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Abstract
Severe malaria (SM) caused by Plasmodium falciparum (Pf) infection has been associated with life-threatening anemia, 
metabolic acidosis, cerebral malaria and multiorgan dysfunction. It may lead to death if not treated promptly. RNASE 3 has 
been linked to Pf growth inhibition and its polymorphisms found associated with SM and cerebral malaria in African popu-
lations. This study aimed to assess the association of RNASE 3 polymorphisms with SM in an Indian population. RNASE 3 
gene and flanking regions were amplified followed by direct DNA sequencing in 151 Indian patients who visited Wenlock 
District Government Hospital, Mangalore, Karnataka, India. Allele, genotype and haplotype frequencies were compared 
between patients with SM (n = 47) and uncomplicated malaria (UM; n = 104). Homozygous mutant genotype was only found 
for rs2233860 (+ 499G > C) polymorphism (< 1% frequency). No significant genetic associations were found for RNASE 
3 polymorphism genotypes and alleles in Indian SM patients using the Fisher’s exact test. C-G-G haplotype of rs2233859 
(− 38C > A), rs2073342 (+ 371C > G) and rs2233860 (+ 499G > C) polymorphisms was correlated significantly with SM 
patients (OR = 3.03; p = 0.008) after Bonferroni correction. A haplotype of RNASE 3 gene was found associated with an 
increased risk of SM and confirming that RNASE 3 gene plays a role in susceptibility to SM.
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Introduction

Malaria remains to be a major public health problem in low 
and middle-income countries, especially in the sub-Saharan 
region. The World Health Organization (WHO) estimated 
that 228 million cases of malaria and 405,000 related deaths 
occurred globally in 2018 [1]. 19 sub-Saharan African 

countries and India were responsible for carrying approxi-
mately 85% of the worldwide burden [1]. Plasmodium 
falciparum (Pf) malaria is a complex disease with a wide 
spectrum of clinical manifestations ranging from uncom-
plicated (UM) to severe malaria (SM). SM is defined by 
life-threatening anemia, metabolic acidosis, cerebral malaria 
(CM), and multiorgan system involvement [2]. Sequestration 
of Pf-parasitized erythrocytes within the microvasculature 
of vital organs in the human host is considered a key patho-
genic event leading to SM [3, 4]. P. falciparum erythrocyte 
membrane protein 1 (PfEMP1) is encoded by the multicopy 
var gene family and mediates the sequestration of parasitized 
erythrocytes to host receptors [5, 6].

Both parasite and host factors have been identified as 
significant contributors to SM [3]. This includes parasite 
genes, and var groups A, B, as well as domain cassette 
(DC) 8, DC11 and DC13 have been shown to be associ-
ated with SM [7, 8]. Similarly, among host genes, poly-
morphisms in intercellular adhesion molecule 1 (ICAM-1), 
cluster of differentiation 36 (CD36), tumor necrosis factor-
alpha (TNF-α), Interferon-gamma (IFN-γ), interleukin-1β, 
complement receptor-1 (CR-1), ATP binding cassette 
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subfamily B member 1 (ABCB1) and adenosine A2a recep-
tor (ADORA2A) have linked to the development of SM 
[9–16]. Ribonuclease 3 (RNASE 3), which encodes eosino-
phil cationic protein (ECP), an important protein produced 
by eosinophils during inflammation and infection [17, 18], 
was found to increase susceptibility to SM [19–22]. Indeed, 
SM patients had higher ECP levels and hypereosinophilia 
compared to UM patients [21]. In addition, another study 
demonstrated that ECP can suppress the growth of Pf in 
in vitro [22]. Above findings led to several genetic studies 
of the RNASE 3 gene in African populations [19, 20], which 
all showed an association between RNASE 3 polymorphisms 
(+ 371C > G and + 499G > C) and SM [19, 20], further con-
firming its role in severity of the disease. The minor allele 
frequencies of + 371C > G and + 499G > C polymorphisms 
were more than 0.20 in African populations [19, 20]. These 
RNASE 3 polymorphisms have also been associated with 
other disease susceptibility such as allergic asthma [23] and 
parasitic-helminth infection [24].

Here, we conducted a case–control study to assess the 
association of RNASE 3 polymorphisms with SM in India, 
as the same polymorphism can have heterogeneous effect in 
two populations due to genetic differences [25]. RNASE 3 
polymorphism alleles, genotypes and haplotypes frequencies 
were compared between falciparum malaria patients with 
SM and UM.

Materials and methods

Ethical statement

All subjects were recruited from the Department of Medi-
cine, Wenlock District Government Hospital, Mangalore, 
Karnataka, India. Prior written informed consent was 
obtained from each adult patient, or informed assent from 
a parent or legal guardian if the individual was ≤ 18 years. 
The research and ethics committee of the Kasturba Medical 
College (KMC) under Manipal Academy of Higher Educa-
tion, Mangalore, Karnataka, India, approved the study (IEC 
KMC MLR 03-16/49). The Institutional review board of 
ICMR-National Institute of Malaria Research, New Delhi, 
India also reviewed and approved the study (ECR/NIMR/
EC/2012/39). Patient data obtained in this study was kept 
confidential and unique laboratory code was used for labora-
tory and dataset analyses.

Study design and population

For this case–control study, we used a convenience sam-
pling method, whereby all available malaria subjects in 
a specific area are included. We enrolled patients with 
SM and UM caused by P. falciparum who were admitted 

or visited to the Department of Medicine, Wenlock Dis-
trict Government Hospital, the largest health facility in 
Mangalore and the main malaria referral hospital in the 
region, Karnataka, India, from July 2015 to December 
2018. UM patients were used as controls to understand 
the role of RNASE 3 polymorphisms in severe malaria. 
SM was defined based on the modified WHO criteria 
[26]. A total of 151 patients were recruited (age range: 
1–75 years), including 19 (12.6%) children (≤ 18 years, 
median: 12; interquartile range: 8) and 132 (87.4%) adults 
(> 18, median: 32; interquartile range: 22) participants; 19 
patients were female (12.6%). All the participants were 
from the same Tuluva ethnic group, as determined on the 
basis of shared history, food habit, language and habitat 
region. Patients with axillary temperature > 37.5 °C and 
confirmed mono-infection of Pf by expert microscopy and 
rapid diagnostic tests (RDTs) were included in the study. 
P. falciparum positive patients with other Plasmodium 
species, HIV, HBsAg, HCV, pneumonia, bacterial menin-
gitis, sepsis and tuberculosis co-infections were excluded 
from the study.

Parasite quantification and treatment

Giemsa-stained thick and thin blood smears were air-dried, 
and tested for the presence of Pf parasites under a light 
microscope fitted with a 100× oil immersion lens and a 10× 
eyepiece (Zeiss Primo Star, Germany), and parasitemia 
was quantified as previously described [27]. In addition, 
the National Vector Borne Disease Control Programme 
(NVBDCP) approved RDT kits were used as per the manu-
facturer’s instructions to confirm Plasmodium infections. 
These kits were FalciVax™ Rapid Test for Malaria Pv/Pf 
(Ref. No.: 50301002), Onsite Malaria Pf/Pv Ag Rapid Test 
(Ref. No.: R0112C) and SD Bioline Malaria Ag P.f/P.v (Ref. 
No.: 05FK80) targeting both P. vivax- specific pLDH and 
P. falciparum-specific HRP-2 antigens. All the cases were 
successfully treated with the artemisinin-based combination 
therapy (ACT) as prescribed by the National Vector Borne 
Control Programme.

Laboratory procedures

Patients positive for mono-Pf infections were subjected to 
venipuncture; 4 ml of whole blood was collected in EDTA 
Vacutainers (BD Vacutainer®) for hematological tests, and 
a further 4 ml blood was taken for biochemical liver and 
kidney function tests using Clot Activator Vacutainers (BD 
Vacutainer®). DxH 800 Hematology (Beckman Coulter) and 
Cobas® 6000 (Roche) analyzers were used for hematologi-
cal and biochemical tests, respectively.
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Molecular procedures

EDTA blood collected for each patient was sent to Chro-
mous Biotech, Pvt. LTD, Bangalore, India (https ://www.
chrom ous.com/index .php?q=chrom ous-biote ch/about -us), 
for DNA isolation, RNASE 3 gene amplification and DNA 
Sanger sequencing. In brief, 100–250 μl of blood was used 
for DNA isolation using the Chromous Biotech DNA extrac-
tion kit (Cat. No.: RKN25/26). Finally, DNA was eluted in 
35 μl of elution buffer available in the kit. RNASE 3 gene 
was amplified using two primer sets (Set-1: Fw: 5′-TCC AGC 
AAG AGT GGT GGA TGA GAT -3′ and Rv: 5′-CTG TTG TCA 
CAT GCA ACT ACA TAG -3′; Set-2: Fw: 5′-TTG CCA TCC 
AGC ACA TCA GTC TGA  and Rv: 5′-CTG GTT CCA CCT 
CTA TTA CGA TTG C-3′) covering a 2047 bp region (chr14: 
20890932–20892978, including upstream and downstream 
sequences) of the RNASE 3 gene and targeting more than 
150 reported polymorphisms (as per the Ensembl release 
101; Human GRCh38.p13). In brief, RNASE 3 gene frag-
ments were amplified separately in 50 μl reactions including 
200 ng of each forward and reverse primers of set-1 and 
set-2, 5 μl of 10 × PCR buffer, 2 μl of dNTPs (10 mM), 2 μl 
of template DNA and 3 units of Taq® DNA polymerase, 
reaction volume was raised by PCR-grade water. The PCR 
reaction was performed with the initial denaturation at 94 °C 
for 5 min, followed by 35 cycles of 94 °C for 30 s, 52 °C 
for 30 s, 72 °C for 2 min, followed by final extension at 
72 °C for 7 min. DNA sequencing [28] was performed using 
an ABI Prism (Applied Biosystems, USA) 3500 genetic ana-
lyzer for automated DNA sequencer using ABI Prism Big-
Dye Terminator v3.1 cycle sequencing kit. The direct DNA 
sequencing was performed for the two amplicons described 
above, of 1177 bp and 1180 bp long regions of RNASE 3 
containing all the reported gene polymorphisms. The varia-
tions in the sequences were identified by sequence alignment 
using NCBI blast with reference sequence NC_000014.9.

Statistical analysis

To compare continuous data and categorical data between 
groups, respectively, we performed Mann Whitney U test 
and Fisher’s exact test. Odds ratio (OR), 95% confidence 
interval (95% CI) and p value for the mutant allele of each 
RNASE 3 polymorphisms were calculated using an online 
version of MedCalc software (https ://www.medca lc.org/
calc/odds_ratio .php). The SHEsis (https ://analy sis.bio-x.
cn/SHEsi sMain .htm), an online software tool, was used for 
haplotype and linkage disequilibrium (LD) analyses. The 
software uses a partition–ligation–combination–subdivision 
expectation maximization algorithm for haplotype inference 
with multiallelic markers for haplotype analysis. All haplo-
types with a frequency below 0.03 were discarded [29, 30]. 

We defined statistical significance as p < 0.05. Bonferroni 
correction was applied for multiple comparisons.

Results

Patients

All study participants (n = 151) were positive for P. falci-
parum mono-infection, and no other species including P. 
vivax, P. malariae, P. ovale or P. knowlesi were identi-
fied. Among participants, median (± IQR) parasitemia was 
39,446 ± 52,106 parasites/µL and median (± IQR) age was 
27 ± 21 years. Thrombocytopenia (< 150,000 platelets/µL) 
was found in 60.9% of patients (92/151), and 10.6% (16/151) 
had severe thrombocytopenia (< 50,000 platelets/µL). 31.1% 
(47/151) and 68.9% (104/151) of all patients were diagnosed 
with SM and UM, respectively. Comparisons between the 
demographic, hematological and biochemical laboratory 
findings of the participants with SM and UM was per-
formed and are shown in Table 1. Statistically significant 
differences were only found for age, parasitemia, red blood 
cell counts, urea, bilirubin, AST, ALT, albumin levels and 
ratios of albumin and globulin (Table 1). Among patients 
with SM, 10.6% (5/47) and 23.4% (11/47) of patients had 
multiple organ dysfunction and splenomegaly, respectively. 
Information on symptoms of severity of the patients as per 
the WHO criteria [26] is presented in Table 2. 

Genetic association analyses

We successfully amplified 151 samples for the RNASE 3 gene 
followed by direct DNA sequencing, covering more than 150 
polymorphisms. All the reported polymorphisms were pre-
sent in the wild type form except for three polymorphisms 
[rs2233860 (+ 499G > C), rs2233859 (−  38C > A) and 
rs2073342 (+ 371C > G)], and no novel polymorphisms were 
identified in our samples. Among + 499G > C, − 38C > A 
and + 371C > G polymorphisms (Fig. S1), a homozygous 
mutant genotype was only found for + 499G > C polymor-
phism, only 0.7% (1/151) of patients possessed a mutant 
genotype (CC). However, − 38C > A and + 371C > G poly-
morphisms were either present in the form of homozygous 
wild-type or heterozygous genotypes in the studied partici-
pants. Thus, − 38C > A, + 371C > G and + 499G > C were 
further considered for odds ratio, haplotype and linkage 
disequilibrium analyses. The minor allele and genotype 
frequencies of the entire studied population are shown in 
Table 3.

Odds ratio was calculated for different genetic models, 
neither alleles nor genotypes of − 38C > A, + 371C > G 
and + 499G > C polymorphisms were found associated with 
SM and UM patients (Table 4).

https://www.chromous.com/index.php?q=chromous-biotech/about-us
https://www.chromous.com/index.php?q=chromous-biotech/about-us
https://www.medcalc.org/calc/odds_ratio.php
https://www.medcalc.org/calc/odds_ratio.php
https://analysis.bio-x.cn/SHEsisMain.htm
https://analysis.bio-x.cn/SHEsisMain.htm
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The haplotype analysis was performed for three 
(− 38C > A, + 371C > G and + 499G > C) polymorphisms 
of RNASE 3 gene by using SHEsis. Among the 8 possible 
haplotypes comprising the three polymorphic loci, C-G-G 
haplotype was associated with SM patients (OR = 3.03; 
p = 0.008) after Bonferroni correction. No, haplotypes were 
found associated with UM. The results of the haplotype 
analysis are shown in Table 5.

LD was estimated for the three polymorphisms using the 
D′ values. The analysis showed strong linkage disequilib-
rium (D′ = 1 or > 0.75) between rs2233859 (− 38C > A), 
rs2073342 (+ 371C > G) and rs2233860 (+ 499G > C) poly-
morphisms in UM patients. However, no complete linkage 

Table 1  Demographic, 
hematological and biochemical 
laboratory findings of patients 
at the time of admission, 
2015–2018

For continuous variables, values are expressed in median and interquartile range in bracket
SM Severe malaria; UM Uncomplicated malaria; A:G Albumin:globulin ratio

SM (n = 47) UM (n = 104) p-value

Female, no. (%) 6 (12.8) 13 (12.5) 1.000
Age (year) 36 (26.0) 26 (20.0) 0.007
Hemoglobin levels (g/dL) 12.3 (3.4) 12.2 (3.5) 0.828
Total RBC counts (million/mm3) 4.48 (1.1) 4.92 (1.1) 0.049
Platelet counts (per µL) 121,000 (107,000) 112,000 (65,750) 0.419
Blood glucose (mg/dL) 74 (37) 79 (35.8) 0.633
Blood urea (mg/dL) 37.5 (17.6) 28.8 (16.1) 0.002
Serum creatinine (mg/dL) 0.90 (0.7) 0.88 (0.4) 0.266
Serum bilirubin (mg/dL) 2.7 (2.8) 1.6 (1.2)  < 0.001
AST levels (IU/L) 68.0 (61.5) 56.7 (60.9) 0.021
ALT levels (IU/L) 63.5 (40.5) 41.5 (51.2) 0.008
Alkaline phosphatase (IU/L) 310.4 (195.9) 257.5 (198.7) 0.092
Total protein levels (g/dL) 7.0 (1.3) 7.1 (0.8) 0.881
Albumin levels (g/dL) 3.7 (0.5) 3.9 (0.7) 0.038
Globulin levels (g/dL) 3.2 (1.2) 3.1 (0.9) 0.186
A:G Ratio 1.1 (0.4) 1.2 (0.5) 0.002
Parasitemia (per µL) 76,357 (104,280) 28,735 (40,816)  < 0.001

Table 2  Severe malaria symptoms according to WHO criteria in 
patients enrolled in the study

Severe malaria symptoms Patients, n (%)

Metabolic acidosis 30 (63.8)
Jaundice 9 (19.1)
Hypoglycemia 1 (2.1)
Severe anemia 1 (2.1)
Acute kidney injury 1 (2.1)
Pulmonary edema 18 (38.3)
Multiple convulsions 3 (6.4)
Hyperparasitemia 1 (2.1)

Table 3  Genotype frequencies 
of studied polymorphisms in the 
Indian population

MAF minor allele frequency
*GRCh38.p12
# Present study data

rsIDs Location Amino acid Wild Heterozygous Mutant MAF# Asia 
MAF 
(dbSNP)

Genotype frequency (%)#

rs2233859
(− 38C > A)

Intron
*chr14:20,891,649

42.4 57.6 0 A (0.288) 0.312

rs2073342
(+ 371C > G)

Exon2
*chr14:20,892,057

T/R 20.5 79.5 0 G (0.397) 0.73

rs2233860
(+ 499G > C)

3′UTR 
*chr14:20,892,185

83.4 15.9 0.7 C (0.086) 0.1
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between the three polymorphisms was observed in the SM 
group due to absence of LD between the polymorphisms 
rs2233859 and rs2073342 (D′ = 0.57). The results of the 
linkage analysis are shown in Fig. S2.

Discussion

In this first study aiming to decipher the effect of RNASE 3 
polymorphisms on SM susceptibility in India, we used the 
direct DNA sequencing of clinical samples collected using 
a convenience sampling method from Pf-positive patients 
residing in Mangalore, Karnataka, on the Western coast of 

Table 4  Odds ratio analysis 
of RNASE 3 polymorphisms 
in severe and uncomplicated 
malaria patients

NA not applicable due to the presence of 0 value; OR: odds ratio; 95%CI 95% confidence interval; SM 
Severe malaria; UM Uncomplicated malaria

rsIDs Genotypes/alleles SM (n = 47) UM (n = 104) Models OR (95%CI), p-value

rs2233859
(− 38C > A)

CC 23 41
CA 24 63
AA 0 0 Additive NA
CA + AA 24 63 Dominant 0.7 (0.3–1.3), p = 0.274
CC + CA 47 104 Recessive NA
CC + AA 23 41 Co-dominant 1.5 (0.7–2.9), p = 0.274
C 70 145
A 24 63 Allele 0.8 (0.4–1.4), p = 0.399

rs2073342
(+ 371C > G)

CC 6 25
CG 41 79
GG 0 0 Additive NA
CG + GG 41 79 Dominant 2.2 (0.8–5.7), p = 0.118
CC + CG 47 104 Recessive NA
CC + GG 6 25 Co-dominant 0.5 (0.2–1.2), p = 0.118
C 53 129
G 41 79 Allele 1.3 (0.8–2.1), p = 0.354

rs2233860
(+ 499G > C)

GG 40 86
GC 7 17
CC 0 1 Additive NA
GC + CC 7 18 Dominant 0.8 (0.3–2.2), p = 0.712
GG + GC 47 103 Recessive NA
GG + CC 40 87 Co-dominant 1.1 (0.4–2.9), p = 0.821
G 87 189
C 7 19 Allele 0.8 (0.3–2.0), p = 0.629

Table 5  Predicted haplotypes 
of RNASE 3 polymorphisms 
[rs2233859 (− 38C > A), 
rs2073342 (+ 371C > G) and 
rs2233860 (+ 499G > C)] 
association with severe and 
uncomplicated malaria

OR odds ratio; 95%CI 95% confidence interval; SM Severe malaria; UM Uncomplicated malaria
a p value = p value after Bonferroni correction < 0.05 (in bold) considered to be significant. NS = non-signif-
icant

Haplotype SM (frequency) UM (frequency) OR [95%CI] Chi2 p value ap value

A-C-C 0.0 (0.0) 0.18 (0.001) – – – –
A-C-G 6.24 (0.066) 5.92 (0.028) 2.402 [0.759–7.603] 2.35 0.125 NS
A-G-C 0.0 (0.0) 0.04 (0.0) – – – –
A-G-G 17.76 (0.189) 56.9 (0.274) 0.610 [0.335–1.111] 2.64 0.104 NS
C-C-C 7.0 (0.074) 16.84 (0.081) 0.903 [0.361–2.261] 0.05 0.827 NS
C-C-G 39.76 (0.423) 106.1 (0.510) 0.690 [0.422–1.128] 2.2 0.138 NS
C-G-C 0.0 (0.0) 1.98 (0.01) – – – –
C-G-G 23.24 (0.247) 20.12 (0.097) 3.031 [1.572–5.845] 11.66  < 0.001 0.008
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India. We show evidence for the absence of homozygous 
mutant genotypes for RNASE 3 reported polymorphisms, 
except for 3′ UTR + 499G > C polymorphism, which was 
only found in one patient. No significant genetic asso-
ciation was found for genotypes and alleles of RNASE 3 
polymorphisms with SM in the studied Indian population. 
This contrasts markedly with two reports on African popu-
lations, which showed an association between RNASE 3 
polymorphisms and SM susceptibility [19, 20].

In Ghana, + 371C > G polymorphism was found associ-
ated with CM, a neurological type of SM, and + 499G > C 
polymorphism was associated with SM in a Senegalese 
population [19, 20]. No such associations were found in the 
present study. These differing results may be due to several 
reasons. First, the same polymorphism can have heteroge-
neous effect in two geographically and genetically distinct 
populations, despite the endemicity of P. falciparum at both 
sites [25]. Second, the sample size used in the present study 
was small compared to previous studies [19, 20]. Third, the 
present study did not include participants with CM and no 
past history of malaria, which could have provided higher 
granularity in our association study. Indeed, the SM patients 
enrolled in the Senegalese study consisted primarily of CM 
and severe anemia cases [20]; it is therefore possible that 
the reported association was driven by a high number of 
CM patients, which would be in line with the findings from 
Ghana [19]. It has to be noted that Mangalore city alone 
contributes about 72% of total malaria in Karnataka. In the 
last 5 years, the local district health department instead of 
the local municipal authority governs the malaria control 
operation. Following this, active and passive fever surveys 
through digital surveillance devices are in function through-
out the city [31]. Thus, prompt diagnosis and treatment are 
provided. This may be one of the reasons for not finding CM 
cases in the present study. However, further studies includ-
ing large groups of different SM subtypes are needed to test 
this hypothesis in Indian populations.

We show that in SM patients from India, there is a 
lack of homozygous mutant genotypes of + 371C > G 
and + 499G > C polymorphisms. This absence may indi-
cate that mutant alleles may have a deleterious effect on 
the Indian population. This could be explained by the pres-
ence of heterozygous genotypes in our cohort, which may 
be to balance the deleterious effect of these mutant alleles, 
especially for + 371C > G missense-polymorphism that has 
been associated with SM in Ghanaian population [19] and 
with parasitic-helminth infections in Ugandan population 
[24]. The + 371C > G polymorphism, resulting in an Arg/
Thr substitution, drastically reduces the protein cytotoxicity. 
The change in cytotoxic activity could be due to the substi-
tution, which creates a potentially new glycosylation site in 
ECP [24, 32–34]. According to the dbSNP database, a 0.73 
minor allele (G) frequency of + 371C > G polymorphism has 

been found in Asia, suggesting that it may increase in Indian 
population in the future.

Haplotype analysis can provide pivotal evidence on 
human evolution, and the identification of genetic vari-
ants causing specific human traits through linkage disequi-
librium [35]. C-G-G haplotype of − 38C > A, + 371C > G 
and + 499G > C polymorphisms were found associated with 
SM in this study. However, no complete linkage between the 
three polymorphisms was observed in the SM group. There-
fore, in the absence of homozygous genotype for the mutant 
alleles of − 38C > A and + 371C > G polymorphisms, any 
conclusion on the association of C-G-G haplotype with SM 
would be speculative. Further genetic analyses involving a 
larger sample size in India are warranted to further explore 
the possible association we describe here.

SM predominantly affected adults in this study (median 
age 36 years, interquartile range 26 years), indicating a 
probable age shift in anti-malarial immunity [36]. This may 
have resulted from the recent decrease in transmission due to 
India’s largest national malaria control program [37]. Higher 
bilirubin, AST and ALT levels were found in SM patients, 
confirming the association between hepatic injury and severe 
Pf infection described in previous studies [38–41]. In addi-
tion, low albumin levels, albumin:globulin ratio, and high 
urea levels were noted in SM patients compared to UM, con-
firming the presence of liver and kidney injuries (Table 2). 
Parasitemia was also found significantly increased in SM 
patients. However, peripheral parasitemia may not be a true 
indicator of disease severity due to the sequestration of para-
sitized erythrocytes in the microvasculature of vital organs 
[42].

This study has a few limitations. In the era of next-gener-
ation sequencing and genome wide association studies, we 
performed a case–control study to assess the role of RNASE 
3 polymorphisms in SM susceptibility in an Indian popula-
tion using Sanger DNA sequencing. This option was chosen 
as case–control studies using Sanger sequencing assays are 
less time consuming, cost-effective, reliable, and can be use-
ful for recognizing associating factors of disease outbreaks, 
as well as current cases, and allow the assessment of multi-
ple risk factors at once [43]. Another limitation was the lack 
of CM patients included in the study, which may explain the 
discrepancies between our findings and the ones reported in 
Ghana and Senegal. Lastly, ECP levels were not assessed 
in plasma samples collected from study participants due to 
limited funding.

In conclusion, we tested the hypothesis if RNASE 3 pol-
ymorphisms have a role in determining the SM suscepti-
bility in an Indian population, and demonstrated that the 
homozygous mutant genotype of RNASE 3 polymorphisms 
(+ 371C > G and + 499G > C), which were shown to be asso-
ciated with CM and SM in the population of Ghana and Sen-
egal, respectively, were absent in our cohort of SM patients. 
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However, C-G-G haplotype (−  38C > A, + 371C > G 
and + 499G > C polymorphisms) frequency was significantly 
higher in SM patients compared to UM, suggesting its asso-
ciation with an increased risk of SM, and further confirming 
a role of RNASE 3 gene in SM.
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