitro cultured
pancreatic adenocarcinoma cells, and (by intraperitoneal administration) on the in vivo
growth of tumor xenografts [127].

Alternatively, targeted degradation of specific proteins by forced polyubiquitylation
could be mediated by intracellularly delivered nanobodies. These are single-domain anti-
bodies consisting of a single monomeric variable domain, with a MW of only 12–15 KDa,
and exhibiting antigen-binding specificity comparable to full-size antibodies. The ad-
vantages of nanobodies include the possible intracellular delivery. Even if nanobodies
are naturally produced by the Camelids immune system, universal synthetic libraries of
humanized nanobodies are available [128]. Polypeptidic degraders have been recently
obtained by replacing the natural substrate recognition domains of ubiquitin E3 ligases
with nanobody miniproteins. To hijack the ubiquitin–proteasome system, the recently
described ARMeD (Antibody-Ring-Mediated Destruction) degraders contain a camelid
nanobody fused to the RING domain of the ubiquitin E3 ligase RNF4. Given the presence
of the RNF4 NLS, these molecules can localize in the nucleus and drive the degradation of
nuclear oncoproteins, as shown for PML [129].

ARMeD molecules containing Fra-1-specific nanobodies could be exploited for Fra-1
targeted degradation. In addition, similarly to the available Fra-1-S252/S265 phospho-
specific antibodies [21], phospho-Fra-1-specific nanobodies will allow generating Fra-1
degraders, selectively targeting the phosphorylated Fra-1 (Figure 6B, right section). These
chimeric molecules could efficiently antagonize the Fra-1 accumulation in cancer cells,
predominantly overexpressing the C-terminally-phosphorylated Fra-1 isoforms.

The nanobody-mediated interactions, displaying binding affinities in the nanomolar
range, offer great advantages in terms of specificity towards target proteins. On the other
hand, recombinant ARMeD polypeptides, relatively small to be effectively transferred
by electroporation in cultured cells, will require ad hoc systems for clinical applications,
such as nanoparticle-mediated delivery of expression vectors to neoplastic tissues. As a
proof of concept, the activity of the ARMeD Fra-1 degraders could be tested in TNBC cells,
by encapsulating the anti-(phospho)-Fra-1-nanobody-E3-ligase expression vectors in the
above-described nanoparticles [104].

3.4. Targeting the Fra-1/AP-1-Mediated Transactivation

The first inhibitor of AP-1-mediated transactivation is likely represented by the retinoid
molecule SR11302, which is unable to trans-activate the RARE (Retinoic Acid Response
Element) but retains intact AP-1 trans-repressing activity [130]. SR11302, however, does
not discriminate between distinct JUN/FOS heterodimers, as shown by the SR11302 ability
to block both c-Fos/AP-1 heterodimers in retinal angiogenesis [131], and Fra-1/AP-1
heterodimers in HNSCC metastatic progression [53,101].

More recently, pharmacological modulation of transcriptional coregulators has become
a promising area of therapeutic intervention [132], as well shown in the case of BRD4
inhibitors. JQ1 is a competitive inhibitor of the interaction between the bromodomains
of BET-family epigenetic readers (BRD2, BRD3, and BRD4) and acetylated histones [133].
A high abundance of chromatin-associated BRD4 (and MED1) is a distinctive feature of
SEs [14]. Because of the very high levels of chromatin-associated BRD4, SEs (but not
standard enhancers) are inhibited by JQ1 [13,69]. JQ1 and related drugs affect a relatively
small number of oncogenes, including MYC and FOSL1. While MYC is the key target of
JQ1 in hematopoietic cancers, FOSL1 is a major JQ1 target in lung adenocarcinoma [134]
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and other solid tumors, such as osteosarcoma and childhood sarcoma, in which Fra-1
downregulation phenocopies the effect of the BRD4 inhibitor [135,136].

In addition to being regulated by a BRD4-dependent SE, Fra-1/AP-1 transactivates
several target genes controlled by SEs. In HNSCC, Fra-1/AP-1 controls key pro-metastatic
genes (such as FOSL1 itself, SNAI2, and miR-21) through super-enhancers, which recruit
the coactivators (MED1 and BRD4) through Fra-1-dependent mechanisms [53,137].

Along with BET inhibitors, novel drugs, blocking the Fra-1 interaction with chromatin-
bound coactivators, will allow interfering with the Fra-1-mediated transactivation (Figure 7).
The action of these drugs will be amplified by the positive autoregulatory effect of Fra-
1/AP-1 on the FOSL1 gene.
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Figure 7. Inhibition of the Fra-1-mediated transactivation. The cartoon shows a representative
enhancer-bound Fra-1/AP-1 complex, along with other TFs and transcriptional coactivators. Fra-
1-regulated enhancers, including the FOSL1 enhancer, are often part of highly BRD4-dependent
super-enhancers, driving the transcription of key oncogenes. Along with BRD4, the chromatin-
bound cofactors TRIM24 and p68/DDX5, identified by PPI (Protein-Protein Interaction) screens, are
implicated in Fra-1-mediated transactivation. Both BRD4 and TRIM24 can be targeted by the available
PROTAC degraders (dTRIM24 and dBET1, respectively). The dBET1 substrate-binding moiety is
the JQ1 inhibitor, which prevents the bromodomain-mediated interaction of BRD4 with histones
acetyl-lysine residues, as shown. Given the FOSL1 positive autoregulation, the same inhibitors
can affect the Fra-1 transcriptome both directly, by inhibiting the Fra-1 activity, and indirectly, by
decreasing the FOSL1 expression and Fra-1 accumulation.
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In a large-scale screening for combinatorial interactions between transcription factors,
the bromodomain-containing epigenetic reader TRIM24 was identified among 23 Fra-1
interactors [138]. TRIM24, which contains both a PHD- and a bromodomain interacting
with the dual histone mark H3K4me0/H3K23Ac, is an oncogenic transcriptional coactivator
overexpressed in breast [139] and prostate [140] adenocarcinoma, along with glioblastoma,
in which TRIM24 is a Stat3 coactivator [141]. The Fra-1-TRIM24 interaction, pointing to
TRIM24 as a Fra-1 coactivator, suggests that Fra-1 transcriptional activity can be hampered
by TRIM24 inhibitors. While the first-generation TRIM24-specific drugs exerted poor
antiproliferative effects [142], a selective TRIM24 degrader (dTRIM24), generated by the
PROTAC strategy, inhibits cell proliferation and survival in acute leukemia [143]. It will be
interesting to investigate the dTRIM24 antineoplastic activity in solid tumors, along with
the possible role of the inhibition of Fra-1-mediated transactivation.

More recently, screening for proteins interacting with the chromatin-bound Fra-1,
the RNA helicase p68/DDX5 has been characterized as an oncogenic coactivator of Fra-1
in TNBC [86]. DDX5 is directly bound and destabilized by resveratrol, a well-known
chemopreventive nutraceutical. DDX5 downregulation contributes to the antiproliferative
effect of resveratrol in prostate cancer cells [144]. Since AP-1 is a major target of the
resveratrol chemopreventive activity [145], DDX5 inhibition might contribute to the tumor
suppression by resveratrol in Fra-1-overexpressing cancers.

3.5. Fra-1-Based Suicide Gene Therapy Strategies

In addition to the approaches based on the inhibition of Fra-1 expression or activity,
other therapeutic strategies are based on the Fra-1 stabilization mechanisms in neoplas-
tic cells. Recently, a suicide gene therapy approach has been proposed, based on the
phosphorylation-dependent Fra-1 stability control mechanism (Figure 8).

To drive the selective killing of cancer cells overexpressing the C-terminally-phosphorylated
Fra-1 isoforms, a fusion protein (NLS-HSVtk-Fra-1-163-271) has been generated by replacing
the YFP reporter with the HSV-tk selectable marker in the above-mentioned reporter construct
(FIRE) [117]. The herpes virus thymidine kinase converts the prodrug (ganciclovir) in a cytotoxic
nucleotide precursor, that causes double-stranded breaks when integrated in DNA. In this
construct, the Fra-1 domain containing the phosphorylation-dependent destabilizer is fused to
the C-terminus of HSVtk. The resulting HSVtk-Fra-1 fusion protein accumulates exclusively
in cancer cells overexpressing Fra-1-phosphorylating activity, making these cell populations
vulnerable to ganciclovir treatment, while normal cells are spared (Figure 8). Promisingly,
orthotopically propagated GBM xenografts can be growth-inhibited in vivo by intracranial
administration of retroviruses expressing the HSVtk-Fra-1 suicide gene [146].
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Figure 8. Suicide gene strategy for targeting cancer cells expressing constitutively stable Fra-1
isoforms. Structure of the lentiviral expression vector containing the HSV thymidine kinase gene
fused to the Fra-1 C-terminal region (aa. 163–271) encompassing the ERK-dependent destabilizer.
NLS: Nuclear Localization Signal. The lentiviral particles infect both normal and cancer cells, as
shown. While in normal cells the Fra-1 destabilizer drives the chimeric protein to proteasomal
degradation, the cancer-associated constitutively active MEK-ERK pathway induces Fra-1 S252/S265
phosphorylation. Consequently, the tk-Fra-1 fusion protein is protected from proteasomal degradation
and accumulation. Following ganciclovir treatment, the thymidine kinase-mediated transformation
of the prodrug causes the accumulation of toxic metabolites blocking DNA replication and triggering
cell death in phospho-Fra-1-expressing cancer cells, while normal cells are spared.

4. Concluding Remarks

FOSL1, along with the cognate transcript and protein product, represents a highly
promising therapeutic target in a wide range of aggressive tumors, in which Fra-1-controls
the key hallmarks of tumor progression, including cancer cell proliferation, EMT, gain of
stem-like features, anoikis resistance, and metastasis.

In agreement with the title of a recent review (“Targeting transcription factors in
cancer-from undruggable to reality” [147]), here we have outlined several strategies aimed
at the design and delivery of FOSL1/Fra-1/AP-1-targeting molecules. We have previously
referred to Fra-1 as “a transcription factor knocking on therapeutic applications’ door” [8].
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The increasingly large arsenal of therapeutic weapons, from tumor-specific nanoparticles
to proteasome-targeting chimeras, along with Fra-1-based suicide gene therapies, indicates
that the time has definitely come, to unlock the Fra-1 “therapeutic applications’ door” [8].
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