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Abstract

It remains unclear how the brain represents external objective sensory events alongside our 

internal subjective impressions of them—affect. Representational mapping of population level 

activity evoked by complex scenes and basic tastes uncovered a neural code supporting a 

continuous axis of pleasant-to-unpleasant valence. This valence code was distinct from low-level 

physical and high-level object properties. While ventral temporal and anterior insular cortices 

supported valence codes specific to vision and taste, both the medial and lateral orbitofrontal 

cortices (OFC), maintained a valence code independent of sensory origin. Further only the OFC 

code could classify experienced affect across participants. The entire valence spectrum is 

represented as a collective pattern in regional neural activity as sensory-specific and abstract 

codes, whereby the subjective quality of affect can be objectively quantified across stimuli, 

modalities, and people.

Introduction

Even when we observe exactly the same object, subjective experience of that object often 

varies considerably among individuals, allowing us to form unique impressions of the 

sensory world around us. Wilhelm Wundt appropriately referred to these aspects of 

perception that are inherently the most subjective as ‘affect’1—the way sensory events affect 

us. Beyond basic sensory processing and object recognition, Wundt argued, the most 

pervasive aspect of human experience is this internal affective coloring of external sensory 

events. Despite its prominence in human experience, little is known about how the brain 
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represents the affective coloring of perceptual experience, compared to the rich neural 

characterizations of our other perceptual representations, such as the somatosensory system 
2, semantics 3, and visual features and categories 4–6.

Much of what we glean from external objects is not directly available on the sensory surface. 

The brain may transform sensory representations into higher-order object representations 

(e.g., animate, edible, dangerous, etc.)7. The traditional approach to understanding how the 

brain represents these abstractions has been to investigate the magnitude of activity of 

specialized neurons or brain regions8,9. An alternative approach treats neural populations in 

a region of cortex as supporting dimensions of higher-order object representations according 

to their similarity in an abstract feature space6,10. Measuring these patterns of neuronal 

activity has been made possible by advances in multivoxel pattern analysis (MVPA)11,12. 

For example, MVPA of human BOLD response to visual objects has revealed that low-level 

feature dimensions can be decoded based on topographic structure in the early visual 

cortices (12–14, but see also15). In addition, high-level object dimensions, such as object 

categories4 or animacy16 have been revealed in the distributed population codes of the 

ventral temporal cortex (VTC). While pattern classifier decoding4,17 is sensitive to 

information encoded combinatorially in fine-grained patterns of activity, it typically focuses 

on binary distinctions, to indicate whether a region contains information about stimulus type 

(e.g., face vs. chair). By contrast, representational mapping further affords an examination of 

the space in which information is represented within a region (e.g., how specific faces are 

related to each other)10. By characterizing the representational geometry of regional activity 

patterns, representational mapping reveals not only where and what but also how 
information is represented. To accomplish this, representational mapping emphasizes on the 

relationships between stimulus or experiential properties and their distances in high-

dimensional space defined by the collective patterns of voxel activity6,10. For example, while 

population activity in the primary visual cortex can discriminate distinct colors, the 

representational geometry in extrastriate region V4 captures the distances between colors as 

they relate to perceptual experience18.

In the present study, we asked how external events come to be represented as internal 

subjective affect compared to other lower-level physical and higher-level categorical 

properties. Supporting Wundt’s assertion of affect as central to perceptual experience, 

surveys across dozens of cultures19 have shown the primary dimension capturing the 

characterization of the world’s varied contents is the evaluation of their goodness-badness, 

which is often referred to as valence20. We examined whether collective patterns of activity 

in the human brain support a continuous dimension of positive-to-negative valence, and 

where in the neural hierarchy this dimension is represented. Similarity-dissimilarity in 

subjective valence experience would then correspond to population level activity across 

stimuli, with representational geometry of activity patterns indicating extreme positive and 

negative valence are furthest apart.

It has been traditionally thought that affect is not only represented separately from the 

perceptual cortices, which represent the sensory and perceptual properties of objects21, but 

also within distinct affective zones for positive and negative valence22–24. Lesion and 

neuroimaging studies of affective processes implicate a central role of the orbitofrontal 
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cortex (OFC)25, with evidence pointing to the lateral and medial OFC regions for affective 

representations of visual26, gustatory24 and olfactory stimuli22,27,28. Increasing activity in 

the medial OFC and adjacent ventromedial prefrontal cortices have been associated with 

goal-value, reward expectancy, outcome values and experienced positive valence23,29, and 

may support “core affect30”. However, meta-analyses of neuroimaging studies demonstrate 

substantial regional overlap between positive and negative valence31. In conjunction with 

evidence against distinct basic emotions30, localizing distinct varieties of emotional 

experience has been a great challenge31. Potentially undermining simple regional 

distinctions in valence, recent monkey electrophysiological studies32 have reported that 

valence-coding neurons with different properties (i.e., neurons coding positivity, negativity, 

and both positivity and negativity) are anatomically interspersed within Walker’s area 13, the 

homologue of human OFC. Thus, exploring distinct regions that code for positive and 

negative valence may not be fruitful due to the interspersed structure of the aversive and 

appetitive neurons that, at the scale of cortical regions, respond equivocally and confound 

traditional univariate fMRI analysis methods. With a voxel-level neuronal bias, multivoxel 

patterns can reveal whether the representational geometry of valence is captured by distance 

in high-dimensional neural space.

The notion that affect is largely represented outside the perceptual cortices21–27 has also not 

been tested with rigor. Average regional neural activity may miss the information contained 

within population level response within the perceptual cortices themselves. Rather than 

depending on distinct representations, affect may be manifest within the same regions that 

support sensory and object processing. Although posterior cortical regions are often 

modulated by affect, it remains unclear whether valence is coded within the perceptual 

cortices or whether perceptual representations are merely amplified by it33. Examining the 

representational geometry of population codes can address whether affect overlaps with 

other modality specific stimulus representations that support basic visual features or object 

category membership. If population codes reveal valence is embodied within modality 

specific neuronal activity33 then this would provide direct support for Wundt’s observations 

that affect as a dimension central to perceptual experience,

A modality-specific conception of affective experience may suggest that affect is not 

commonly coded across events originating from distinct modalities. This would allow 

valence from distinct stimuli and modalities to be objectively quantified and then compared. 

It is presently unknown if the displeasure evoked by the sight of a rotting carcass and the 

taste of spoiled wine at some level supported by a common neural code. Although fMRI 

studies have shown overlapping neural responses in the OFC related to distinct modalities34, 

overlapping average activity is not necessarily diagnostic of engagement of the same 

representations. Fine-grained patterns of activity with these regions may be distinct, 

indicating the underlying representations are modality specific although appearing co-

localized given the spatial limits of fMRI. This leaves unanswered whether there is a 

common neural affect code across stimuli originating from distinct modalities, whether 

evoked by distal photons or proximal molecules. If valence is represented supramodally, 

then at an even more abstract level we may ask whether the representation of affect 

demonstrates correspondence across people, affording a common reference frame across 

brains. This would provide evidence that even the most subjective aspect of an individual’s 
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experience, its internal affective coloring, can be predicted based on the patterns observed in 

other brains, similar to what has been found for external object properties 35,36.

To answer these questions of how affect is represented in the human brain, we first examined 

whether population vectors in response to complex visual scenes support a continuous 

representation of experienced valence and their relation to objective low-level visual 

properties (e.g., luminance, visual salience) and higher-order object properties (animacy), 

within the early visual cortex (EVC), VTC, and OFC. We then examined whether the 

representation of affect to complex visual scenes was shared with basic gustatory stimuli, 

supporting a valence coordinate space common to objects stimulating the eye or the tongue. 

Lastly, we examined whether an individual’s subjective affect codes corresponded to that 

observed in the brains of others.

Results

Visual feature, object and affect representations of complex visual scenes

To investigate how object information and affective experience of complex visual stimuli are 

represented in the human brain, we presented 128 unique visual scenes to 16 participants 

during fMRI. After each picture presentation (3 s), participants rated their subjective affect 

on separate positivity and negativity scales (1–7, least to most). We examined the similarity 

of activation patterns as related to three distinct properties, each increasing in degree of 

abstraction: low-level visual features, object animacy, and subjective affect (see online 

methods for computation of these scores. Distribution of scores were shown in 

Supplementary Fig 1).

Consistent with their substantial independence, visual feature, animacy, and valence scores 

were largely uncorrelated, sharing 0.2 % (visual features and animacy) (all R2 =0.002), 

1.0 % (visual features and valence) (all R2 ≤ 0.022), and 2.3 % (animacy and valence) of 

variance (all R2 ≤0.057) (n = 128 trials). This orthogonality allowed us to examine whether 

distinct or similar codes support visual feature, object and affect representations.

Prior to multivariate analyses, we conducted a univariate parametric modulation analysis to 

test the monkey electrophysiological findings of bivalent neuronal coding32. When using 

positivity and negativity ratings as independent parameters, a large majority of the valence-

sensitive regions in the medial and lateral OFC were responsive to both positivity and 

negativity (75.7%; positivity only: 17.1%; negativity only: 7.2%) (Fig. 1a). Specifically, we 

found the medial OFC and more dorsal regions in the ventromedial prefrontal cortex 

(vmPFC), areas typically associated with value coding and positive valence23,29 exhibited 

parallel linear increases in activation with increasing ratings of both negative and positive 

valence (Fig. 1b). The peak voxel (x = −8, y = 42, z = −12, t15 = 8.7, FDR ≤ 0.05) activity, 

that was maximally sensitive to positive valence also linearly increased with negative 

valence, while the peak voxel (x = −8, y = 52, z = −8, t15 = 6.8, FDR ≤ 0.05) activity, which 

was maximally sensitive to negative valence also linearly increased with negative valence. 

These responses may reflect a common underlying arousal coding and thus contains little 

diagnostic information about experienced valence. Alternatively, this univariate activity may 

reflect coding of both positive and negative valence37, which is equivocal at voxel signal 
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resolution, consistent with the interspersed structure of the aversive and appetitive neurons, 

as observed in the monkey OFC32. Representational mapping of population level 

responses10 may address this ambiguity. Given that positive and negative valence were 

experienced as experientially distant (average r = −0.53), if the brain supports a valence code 

then increasing dissimilarity in valence experience would be supported by increasing 

dissimilarity in population activity patterns, despite their similarity in univariate magnitude.

Our overall approach was to use representational similarity analysis6,10, a method for 

uncovering representational properties underlying multivariate data. We first modeled each 

trial as a separate event, then examined multivoxel brain activation patterns within broad 

anatomically defined regions of interest across different levels of the neural hierarchy, 

including early visual cortex, ventral temporal cortex, and orbitfrontal cortex (i.e., EVC, 

VTC, and OFC; Fig. 2a). To assess how information was represented in each region, 

representational similarity matrices6 were constructed from the correlation coefficients of 

the activation patterns between trials for all picture combinations (128 × 127 / 2) separately 

within the EVC, VTC and OFC. To the degree that activity patterns corresponded to specific 

property relations among pictures would provide a mapping of the representational contents 

of each region. These similarity matrices were submitted to multidimensional scaling (MDS) 

for visualization. This assessment revealed response patterns organized maximally by 

gradations of low-level visual features in the EVC (r = 0.38, P = 0.00001), object animacy in 

the VTC (r = 0.73, P = 7.7 × 10−23), and valence in the OFC (r = 0.46, P = 0.00000005) (n = 

128 trials) (Fig. 2b and Supplementary Fig. 2), with all MDS analyses reaching fair level of 

fit (Stress-I, EVC: 0.2043; VTC: 0.2230; OFC: 0.2912; stress values denote how well the 

MDS fits the measured distances).

Property-region associations were further examined by converting each region’s 

representational similarity matrix, which related trial representations, into property 

representational similarity matrices, which related property representations of visual feature, 

animacy, or valence. For example, a valence representational similarity matrix was created 

by sorting the trial-based representational similarity matrix (128 × 127 /2) into 13x13 

valence bins (Fig. 3 and Supplementary Fig. 4). As such, representational similarity matrix 

was sorted according to distinct stimulus properties, allowing us to visualize a representation 

map of each region according to each property. As presented in an ideal representational 

similarity matrix (Fig. 3a), if activity patterns across pictures corresponded to a property, 

then we expect higher correlations along the main diagonal (top left corner to bottom right). 

Higher correlations were observed along the main diagonal for visual features in the EVC, 

animacy in the VTC, and valence in the OFC (Fig. 3b, see also Supplementary Fig. 5). To 

statistically test the validity of these representational maps, we used a GLM decomposition 

of the representational similarity matrices (see Online Methods and Supplementary Fig. 3) to 

derive a “distance correspondence index (DCI)” —a measure of how well distance 

(dissimilarity) in neural activation pattern space corresponds to distance in the distinct 

property spaces. The DCI for visual feature, animacy, and valence from each region were 

computed for each participant and submitted to one sample t-tests. This revealed 

representation maps of distinct kinds of property distance, increasing in abstraction from 

physical features to object categories to subjective affect along a posterior-to-anterior neural 

axis (Fig. 3b,c, Supplementary Fig. 5 and Supplementary Table 1). Valence distance was 
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maximally coded in the OFC (t15 = 7.6, P = 0.000008, to a lesser degree in the VTC (t15 = 

5.0, P = 0.0008), but not reliably in the EVC (t15 = 2.5, P = 0.11), all Bonferroni corrected. 

A two-way repeated measures ANOVA revealed a highly significant interaction (F1.9, 28.8 = 

69.5, P = 4.5 × 10−9, Greenhouse-Geisser correction applied) between regions (EVC, VTC, 

OFC) and property type (visual feature, animacy, valence). These results indicate that visual 

scenes differing in objective visual features and object animacy but evoking similar 

subjective affect resulted in similar representation in the OFC. In the above activity pattern 

analyses, mean activity within a region was removed, and activity magnitude of each voxel 

was normalized by subtracting mean values across trials, and thus mean activity could not 

account for the observed representation mapping. However, to further test whether valence 

representations were driven by regions that only differed in activity magnitude, we reran 

these analysis in each ROI after removing voxels showing significant main effects of valence 

in activity under a liberal threshold (P < 0.05, uncorrected). Even after this removal, very 

similar results were obtained (Supplementary Table 1).

The above results suggest that distributed activation patterns across broad swaths of cortex 

can support affect coding distinct from other object properties. To investigate whether 

distinct or overlapping subregions within the EVC, VTC and OFC support visual feature, 

object, and affect codes, as well as the contribution of other brain regions, we conducted a 

cubic searchlight analysis38. Within a given cube, correlations across trials were calculated 

and were subjected to the same GLM decomposition used above to compute DCIs 

(Supplementary Fig 3). This revealed a similar posterior-to-anterior pattern of increasing 

affective subjectivity and abstraction from physical features. Visual features were maximally 

represented primarily in the EVC, and moderately in the VTC; object animacy was 

maximally represented in the VTC; affect was maximally represented in the vmPFC 

including the medial OFC, as well as the lateral OFC, and moderately in ventral and anterior 

temporal regions including the temporal pole (Fig. 4a,b and Supplementary Table 2; also see 

Supplementary Fig. 6 and Supplementary Table 3 for analysis of individual visual features). 

These results indicate that object and affect representations are not only represented as 

distributed activation patterns across large areas of cortex, but are also represented as distinct 

region-specific population codes (i.e., within a 1cm3 cube).

To further examine what pattern based affect coding uniquely codes, we tested whether 

differences in mean activity magnitude across trials could code valence information within 

the regions defined by the above searchlight (i.e., the medial OFC/vmPFC and lateral OFC). 

To test whether mean activity magnitude is capable for discrimination of valence 

representations, we applied the same GLM decomposing procedure to mean activity 

magnitude, instead of activation patterns. Here, similarity-dissimilarity of neural activation 

was defined by difference in mean activity magnitude in the region. The medial OFC/

vmPFC showed linear increase in activation with increases in both positive and negative 

valence from neutral (Fig. 4c). The mean based GLM decomposition analysis revealed a 

lack of valence specificity in mean magnitude (t15 = 1.1, P = 0.13; Fig. 4d), while a pattern 

based approach showed a clear separation of valence, with positive and negative valence 

lying an opposite ends of a continuum (t15 = 4.2, P = 0.0004; Fig. 4e). By contrast, the 

lateral OFC did not demonstrate a relationship between mean activation and positive or 

negative valence (Fig 4f), confirmed by a mean activity based GLM decomposition analysis 
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(t15 = 0.5, P = 0.30; Fig 4g), while a pattern based approach still yielded a clear separation of 

valence (t15 = 3.9, P = 0.0007; Fig 4h). These results not only explain why pattern analysis is 

required for representational mapping of affect, but also further indicate importance of 

discriminating arousal and valence coding39. That is, even when regional univariate activity 

showed similar responses to both positive and negative valence, it may not be diagnostic of 

arousal coding, but rather may reveal coding of both positive and negative valence (Fig. 

4d,e,g,h).

Common and distinct representations of affect in vision and taste

To test whether valence codes are modality-specific or also support an abstract, nonvisual 

representation of affect, we conducted a gustatory experiment on the same participants. 

Affective appraisals40 of complex scenes may also require deeper and more extensive 

processing not required by simpler, chemical sensory stimuli such as taste. As such, it is 

important to establish the generality of the affect coding in response to visual scenes. In this 

experiment, 4 different taste solutions matched for each participant in terms of intensity 

(sour/sweet/bitter/salty) and a tasteless solution were delivered 20 times each across 100 

trials during fMRI. Paralleling our analysis of responses to scenes, representational 

similarity matrices were constructed from correlations of activation patterns across trials 

(100 × 99/2) for each region. To visualize the representation maps from the gustatory 

experiment, we created a valence representation matrix of the OFC, which revealed higher 

correlations across taste experiences of similar valence—along the main diagonal (Fig. 5a 

and Supplementary Table 1). Valence DCIs in the OFC were computed for each participant 

and submitted to one sample t-tests, which revealed a significant relation between activation 

pattern similarity and valence distance (t15 = 2.9, P = 0.018). Valence DCIs in the VTC also 

achieved significance (t15 = 3.3, P = 0.007), but not the EVC (t15 = 1.5, P = 0.23). Thus in 

addition to the OFC, the VTC represents affect information even when evoked by taste. 

Similar results were found when excluding regions that demonstrated a significant change in 

mean activity to taste valence (Supplementary Table 1).

Evidence of affective coding for pictures and tastes is not singularly diagnostic of an 

underlying common valence population code, as each sensory modality coding may be 

independently represented in the same regions. To directly examine a cross-modal 

commonality, we examined the representations of valence in the OFC based on trials across 

visual and gustatory experiments. We first computed new cross-modal representational 

similarity matrices correlating activation patterns across the 128 visual × 100 taste trials. 

Then, to visualize the cross-modal representation map, we created a valence representational 

similarity matrix of the OFC, which revealed higher correlations across visual and taste 

experiences of similar valence, along the main diagonal (Fig. 5b and Supplementary Table 

1). DCI revealed increasing similarity of OFC activation patterns between visual and 

gustatory trials as affect was more similar (Fig. 5b and Supplementary Table 1) (t15 = 3.0, P 
= 0.013). Critically, the same analysis revealed no such relation in the VTC (t15 = 0.5 P = 

0.99). That is, while we found modality-specific valence coding in the VTC (Fig. 3b, c, Fig 

4a,b and Supplementary Table 1), modality-independent valence coding was found only in 

the OFC. Similar results were found when excluding regions that demonstrated a significant 

change in mean activity to taste or visual valence (Supplementary Table 1).
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To investigate whether specific subregions support modality-specific vs. supramodal affect, 

we performed three independent cubic searchlight analyses, based on trials within visual, 

within gustatory, and across visual and gustatory experiments. Within a given cube, 

correlation of activation patterns of each cross-trial combination (128 × 127/2 for visual, 100 

× 99/2 for gustatory, and 128 × 100 across visual and gustatory trials) were subject to the 

same GLM decomposition procedure (Supplementary Fig. 3). We defined a region as 

representing supramodal affect if it was discovered in all three independent searchlights, 

whereas a region was defined as representing visual-specific affect if it was discovered only 

in the visual searchlight but not the other two (analogously for gustatory-specific affect). 

This revealed that the anteroventral insula and posterior OFC—putative primary and 

secondary gustatory cortex41—represented gustatory valence, and adjacent but distinct 

regions in the VTC represented gustatory and visual valence separately (Fig. 5c, d and 

Supplementary Table 4). By contrast with this sensory specific affect coding, the medial 

OFC/vmPFC, as well as the lateral OFC and midcingulate cortex, contained supramodal 

representations of valence (Fig. 5c, d). These searchlight results were not only exploratory 

but also confirmatory as they survived multiple comparison correction (see Online Methods 

for more detail).

Classification of affect brain states across participants

Lastly, we assessed whether valence in a specific individual corresponded to affect 

representations in others’ brains. As previous work has demonstrated that representational 

geometry of object categories in the VTC can be shared across participants 35,36, we first 

examined whether item-level (i.e., by picture) classification was possible by comparing each 

participant’s item-based representational similarity matrices to that estimated from all other 

participants in a leave-one-out procedure. We calculated the classification performance for 

each target picture as the percentage that its representation was more similar to its estimate, 

compared pairwise to all other picture representations (50% chance; for details, see Online 

Methods and Supplementary Fig. 7). We found that item-specific representations in the VTC 

were predicted very highly by the other participants’ representational map (80.1 ±1.4 % 

accuracy, t15 = 21.4, P = 2.4 × 10−12; Fig 6a). Cross-participant classification accuracy was 

also statistically significant in the OFC (54.7 ±0.8 % accuracy, t15 = 5.7, P = 0.00008); 

however, it was substantially reduced compared to the VTC (t15 = 15.9, P = 8.4 × 10−11), 

suggesting that item-specific information is more robustly represented and translatable 

across participants in the VTC compared to the OFC.

We next examined whether a person’s affect representations toward these visual items could 

be predicted by others’ affect representations. After transforming representations of items 

into subjective affect and conducting a similar leave-one-out procedure (see Online Methods 

and Supplementary Fig. 8), although overall much lower than item representations in the 

VTC, we found cross-participant classification of valence in the OFC (55.6 ±0.9 % accuracy, 

t15 = 6.4, P = 0.00002) (Fig 6a and Supplementary Table 5). Valence classification did not 

achieve significance in the VTC (51.7 ± 0.8 % accuracy, t15 = 2.0, P = 0.13), with a paired t-
test between the OFC and VTC revealing greater classification accuracy in the OFC than in 

the VTC (t15 = 4.2, P = 0.0007). A two-way repeated measures ANOVA revealed a highly 

significant interaction (F1,15 = 278.1, P = 4.3 × 10−11; Fig. 6a) between region and 
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representation type (item vs. affect). This interaction reveals that while stimulus specific 

representations were shared in the VTC, subjective affect representations are similarly 

structured across people in the OFC even when the specific stimuli evoking affect may vary. 

Furthermore, the continuous representation of valence information was also revealed here, as 

increases in valence distance decreased the confusability between two affect representations, 

thus increasing classification rates (F1.4, 20.3 = 37.4, P = 5.6 × 10−6, Fig 6b, Supplementary 

Tables 5.

As an even stronger test of cross participant translation of affect, we asked whether OFC 

affect representations toward pictures could predict other participants’ affect representations 

in response toward tastes (visual × gustatory) and vice versa (gustatory × visual). These 

analyses revealed classification accuracies significantly higher than chance level: visual × 

gustatory, 54.2 ±0.7 %, t15 = 5.8, P < 0.001; gustatory × visual, 54.6 ±1.2 %, t14 = 3.8, P < 

0.001, with increases in valence distance between stimuli again increasing classification 

accuracy (Fig. 6b). Even without an overlap in objective stimulus features (i.e., vision vs. 

taste), the OFC supported classification of the affective contents of subjective experience 

across individuals.

Discussion

Representational mapping revealed that a complex scene is transformed from basic 

perceptual features and higher-level object categories into affective population 

representations. Furthermore, rather than specialized regions designated to represent what is 

good or bad, population activity within a region supported a continuous dimension of 

positive-to-negative valence. Population codes also revealed that there are multiple 

representations of valence to the same event, both sensory specific and sensory independent. 

Posterior cortical representations in the temporal lobe and insular cortices were unique to the 

sensory modality of origin, while more anterior cortical representations in the medial and 

lateral OFC afforded a translation across distinct stimuli and modalities. This shared affect 

population code demonstrated correspondence across participants. Together, we showed that 

the neural population vector within a region may represent the affective coloring of 

experience, whether between objects, modalities, or people.

Population coding of affect

As suggested by monkey electrophysiological studies32, positivity-sensitive and negativity-

sensitive neurons are likely interspersed within various sectors of the human OFC and 

vmPFC. Consistent with these single cell recording data, the present univariate parametric 

modulation analysis did not show clear separation of positivity and negativity-sensitive 

voxels in the OFC, with much greater overlap than separation. Prior studies typically assume 

a mathematical inversion of affective coding in the brain (e.g., positivity is the inverse of 

negativity)30,42. We were able to test this assumption directly as participants indicated their 

experience of positive and negative valence independently on each trial. Using these 

independent parameters, we showed that regions such as the mOFC and vmPFC, which have 

been associated with increasing positive value23,29, responded equally to negative valence 

(Fig. 1). This bivalent association is often taken to indicate a coding of arousal—the 

Chikazoe et al. Page 9

Nat Neurosci. Author manuscript; available in PMC 2015 February 05.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



activating aspect of emotional experience20, rather than separate coding of the opposing ends 

of valence22. However, our results showed that regional activity magnitude in the mOFC and 

vmPFC could not differentiate between opposing experiences of positive and negative 

valence, while population coding of the same voxels distinguish them as maximally distant 

(Fig. 4d,e,g,h), suggesting the distinct coding of unique valence experiences.

While pattern analysis may be able to capture the difference in distribution of positivity-and 

negativity-sensitive neurons in the local structure, what the patterns exactly reflect is still a 

matter of debate11. With regard to its underlying physiological bases, the interdigitation of 

single cell specialization for either positive and negative valence32 need not suggest the 

utilization of a pattern code. Due to the averaging of many hundreds of thousands of neurons 

within a voxel in fMRI, it may be that pattern analysis sensitive to voxel level biases in 

valence tuned neurons32 is required to reveal valence coding in BOLD imaging. It remains 

to be determined, whether the coding of valence is best captured by a distributed population 

level code across cells with distinct valence tuning properties. Evidence of co-localization of 

distinct valenced tuned neurons32 may suggest the importance of rapid within-region 

computation of mixed valence responses, whereby the overall affective response is derived 

from a population level code across individual neurons.

Sensory specific affect codes in the perceptual cortices

Wundt’s proposal of affect as an additional dimension of perceptual experience1 may 

suggest that these subjective qualia are represented in posterior sensory cortices, binding 

affect to specific sensory events. While altered mean activity in perceptual cortices 

associated with valence has been found, including reward-related activity in the VTC in 

monkeys43 and humans42, it is unclear whether these regions contain valence information. 

Population level activity revealed modally-bound affect codes, consistent with Wundt’s 

thesis, and evidence of sensory specific hedonic habituation44. Activity patterns in the VTC 

not only represented visual features and object information4,16,45, but also corresponded to 

the representational geometry of an individual person’s subjective affect. Low-level visual, 

object and affect properties, however, did not arise from the same activity patterns, but were 

largely anatomically and functionally dissociated in the VTC. Within vision, posterior 

regions supported representations that were descriptions of the external visual stimulus, 

while more anterior association cortices including the anterior ventral and temporal polar 

cortices, the latter densely interconnected with the OFC46, supported the internal affective 

coloring of visual scene perception. Consistent with the hedonic primacy of chemical 

sensing47, taste evoked affect codes were found in the anteroventral insula and posterior 

OFC—putative primary and secondary gustatory cortex41, suggesting that higher-level 

appraisal processes may not be necessary to the same degree for the extraction of their 

valence properties.

The lack of correspondence in activity patterns across modalities, despite both coding 

valence, suggests that modality specific processes are involved in extracting valence 

information. The role of these modality specific valence representations may be to allow 

differential weighting of distinct features in determining one’s overall judgment of value42 

or subjective valence experience. Fear conditioning renders once indiscriminable odors 
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perceptually discriminable, supported by divergence of ensemble activity patterns in primary 

olfactory (piriform) cortex48. Rather than only the domain of specialized circuits outside of 

perceptual systems, valence coding may also be central to perceptual encoding, affording 

sensory specific hedonic weightings. It remains to be determined whether valance codes 

embodied in a sensory system support distinct subjective qualia, as well as their relation to 

sensory independent affect representations.

Supramodal affect codes in the OFC

It has been proposed that a common scale is required for organisms to assess the relative 

value of computationally and qualitatively different events like drinking water, smelling 

food, scanning predators, and so forth29. To decide on an appropriate behavior, the nervous 

system must convert the value of events into a common scale. By using food or monetary 

reward, previous studies of monkey electrophysiology9, neuroimaging23 and 

neuropsychology25 suggest that the OFC plays a critical role in generating this kind of 

currency-like common scale. However, without investigating its microstructure, overlap in 

mean activity in a region is insufficient to reveal an underlying commonality in 

representation space. By examining multi-voxel patterns, a recent fMRI study demonstrated 

that the vmPFC commonly represents the monetary value (i.e., how much one was willing to 

pay) of different visual goal objects (pictures of food, money and trinkets)17. However, such 

studies of ‘common currency’17,42 employ only visual cues denoting associated value of 

different types, rather than physical stimulus modalities. In the present study, by delivering 

pleasant and unpleasant gustatory stimuli (e.g., sweet and bitter liquids), instead of 

presenting visual stimuli that denote gustatory reward in the future (‘goal-value’), and also 

complex scenes that varied across the entire valence spectrum, including highly negative 

valence, we found that even when stimuli were delivered via vision or taste, modality-

independent codes were projected into the same representation space whose coordinates 

were defined as subjective positive-to-negative affective experience in the OFC. This 

provides strong evidence that the some part of affect representation space in the OFC is not 

only stimulus, but also modality-independent.

The exploratory searchlight analysis revealed that across modality affect representations 

were found in the lateral OFC as well as the medial OFC/vmPFC. This finding is important 

since most previous studies of value representations17,29 mainly focus on the medial OFC/

vmPFC but not the lateral OFC. While both may support supramodal valence codes, the 

processes that work on these representations are likely different49. While the medial OFC 

may represent approach tendencies, the more inhibitory functions associated with the lateral 

OFC sectors may use the same valence information to suppress desire to approach a 

stimulus, such as consume an appetizing yet unhealthy food.

Beyond examining valence representations across complex visual scenes and its 

correspondence across pictures to tastes, we also examined commonality of representations 

across the brains of individuals. To do so we extended previous application of cross-

participant MVPA in representing object types35,36 to the domain of subjective affect. While 

item specific population responses were highly similar in the VTC, affording classification 

of what particular scene was being viewed, these patterns captured experienced affect across 
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people to a much lesser degree. By contrast, population codes in the OFC were less able to 

code the specific item being viewed, but demonstrated similarity among people even if 

affective responses to individual items varied. Cross-participant classification of affect 

across items was lower in the OFC compared to item specific coding in the VTC. This cross-

region difference may be a characteristic of the neural representations of external items 

versus internal affective responses-the need to abstract from physical appearance to invisible 

affect. Notwithstanding, such cross-participant commonality may allow a common scaling 

of value and valence experience across individuals. In sum, these findings suggest there 

exists a common affect code across people, underlying a wide range of stimuli, object 

categories, and even when originating from the eye or tongue.

Online Methods

Subjects and Imaging Procedures

Sixteen healthy adults (10 male, ages 26.1 ±2.1) provided informed consent to participate in 

the visual (Exp. 1) and gustatory (Exp. 2) experiments in the same session (i.e. without 

leaving the MRI scanner). Exclusion criteria include significant psychiatric, or neurological 

history. This study was approved by University of Toronto Research Ethics Board (REB) 

and Sickkids hospital Research Ethics Board (REB). No statistical test was run to determine 

sample size a priori. The sample sizes we chose are similar to those used in previous 

publications17,35,36. The experiments were conducted using a 3.0 T fMRI system (Siemens 

Trio) during daytime. Localizer images were first collected to align the field of view 

centered on each participant’s brain. T1-weighted anatomical images were obtained (1 mm3, 

256 × 256 FOV; MPRAGE sequence) before the experimental EPI runs. For functional 

imaging, a gradient echo-planar sequence was used (TR = 2000 ms; TE = 27 ms; flip angle 

= 70 degrees). Each functional run consisted of 292 (exp. 1) or 263 (exp. 2) whole brain 

acquisitions (40 × 3.5 mm slices; interleaved acquisition; field of view = 192 mm; matrix 

size = 64 × 64; in-plane resolution of 3 mm). The first four functional images in each run 

were excluded from analysis to allow for the equilibration of longitudinal magnetization.

Behavioral procedures

Experiment 1 (visual). Visual stimuli were delivered via goggles, using CinemaVision AV 

system (Resonance Technology Inc.), displayed at a resolution of 800 × 600, 60Hz. Affect 

ratings were collected by magnet-compatible button during scanning. All 128 pictures were 

selected from the International Affective Picture System (IAPS49). In each trial, a picture 

was presented for 3 s, then a blank screen for 5 s, then separate scaling bars to rate positivity 

(3 s) and negativity (3 s) of the picture. After a 4 s inter-trial-interval, the next picture was 

presented. Trial order was pseudorandomised within emotion category, balanced across four 

runs of 32 trials each. Four runs were administered to each subject.

Experiment 2 (gustatory). Gustatory stimuli were delivered by plastic tubes converging at a 

plastic manifold, whose nozzle dripped the taste solutions into the mouth. 100 taste solution 

trials were randomized and balanced across five runs. In each trial, 0.5 ml of taste solution 

was delivered over 1244 ms. When liquid delivery ended, a screen instructed participants to 

swallow the liquid (1 s). After 7756 ms, the same scaling bars from Experiment 1 appeared 
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to rate positivity (3 s) then negativity (3 s) of the liquid. This was followed by 0.5 ml of the 

tasteless liquid delivery during 1244 ms for rinsing, followed by the 1 s swallow instruction. 

After a 7756 ms inter-trial-interval, the next trial began. Five runs were administered to each 

subject

These experiments were conducted in the same session which took approximately 2 hours. 

To decrease need for a bathroom break during scanning, participants were instructed not to 

drink liquids before the experiment.

Pre-experimental session

In order to account for individual differences in their subjective experiences of different 

tastes, participants were asked to taste a wider range of intensities (as measured by molar 

concentrations) of the different taste solutions (sour, salty, bitter, sweet). In this pre-

experimental session, participants were tested for 1 trial (2 ml) of each of the 16 taste 

solutions : 1) sour/citric acid: 1 × 10−1 M, 3.2 × 10−2 M, 1.8 × 10−2 M, and 1.0 × 10−2 M; 2) 

salty/table salt: 5.6 × 10−1 M, 2.5 × 10−1 M, 1.8 × 10−1 M, 1.0 × 10−1 M; 3) bitter/quinine 

sulfate: 1.0 × 10−3 M, 1.8 × 10−4 M, 3.2× 10−5 M, 7.8 × 10−5 M; 4) sweet/sucrose: 1.0 M, 

0.56 M, 0.32 M, and 0.18 M. The order of presentation was randomized by taste, and then 

by concentration within each taste. After drinking each solution, participants rinsed and 

swallowed 5 ml of water, then rated the intensity and pleasantness (valence) of the solution’s 

experience on separate scales of 1-9. The concentrations for each taste that matched in 

intensity were selected. Previous work 50 had shown that participants have different rating 

baselines and the concentrations most reliably selected are above medium self-reported 

intensity. All solutions were mixed using pharmaceutical grade chemical compounds from 

Sigma Aldrich (http://www.sigmaaldrich.com), safe for consumption.

ROI definition

ROIs were determined based on AAL template51 and anatomy toolbox52. The EVC ROI was 

defined by bilateral BA 17 in the anatomy toolbox. The VTC ROI consisted of lingual gyrus, 

parahippocampal gyrus, fusiform gyrus and inferior temporal cortices in the bilateral 

hemispheres. The OFC ROI consisted of the superior, middle, inferior and medial OFC in 

the bilateral hemispheres. White matter voxels were excluded based on the result of 

segmentation implemented in SPM8, performed on each participant’s imaging data.

Data analysis

Data were analyzed using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm/). Functional 

images were realigned, slice timing corrected, and normalized to the MNI template (ICBM 

152) with interpolation to a 2 × 2 × 2 mm space. The registration was performed by 

matching the whole of the individual’s T1 image to the template T1 image (ICBM152), 

using 12-parameter affine transformation. This was followed by estimating nonlinear 

deformations, whereby, the deformations are defined by a linear combination of three 

dimensional discrete cosine transform (DCT) basis functions. The same transformation 

matrix was applied to EPI images. Data was spatially smoothed (full width, half maximum = 

6mm) for univariate parametric modulation analysis but not for MVPA since it may impair 

MVPA performance12. Each stimulus presentation was modeled as a separate event, using 
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the canonical function in SPM8. For the first level GLM analyses, motion regressors were 

included to regress out motion-related effects. For each voxel, t-values of individual trials 

were demeaned by subtracting the mean value across trials. To visualize the results, xjview 

software (http://www.alivelearn.net/xjview8) was used.

Representational similarity analysis

For each participant, a vector was created containing the spatial pattern of BOLD-MRI 

signal related to a particular event (normalized t-values per voxel) in each ROI. These t-

values were further normalized by subtracting mean values across trials. Pairwise Pearson 

correlations were calculated between all vectors of all single trials, resulting in a 

representational similarity matrix (RSM) containing correlations among all trials for each 

participant in each ROI for the visual experiment.

Low-level visual features (local contrast, luminance, hue, number of edges, and visual 

salience) were computed using the Image Processing Toolbox packaged with Matlab 7.0. 

Local contrast was defined as the standard deviation of the pixel intensities. Luminance was 

calculated as the average log luminance53. Hue was calculated using Matlab’s rgb2hsv 

function. Edges were detected using a Canny edge detector with a threshold of 0.5. Lines 

were detected by using a Hough transform and the number of detected lines was calculated 

for each image. Visual salience has been defined as those basic visual properties, such as 

color, intensity, and orientation, that preferentially bias competition for rapid, bottom-up 

attentional selection 54. Visual saliency map for each image was computed, using the 

Saliency Toolbox55. Saliency maps were transformed into vectors and correlations of these 

vectors across images were calculated. These correlations represent similarity of saliency 

maps. Then, all the visual feature values were standardized and compressed into a single 

representative score for each visual stimulus, using principal component analysis. Visual 

feature scores were sorted into 13 bins for symmetric comparison to valence distance. 

Distance in visual feature space was estimated by Euclidian distance in 5 dimensional visual 

feature space (local contrast, hue, number of edges, luminance and saliency). Animacy 

scores were determined by a separate group of participants (n = 16) who judged the stimuli 

as animate (0/16 to 16/16), which were also sorted into 13 bins. We chose object animacy as 

a higher-order object property because the animate-inanimate dimension has been shown to 

be one of the most discriminative features for object representation in the VTC16,45,56.

These RSMs were submitted to multidimensional scaling (MDS) for visualization. Stimulus 

arrangements computed by MDS are data-driven and serve an important exploratory 

function: they can reveal the properties that dominate the representation of our stimuli in the 

population code without any prior hypotheses. Correlation between projections on the best-

fitting axis (line in each MDS plot) and property values.

To compute the valence representational maps, we took the trial-based RSM (of correlation 

ranks) and regressed out the other properties, distance in low-level visual features and 

animacy, as well as regressors of no interest (differences in basic emotions, auto-correlation, 

and sessions). Note that we employed rank-ordered correlations, instead of correlation 

coefficients, for all the analyses which resulted in little assumptions for distribution of 

correlation coefficients. This left an RSM of residual correlation ranks predicted by valence 
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distance, which was then sorted according to 13 × 13 bins (Supplementary Fig. 3b). To 

calculate the value for each valence m and valence n (Valence m × n) cell of the 

representational map, we computed the average of [Valence m-1 × n, Valence m+1 × n, Valence 

m × n-1, Valence m × n+1, and Valence m × n]. Visual feature and animacy representational 

maps were computed in an analogous manner. This decomposition approach treats the RSM 

in each ROI as explained by the linear summation of multiple contributing properties. We 

took this approach to take into consideration the possibility that the same region may 

simultaneously represent qualitatively different features (e.g., the VTC, which represents not 

only highly abstract features such as animacy 16,45,56 but also low-level visual features57).

For statistical analysis of the representational maps, we computed a distance-correspondence 

index (DCI) as a measure of the relationship between activation similarity and distance in 

each representational property. DCI was computed using a similar GLM regression of the 

trial-based RSM that included all three predictors, corresponding to distance in visual 

features, animacy, and valence, and including regressors of no interest (Supplementary Fig 

3a,b). These regression coefficients represent the extent that RSMs were predicted by the 

distance in each of the three properties, and were thus termed “distance-similarity index” 

(final DCIs were calculated by multiplying GLM regression coefficients by minus 1). DCIs 

for each property in each ROI was computed for each participant, then submitted to 

statistical analysis. All the DCI analyses used one-sided tests, since negative DCIs do not 

make sense while other analyses used two-sided tests. Retrospectively, we did not observe 

any significant voxels in the searchlight analysis, which validated this.

To examine cross-modal commonality of OFC affect representation, similar GLM 

regressions were performed using either trial correlations within the gustatory experiment or 

trial correlations across visual and gustatory experiments as responses and valence distance 

as predictor. Regressors of no interest coded differences in basic emotions, tastes, auto-

correlation, and sessions. To directly illustrate the decrease in similarity with valence 

distance, we sorted the rank-ordered correlations into 5 bins of valence distance for each 

participant (Fig. 6a,b). One participant was excluded from these gustatory and gustatory × 

visual analyses, due to the lack of data for the 5th bin of valence distance in gustatory 

experiment. However, this participant was included in all the other analyses including DCI 

analyses.

Searchlight analysis

For information-based searchlight analyses, we used a (5 × 5 × 5 voxels) searchlight. Within 

a given cube, correlation coefficients of activation patterns of each trial combination (128 × 

127/2) were calculated and subject to GLM analysis with correlations as the responses and 

differences in visual features, animacy, and valence scores as predictors (Fig. 5a,b). 

Searchlight analysis of individual visual features (e.g., local contrast, hue, number of edges) 

used distances of a single feature as predictors (Supplementary Table 3 and Supplementary 

Fig. 5). Individual participants’ data were spatially smoothed (8mm FWHM) and were 

subject to a random effects group analysis.

Searchlight analyses examining modality-specific and supramodal valence information, was 

conducted on within-gustatory and across-visual-and-gustatory data. Within a given cube, 
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correlation coefficients of activation patterns of each trial combination (128 × 127/2 for 

visual, 100 × 99/2 for gustatory, and 128 × 100 across visual and gustatory) were calculated 

and subject to GLM analysis with correlations as the responses, differences in valence as 

predictors. Based on these three searchlight results (within visual, within gustatory, and 

across visual and gustatory), we explored brain regions representing visual-specific (P < 

0.001 uncorrected and FDR ≤ 0.05 for visual, P > 0.05 for gustatory and across visual and 

gustatory), gustatory-specific (P < 0.001 uncorrected and FDR ≤ 0.05 for gustatory, P > 0.05 

for visual and across visual and gustatory) and modality-independent valence (P < 0.01 

uncorrected for all the three conditions and cleared a threshold of P < 0.05 (FWE) when 

assuming independence of these 3 conditions).

Cross-participant classification

We examined cross-participant commonality of visual items by comparing each participant’s 

trial-based RSM to a trial-based RSM estimated by averaging across all other participants’ 

RSM. Thus, each target picture was represented by 127 values that related it to all other 

picture trials. We then compared whether the target picture representation was more similar 

to its estimate than all other picture representations (similarity was computed as the 

correlation of the r-values; see Supplementary Fig. 6). Classification performance was 

calculated as the percentage success of all pairwise comparisons (50 % chance).

For cross-participant commonality of affect representations of visual items, we used a 

similar leave-one-out procedure, except that a target picture’s 127-score relationship to other 

pictures was now treated as 127 scores related in valence space. Let us go through an 

example, considering target picture j, which was rated as positive = 5, negative = 1 for one 

participant. The first of picture j’s 127 scores, r(j,1), relates it to picture 1, but because we are 

interested in valence, this score cannot be directly compared to the same r(j,1) score in 

another participant, as that participant’s valence ratings to the same two pictures are 

different. Thus, in order to estimate the valence representation of picture j using other 

participants’ data directly, we computed valence-based RSMs for both positivity and 

negativity, in which effects of no interest was regressed out. That is, the remaining 

participants’ trial-based RSMs were first submitted to GLM decomposition to regress out 

effects of no interest, and then organized by their positive and negative valence scores, then 

separately combined into 7 × 7 positive and 7 × 7 negative valence RSMs, where each (m, n) 

cell was computed as the average of the cells: [(m−1, n), (m+1, n), (m, n−1), (m, n +1), and 

(m, n)]. The classification of picture j’s valence was then tested by looking up the 127 scores 

in the valence RSMs corresponding to the valence mapping. If the correlation of these scores 

was higher for picture j’s valence than another picture k’s valence, the classification was 

successful (see Supplementary Fig. 7). Classification performance calculated as the 

percentage success of all pairwise comparisons (50 % chance). Since the across-participant 

MVPA employed in the present study cannot discriminate trials with the same valence, 

classification accuracies for the closest distance were always 50%.

For commonality of valence representations for the gustatory experiment (Fig. 6b), we 

applied the same procedure as above on the gustatory × gustatory similarity scores and their 

valence ratings. We further investigated the cross-modality commonality of the OFC 
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affective representations by testing whether affect representations in the visual experiment 

can be predicted by other participants’ affect representations in the gustatory experiment 

(visual × gustatory) or vice versa (gustatory × visual) (Fig. 6b)).

Calculation of arousal

Following prior methods37, self-reported and autonomic indices of arousal can be estimated 

through the addition of independent unipolar positive and negative valence responses. 

Valence categories were defined from the distribution in supplemental figure 1a (negative −6 

to −2, neutral −1 to 1, positive = 2 to 6). According to these definitions, positive (mean = 

5.1, s.d. =1.4) and negative (mean = 4.8, s.d. = 1.4) stimuli were similarly arousing 

compared to neutral (mean =2.5, s.d. = 1.7) in Experiment 1. Similar arousal values were 

obtained in Experiment 2 (positive (mean = 5.4, s.d. =1.5), negative (mean = 5.3, s.d. = 1.6) 

and neutral (mean =2.5, s.d. = 1.5).

Statistics

We analyzed the data, assuming normal distribution. To examine whether DCIs are 

significantly above zero, we used one sample t test. To examine difference in DCIs, we used 

paired t test. A Shapiro-Wilk test were applied to examine whether samples had a normal 

distribution. In case of a non normal distribution, a nonparametric test (Wilcoxon signed-

rank test) was applied to confirm whether the similar results were obtained. For ANOVA, we 

also examined sphericity by Mauchly’s test. Where the assumption of sphericity was 

violated, we applied Greenhous-Geisser correction. Mutliple comparison corrections were 

applied to within-ROI and between-ROIs analyses, using Bonferroni correction. For Fig. 3c, 

multiple comparison correction was applied to within-ROI (3 (feature) x 3 (ROI) = 9) and 

between-ROI (3 (feature) x 3 (ROI-pair) = 9) comparisons. For Fig. 4b, multiple comparison 

correction was applied based on within-ROI (3 (feature) x 4 (ROI) = 12) and between-ROIs 

(3 (feature) x 6 (ROI-pair) = 18) comparisons. For Fig. 5d, further multiple comparison 

correction was not applied since the data survived whole brain multiple comparison.

A Supplementary Methods Checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Parametric modulation analysis (univariate) for independent ratings of positive and negative 

valence. (a) Activation map of sensitivity to positive valence, negative valence, and both. 

Yellow indicates voxels sensitive to positive valence (P < 0.001 for positive, P > 0.05 for 

negative), blue indicates voxels sensitive to negative valence (P < 0.001 for negative, P > 

0.05 for positive) and green indicates conjunction of positive and negative valence (P < 

0.031 for positive, P <0.031 for negative). (b) Mean activity within vmPFC/mOFC increased 

along with increases of both positive and negative valence scores. Yellow lines indicate 

signals of the peak voxel (x = –8, y = 42, z = –12, t15 = 8.7, P = 0.0000003, FDR ≤ 0.05), 

maximally sensitive to positive valence positive. Blue lines indicate signals of the peak voxel 

(x = –8, y = 52, z = –8, t15 = 6.8, P = 0.000006, FDR ≤ 0.05), maximally sensitive to 

negative valence. Dashed lines indicate signal for opposite valence (i.e., negative valence in 

the peak positive voxel, and positive valence in the peak negative voxel). n = 16 participants. 

Error bars represent s.e.m.
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Fig. 2. 
Representational geometry of multi-voxel activity patterns in early visual cortex (EVC), 

ventral temporal lobe (VTC) and orbitofrontal cortices (OFC). (a) ROIs were determined 

based on anatomical grey matter masks. (b) The 128 visual scene stimuli arranged using 

MDS such that pairwise distances reflect neural response-pattern similarity. Color code 

indicates feature magnitude scores for low-level visual features in EVC (top), animacy in 

VTC (middle) and subjective valence in OFC (bottom) for the same stimuli. Examples a 

through e traverse the primary dimension in each feature space, with pictures illustrating 

visual features (e.g. luminance) (top), animacy (middle), and valence (bottom)
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Fig. 3. 
Population coding of visual, object, and affect properties of visual scenes. (a) Correlations of 

activation patterns across trials were rank-ordered within a participant. In the ideal 

representation similarity matrix (RSM), trials with similar features (e.g., matching valence) 

demonstrate higher correlations along the diagonal compared to those with dissimilar 

features on the off-diagonal. (b) After regressing out other properties and effects of no 

interest, residual correlations were sorted based on visual features (13 × 13), animacy (13 × 

13), or valence (13 × 13) properties, then separately examined within the EVC, VTC and 

OFC. (b) Correlation ranks were averaged for each cell, providing visual (13 × 13), animacy 

(13 × 13), and valence RSMs (13 × 13). Higher correlations were observed along the main 

diagonal in the visual RSM in the EVC, animacy RSM in the VTC, and valence RSM in the 

OFC. (c) Correlation ranks in the EVC, VTC and OFC were subject to GLM with 

differences in visual (top), animacy (middle) and valence (bottom) features as linear 

predictors. GLM coefficients (“distance-correspondence index (DCI)”) represent to what 

extent correlations were predicted by the property types. For visual-features DCI, t test 

(EVC: t15 = 6.7, P = 0.00003, VTC: t15 = 8.5, P = 0.000002, OFC: t15 = 0.8, P = 1), paired t 
test (EVC vs. VTC: t15 = 0.8, P = 1, EVC vs. OFC: t15 = 4.2, P = 0.008, VTC vs. OFC: t15 = 

4.4, P = 0.005). For animacy DCI, t test (EVC: t15 = 3.6, P = 0.01, VTC: t15 = 10.3, P = 1.5 
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× 10−7, OFC: t15 = 3.9, P = 0.006), paired t test (EVC vs. VTC: t15 = –9.0, P = 1.7 × 10−6, 

EVC vs. OFC: t15 = –1.0, P = 1, VTC vs. OFC: t15 = 11.3, P = 9.2 × 10−8). For valence DCI, 

t test (EVC: t15 = 2.5, P = 0.11, VTC: t15 = 5.0, P = 0.0008, OFC: t15 = 7.6, P = 7.7 × 10−6), 

paired t test (EVC vs. VTC: t15 = 1.8, P = 0.81, EVC vs. OFC: t15 = –4.2, P = 0.007, VTC 

vs. OFC: t15 = –4.8, P = 0.002). A t test within a region was one-sided while paired t test 

was two-sided. n = 16 participants. Error bars represent s.e.m. *** P < 0.001, ** P < 0.01, * 

P < 0.05, Bonferroni corrected.
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Fig 4. 
Region specific population coding of visual features, object animacy, and valence in visual 

scenes. (a) Multivariate searchlight analysis revealed distinct areas represent coding of visual 

features (green), animacy (yellow) and valence (red) properties. Activations were 

thresholded at P < 0.001 uncorrected. (b) GLM coefficients (“distance-correspondence index 

(DCI)”) represent to what extent correlations were predicted by the property types (visual 

features, animacy, and valence). For visual-features DCI, t test (EVC: t15 =8.4, P = 

0.000003, VTC: t15 = 4.3, P = 0.004, TP: t15 = –0.1, P = 1, OFC: t15 = 1.4, P = 1), paired t 
test (EVC vs. VTC: t15 = 6.4, P = 0.0002, EVC vs. TP: t15 = 5.8, P = 0.0006, EVC vs. OFC: 

t15 = 4.5, P = 0.008, VTC vs. TP: t15 = 2.6, P = 0.36, VTC vs. OFC: t15 = 1.2, P = 1, TP vs. 
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OFC: t15 = –1.4, P = 1). For animacy DCI, t test (EVC: t15 = 3.5, P = 0.017, VTC: t15 = 7.8, 

P = 0.000007, TP: t15 = 0.9, P = 1, OFC: t15 = 3.6, P = 0.015), paired t test (EVC vs. VTC: 

t15 = –6.4, P = 0.0002, EVC vs. TP: t15 = 2.4, P = 0.54, EVC vs. OFC: t15 = 1.1, P = 1, VTC 

vs. TP: t15 = 6.8, P = 0.0001, VTC vs. OFC: t15 = 7.8, P = 0.00002, TP vs. OFC: t15 = –2.9, 

P = 0.19). For valence DCI, t test (EVC: t15 = 1.0, P = 1; VTC: t15 = 2.6, P = 0.12, TP: t15 = 

3.5, P = 0.019, OFC: t15 = 6.0, P = 0.0001), paired t test (EVC vs. VTC: t15 = –0.7, P = 1, 

EVC vs. TP: t15 = –1.5, P = 1, EVC vs. OFC: t15 = –3.4, P = 0.071, VTC vs. TP: t15 = –1.6, 

P = 1, VTC vs. OFC: t15 = –5.0, P = 0.003, TP vs. OFC: t15 = –5.2, P = 0.002). A t test 

within a region was one-sided while paired t test was two-sided. n = 16 participants. (c) – (e) 

Difference in mean activity magnitude and pattern in the searchlight defined regions ((c) – 

(e): the medial OFC/vmPFC; (f) – (h): the lateral OFC). (c) and (f) Relationship of activity 

magnitude and ratings for positivity and negativity. n = 16 participants. (d) and (g) Valence 

representation similarity matrices based on the mean activity magnitude (e) and (h) Valence 

representation similarity matrices based on pattern activation (correlation). (e) and (h) DCI 

for mean magnitude and pattern analyses. n = 16 participants. Error bars represent s.e.m. 

EVC: early visual cortex; VTC: ventral temporal cortex; TP: temporal pole, OFC: 

orbitofrontal cortex. Error bars represent s.e.m. *** P < 0.001, ** P < 0.01, * P < 0.05. 

Bonferroni corrected.
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Fig. 5. 
Visual, gustatory and cross-modal affect codes. (a) OFC voxel activity pattern correlations 

across trials in the gustatory experiment, and (b) across visual and gustatory experiments 

were rank-ordered within each participant, and then averaged, based on valence 

combinations (13x13). Correlations across trials were sorted into 5 bins of increasing 

distance in valence. OFC correlations corresponded to valence distance, both within tastes 

and across tastes and visual scenes. n = 15 participants. (c) Multivariate searchlight results 

revealed subregions coding modality-specific (visual = red, taste = yellow) and modality-

independent (green) valence. (d) GLM coefficients (“distance-correspondence index (DCI)”) 

represent to what extent correlations were predicted by valence. Averaged distance 

correspondence index (DCI) in the visual (top row), taste (middle row), visual × gustatory 

(bottom row) valence subregions. In TP, t test (V: t15 = 4.3, P = 0.0003; G: t15 = 0.23, P = 
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0.41, V × G: t15 = 0.71, P = 0.24). In VTC1, t test (V: t15 =4.9, P = 0.00009; G: t15 = –0.43, 

P = 1, V × G: t15 = 0.10, P = 0.46). In STR, t test (V: t15 = 3.9, P = 0.0007; G: t15 = 0.23, P = 

0.41, V × G: t15 = 1.2, P = 0.12). In aINS, t test (V: t15 = 1.2, P = 0.12; G: t15 = 4.0, P = 

0.0006, V × G: t15 = –1.2, P = 1). In VTC2, t test (V: t15 = 0.62, P = 0.27; G: t15 = 4.8, P = 

0.0001, V × G: t15 = –1.2, P = 1). In pOFC, t test (V: t15 = 0.40, P = 0.34; G: t15 = 3.7, P = 

0.0010, V × G: t15 = 0.78, P = 0.22). In mOFC, t test (V: t15 = 6.3, P = 0.000007; G: t15 = 

2.6, P = 0.010, V × G: t15 = 3.9, P = 0.0008). In lOFC, t test (V: t15 = 5.2, P = 0.00005; G: 

t15 = 2.8, P = 0.007, V × G: t15 = 4.1, P = 0.0005). In MCC, t test (V: t15 = 3.8, P = 0.0008; 

G: t15 = 3.8, P = 0.0009, V × G: t15 = 4.0, P = 0.0005). P values were uncorrected. n = 16 

participants. mOFC: medial orbitofrontal cortex; lOFC: lateral orbitofrontal cortex; MCC: 

midcingulate cortex; VTC: ventral temporal cortex; STR: striatum; TP: temporal pole; aINS: 

anterior insula; pOFC: posterior orbitofrontal cortex. V: visual valence; G: gustatory 

valence; V × G: visual × gustatory valence. Error bars represent s.e.m. *** P < 0.001, ** P < 

0.01
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Fig. 6. 
Cross-participant classification of items and affect. (a) Classification accuracies of cross-

participant multivoxel patterns for specific items and subjective valence in the VTC (gray) 

and OFC (white). Each target item or valence was estimated by all other participants’ 

representation in a leave-one-out procedure. Performance was calculated by the target’s 

similarity to its estimate compared to all other trials in pairwise comparison (50% chance). 

For item classification, t test (OFC: t15 = 5.7, P =0.00008, VTC: t15 = 21.4, P = 2.4 × 10−12), 

paired t test (OFC vs. VTC: 15 = –15.9, P = 8.4 × 10−11). For valence classification, t test 

(OFC: t15 = 6.4, P = 0.00002, VTC: t15 = 2.0, P = 0.13), paired t test (OFC vs. VTC: t15 = 

4.2, P = 0.0007). Bonferroni correction was applied, based on number of comparisons for 

each ROI (2 (ROI). A t test within a region was one-sided while paired t test was two-sided. 

n = 16 participants. (b) Relationship between classification accuracies and valence distance 

in the OFC. Accuracies increased monotonically as experienced valence across trials became 

more clearly differentiated for all conditions. ANOVA (visual: F1.4, 20.3 = 37.4, P = 5.6 × 

10−6, gustatory: F1.3, 18.9 = 4.7, P = 0.033, visual × gustatory: F1.2, 18.6 = 9.7, P = 0.004, 

gustatory × visual: F1.4, 19.6 = 4.3, P = 0.04). Greenhouse-Geisser correction was applied 

since Mauchly’s test revealed violation of assumption of sphericity. For visual and visual by 

gustatory, n = 16 participants. For gustatory and gustatory × visual, n = 15 participants. Error 

bars represent s.e.m. *** P < 0.001, ** P < 0.01

Chikazoe et al. Page 29

Nat Neurosci. Author manuscript; available in PMC 2015 February 05.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript


	Abstract
	Introduction
	Results
	Visual feature, object and affect representations of complex visual scenes
	Common and distinct representations of affect in vision and taste
	Classification of affect brain states across participants

	Discussion
	Population coding of affect
	Sensory specific affect codes in the perceptual cortices
	Supramodal affect codes in the OFC

	Online Methods
	Subjects and Imaging Procedures
	Behavioral procedures
	Pre-experimental session
	ROI definition
	Data analysis
	Representational similarity analysis
	Searchlight analysis
	Cross-participant classification
	Calculation of arousal
	Statistics

	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig 4
	Fig. 5
	Fig. 6

