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Abstract: Stroke is a common and serious condition, with few therapies. Whilst previous focus
has been directed towards biochemical events within neurons, none have successfully prevented
the progression of injury that occurs in the acute phase. New targeted treatments that promote
recovery after stroke might be a better strategy and are desperately needed for the majority of stroke
survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an
alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration
in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves
extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased
glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels
and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported
to result in further damage and functional loss, we discuss the available evidence to suggest that
the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In
particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting
ROCK after stroke results in reduced scar formation and improved functional recovery.

Keywords: astrogliosis; glial scar; neurovascular unit; regeneration; connectivity; Rho-kinase
inhibition

1. Introduction

Cerebrovascular disease, including ischemic or hemorrhagic stroke, is still the second most
common cause of death and disability worldwide. Ischemic strokes are the most frequent, and, for
this reason, current treatment focus is recanalization using thrombolytic therapy despite its limited
therapeutic window [1]. Decades of research have also focused on discovering and developing
neuroprotective agents that may intervene in the biochemical cascades activated during cerebral
ischemia. However, with over 200 neuroprotective compounds showing success in preclinical animal
models, none have achieved successful translation to clinical practice [2]. Most patients end up with
an expanding lesion and functional loss. This relative paucity of curative approaches for stroke has
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led to widespread evaluation of alternative treatment modalities. In particular, alternative cellular
targets outside the neuron—including phagocytic cells, endothelial cells, and astrocytes—present new
strategies for preventing the spread of damage. Brain rescue strategies to support surviving neurons
in the days after stroke are also under current investigation. In particular, the cells comprising the
neurovascular unit might be collectively targeted to retain connections between blood vessels, astrocytes
and neurons, rather than targeting individual biochemical cascades within neurons themselves [3]. The
neurovascular unit also presents an exciting target for promoting functional recovery, since restoration
of nerve transmission after stroke relies heavily on co-ordinated events within the unit. Structural
damage to blood vessels and over-activation of astrocytes after stroke, however, results in disassembly
of the unit in both damaged and surviving nerve pathways. In particular, nerves on the edge of the
damage can be rendered dormant if the neurovascular unit is compromised in this territory. This
review will focus on the events associated with changes in the neurovascular unit during and after
stroke, with a particular focus on the role of astrocyte transition in the peri-vascular territory and its
effects on both lesion and deficit progression, and importantly, functional recovery.

2. The Expanding Core

An ischemic attack results in two distinguishable areas: the infarcted core, which is the region
supplied by the occluded vessel; and the penumbra, which is the area between the lethally damaged
core and normally perfused territory, which receives some collateral blood flow from unaffected
vessels [4]. A dramatic reduction in cerebral blood flow (CBF) occurs in the ischemic core leading to
depletion of cellular energy supply, changes in ion homeostasis, metabolic processes, and subsequent
breakdown of cellular integrity resulting in necrotic cell death [5]. Tissue within the ischemic core is
often irreversibly damaged even if blood flow is re-established. The ischemic penumbra, however, can
be defined by a moderate reduction in CBF where collateral blood vessels provide cells with limited
metabolic nutrients to temporarily maintain homeostasis during the initial stages of ischemia [6].
Despite this, interruption of cellular homeostasis in the penumbral region leads to further cell death
where penumbral tissue will be recruited into the infarcted core with a step-by-step spread of damage
if reperfusion is delayed [7]. Due to this delayed rate of neuronal loss within the penumbra, the
prime goal for therapeutic intervention in the past has been to target salvage of neurons within
the penumbra and prevent expansion of the lesion in the h to days post-stroke. However, so
many biochemical cascades within neurons are activated synergistically once ion homeostasis is
compromised, targeting individual pathways has proved futile since there is not just one single
pathway involved in programmed cell death. More importantly however is the influence of age on the
expanding lesion, which is often overlooked in pre-clinical studies and requires new considerations,
since aging is associated with accelerated infarct development and poor prognosis for full recovery [8].
Given that the majority of stroke patients are above the age of 65, and studies in aged rats show that
infarcts progress more quickly, new strategies beyond simply targeting the neuron are desperately
required. An approach that targets the key factors that lead to accelerated lesion development in the
elderly brain requires urgent investigation.

3. The Neurovascular Unit

The study of blood vessels in cerebrovascular diseases has expanded from sole consideration of
endothelial cells to include other cells within the practical framework described as the Neurovascular
Unit (NVU) [9]. The National Institute of Neurological Disorders and Stroke [10] progress
review group identified the NVU as a conceptual model that emphasizes the dynamic interactions
between neurons, astrocytes, smooth muscle cells, endothelial cells, pericytes, basement membranes,
extracellular matrices and supporting cells (microglia and oligodendroglia) necessary for normal
function (Figure 1) [9,11–13]. Neurotransmission requires combined efforts within the NVU where
astrocytes play a key role in energy storage and transfer, neurotransmitter reuptake and recycling,
and maintenance of ion homeostasis. In this respect, astrocytes can be seen as an important link
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between the cerebral vasculature and neurons, with each neuron often receiving support from up to 50
astrocytes [14]. Following stroke, cells within the NVU undergo considerable change that compromises
neuronal survival, nerve transmission and later remodeling events [15].
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Figure 1. Schematic diagram of the neurovascular unit. The inter-relationship of microvessels  
and their dependent neurons via astrocytes and surrounding cells including microglia and 
oligodendrocytes where injury affects the function of the entire unit. Microvessels consisting of 
pericytes attached to the abluminal surface of the endothelial cells are surrounded by basement 
membrane and encompassed by astrocyte end-feet. 

4. Changes to the Neurovascular Unit in Stroke 

4.1. Breakdown of the Blood Brain Barrier 

The central nervous system is considered to be immune privileged and is separated from the 
changeable milieu of blood circulation by the blood brain barrier (BBB) to allow conductivity of 
complex neural signaling without external interferences [16]. The blood-cerebrospinal fluid barrier 
established by the choroid plexus epithelial cells works in conjunction with the BBB to create a tight 
seal preventing passage of blood-borne molecules into the microenvironment of the brain [17].  
The BBB comprises of a complex system of highly specialized and unique endothelial cells, their 
underlying basement membranes where a large number of pericytes reside [18], peri-vascular 
antigen-presenting cells, ensheathing astrocytic end feet [19] and the associated parenchymal 
basement membrane [17]. Specific interactions between brain endothelium and astrocytes of the NVU 
appear to be involved in regulating the BBB under physiological and pathological conditions [19]. 
Under normal conditions, the tight junction connection with astrocytes only allows the diffusion of 
very small water-soluble compounds via a par-cellular aqueous pathway, while the lipid membranes 
of the endothelium comprised of large surface areas offer effective diffusion of lipid-soluble 
compounds via a trans-cellular lipophilic pathway [20].  

Cerebral ischemia compromises the BBB integrity for days to even weeks and leads to 
permeability of previously excluded blood-borne molecules and inflammatory cells [17,21,22].  
A cascade of microvascular events contributes to the breakdown of the BBB including fibrin 
accumulation, transmigration of leukocytes, generation of degrading enzymes, basal laminae 
breakdown with loss of astrocyte and endothelial cell contacts which causes vasogenic oedema and 
potential hemorrhagic transformation [17,21,23]. The volumetric effect of oedema formation causes 
local compression of microcirculation leading to further perfusion deficits, a rise in intracranial 
pressure, and dislocation of parts of the brain [24]. Indeed, therapeutic strategies that target oedema 
show potential in animal models but as yet have not translated to clinical practice [25,26]. This may 
be, in part, due to the failure of these strategies to address the neurovascular unit as a whole, targeting 
instead vascular cells for restoring the BBB and thus ignoring the critical role of astrocytes in 
maintaining vascular integrity and BBB stability.  
  

Figure 1. Schematic diagram of the neurovascular unit. The inter-relationship of microvessels and their
dependent neurons via astrocytes and surrounding cells including microglia and oligodendrocytes
where injury affects the function of the entire unit. Microvessels consisting of pericytes attached to the
abluminal surface of the endothelial cells are surrounded by basement membrane and encompassed by
astrocyte end-feet.

4. Changes to the Neurovascular Unit in Stroke

4.1. Breakdown of the Blood Brain Barrier

The central nervous system is considered to be immune privileged and is separated from the
changeable milieu of blood circulation by the blood brain barrier (BBB) to allow conductivity of complex
neural signaling without external interferences [16]. The blood-cerebrospinal fluid barrier established by
the choroid plexus epithelial cells works in conjunction with the BBB to create a tight seal preventing
passage of blood-borne molecules into the microenvironment of the brain [17]. The BBB comprises
of a complex system of highly specialized and unique endothelial cells, their underlying basement
membranes where a large number of pericytes reside [18], peri-vascular antigen-presenting cells,
ensheathing astrocytic end feet [19] and the associated parenchymal basement membrane [17]. Specific
interactions between brain endothelium and astrocytes of the NVU appear to be involved in regulating
the BBB under physiological and pathological conditions [19]. Under normal conditions, the tight
junction connection with astrocytes only allows the diffusion of very small water-soluble compounds via
a par-cellular aqueous pathway, while the lipid membranes of the endothelium comprised of large surface
areas offer effective diffusion of lipid-soluble compounds via a trans-cellular lipophilic pathway [20].

Cerebral ischemia compromises the BBB integrity for days to even weeks and leads to permeability
of previously excluded blood-borne molecules and inflammatory cells [17,21,22]. A cascade of
microvascular events contributes to the breakdown of the BBB including fibrin accumulation,
transmigration of leukocytes, generation of degrading enzymes, basal laminae breakdown with loss
of astrocyte and endothelial cell contacts which causes vasogenic oedema and potential hemorrhagic
transformation [17,21,23]. The volumetric effect of oedema formation causes local compression of
microcirculation leading to further perfusion deficits, a rise in intracranial pressure, and dislocation of
parts of the brain [24]. Indeed, therapeutic strategies that target oedema show potential in animal models
but as yet have not translated to clinical practice [25,26]. This may be, in part, due to the failure of these
strategies to address the neurovascular unit as a whole, targeting instead vascular cells for restoring the
BBB and thus ignoring the critical role of astrocytes in maintaining vascular integrity and BBB stability.
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4.2. Vascular Remodeling of Stroke

In response to cerebral vascular compromise after stroke, the brain attempts to restore the BBB
through vascular remodeling. Sprouting of new endothelial cells from pre-existing vessels is a process
referred to as angiogenesis [27] and includes intussusceptive angiogenesis where one vessels splits
in two [28]. Endothelial cell sprouting occurs through migration and mitosis and results in new
vessels composed of endothelial cells derived from parent vessels, while intussusceptive angiogenesis
occurs by multiplication of existing vessels through lumen splitting. It has been suggested that
intussusceptive angiogenesis plays a role in early capillarization, network remodeling as well as
large vessel formation. Increased metabolic demand has also been suggested to switch sprouting
angiogenesis to intussusceptive angiogenesis for growth of new capillary networks [29].

Over 20 endogenous regulators of angiogenesis have been described such as growth factors, matrix
metalloproteinases, cytokines and integrins [30,31]. Important roles in the development, induction
of endothelial cell division, and differentiation of vasculature occurs through many growth factors
including vascular endothelial growth factor (VEGF), VEGF receptor 2, platelet-derived endothelial cell
growth factor, fibroblast growth factors (FGFa and FGFb), epidermal growth factor (EGF), angiogenin,
and ephrin receptors and ligands [31–33]. Transforming growth factor-β and transforming growth
factor-α inhibit endothelial cell proliferation but can induce three-dimensional tube formation and
other aspects of angiogenesis [31]. Angiopoietins 1 and 2 and their tyrosine kinase receptor Tie2 are
involved in maturation, stabilisation, and remodeling of vessels [33]. These regulation factors represent
potential mechanisms and molecular targets for angiogenic therapies after brain injury [34,35].

Angiogenesis following ischemic brain injury has been demonstrated in experimental models
and in humans [36–38]. During the early stages of angiogenesis, newly formed blood vessels are
permeable and become less leaky as they mature [32,38,39]. Up-regulated expression of VEGF, VEGFR2,
angiopoietins, and Tie2 are observed in rodent ischemic brain tissue up to 28 days post-stroke [38,40,41].
Indeed, stroke patients are also observed to have high serum concentrations of VEGF that peaked
at 7 days and remained elevated to 14 days [42]. Angiogenesis is essential for ischemic brain repair
as it can improve blood flow perfusion to ischemic and surrounding tissues, which then stimulates
metabolism and in turn may improve functional outcome following stroke [37]. Indeed a significant
correlation between angiogenesis and survival times is reported after stroke in patients, with higher
density of blood vessels correlating to longer survival times in comparison to patients with low
vascular density [36,42,43]. The degree of angiogenic response after stroke is governed by the initial
insult [44] but is also highly influenced by age. Angiogenesis in aged rats has been reported to be
diminished due to the persistent upregulation of inflammatory genes and vigorous expression of
genes required for the buildup of the fibrotic scar [45]. These factors combined slow down the rate
of vascular recovery in the aged brain and directly influence poor functional outcomes [45]. Hence,
restorative therapies that enhance angiogenesis have also been associated with improved functional
outcomes and suggest, in addition to neurogenesis, that angiogenesis should be further explored as
a treatment modality [46–49]. However, the benefits of angiogenesis can be negatively affected by
premorbid disease, as observed in diabetes and/or hypertension and atherosclerosis and this should
also be considered when investigating treatment options [33,49]. Additionally, if new blood vessels are
not recoupled with trophic astrocyte end feet, the BBB remains leaky.

4.3. Astrogliosis

As a dominant cell population in the brain, astrocytes participate in key signaling events associated
with neurotransmission including energy transfer, anti-oxidant activity, neurotransmitter up-take and
recycling, trophic factor synthesis, ion homeostasis, and neurovascular coupling [50–52]. Astrocytes
also translate neuronal activity to cerebral vessels via arachidonic acid metabolites and nitric oxide to
induce changes in cerebral vascular tone [53]. This information is mediated by the astrocyte end feet
via opening of Ca2+activated K+ channels and the release of K+ onto smooth muscle cells to induce
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vasodilation to support neurotransmission [3]. An intense relationship between astrocytes and neurons,
astrocytes and blood vessels is therefore required for normal functioning of the neurovascular unit.

Astrocytes are recognized as highly plastic cells that exhibit various morphological and
biochemical changes triggered by physiological and pathological events that alter their environmental
milieu [51–53]. Astrocytes can change their physical and molecular phenotype and exist in pro-survival
“cytotrophic” and destructive “cytotoxic” distinctions [51–53]. Numerous astrocytic mechanisms have
evolved to protect neurons from the initial ischaemic insult, including glutamate uptake by astrocytes
to prevent excitotoxic accumulation [54]. Metabolite transfer from astrocytes to neurons also provides
energy to neurons in the initial phase of stroke, where astrocyte glycogen stores in the early h of
stroke serve as a carbon source and cells undergo anaerobic metabolism to support penumbral
neurons [54,55]. Further astrocytic support is provided through early detoxification of free radicals
as astrocytes contain higher intracellular concentrations of antioxidants than oligodendrocytes and
neurons, which contribute to their robust resistance to oxidative stress [56,57]. Reactive astrocytes
are known to up-regulate erythropoietin after ischemia, a paracrine messenger within the brain that
can prevent apoptosis or excitotoxic stress [57–59]. Additionally, astrocytes are now also identified as
being important in vascular and neuronal regeneration after stroke through secretion of several known
cytotrophic factors important for promoting angiogenesis, directing neural precursor migration, and
glial plasticity [60–63]. Of relevance, Hiryama, et al. investigated the role of astrocytes in ischemic
tolerance in the brain induced by preconditioning. Their results revealed that pre-conditioning
significantly increases the expression of the ATP-gated cation channel P2X7 receptor in astrocytes. The
upregulated receptor in turn facilitates development of cytotrophic phenotypes such as expression of
hexokinase 2, monocarboxylate transporter 4 and erythropoietin genes [64].

In contrast to their potential support role, astrocytes actively participate in the demise of brain
tissue after stroke if they become over-activated. These over-activated astrocytes (referred to as reactive
astrocytes), are characterized by elevated expression of glial fibrillary acidic proteins (GFAPs) [65],
and their proliferation is maintained by the Notch1-Stat3-endothelin receptor type B signaling
pathway [66]. Astrocyte over-activation results in glutamate accumulation in the synaptic cleft
through reversal of volume sensitive ion channels, and down regulation of glutamate transporters, to
exacerbate excitotoxicity [54,67]. Reactive astrocytes secrete reactive oxygen species, pro-inflammatory
cytokines and interleukins, matrix metalloproteinases, as well as contribute to BBB disruption and
facilitate oedema through aquaporin-4 channels abundantly expressed in astrocytic endfeet at the
endothelial interface [55,62,68]. Reactive astrocytes amplify ischemic injury through retraction of
their end feet from neurons and cerebral blood vessels resulting in the opening of gap junctions.
Astrocytes also provide a conduit for the propagation of pro-apoptotic signals such as nitric oxide,
TNFα and matrix metalloproteinases between neurons [55]. Collectively, the role of astrocytes
after stroke constitutes a finely gradated continuum of morphological changes from reversible
pro-survival alterations to long-lasting scar formation around the lesion, a process referred to as
reactive gliosis [55,65,66] (Figure 2). Therefore, it is an oversimplification to assign sole protective or
destructive functions to astrocytes, and the intricacy of these mechanisms that collectively influence
the brain microenvironment after ischemia is highlighted instead.

In an effort to promote recovery after stroke research was initially directed towards globally
inhibiting the actions of astrocytes. This adversely affected initial injury and was later abandoned
as a therapeutic possibility. Over time, studies revealed that whilst early responses to astrocytes
may be necessary, reactivity is governed by negative environmental cues that ultimately lead to
a state of over activation. In particular, age has a significant effect on astrocyte activation where
reactive gliosis and the premature development of fibrotic scar tissue is reported to be amplified
in older subjects, which directly correlates to stagnation in recovery [69]. Important new insights
into signaling events within astrocytes in the h after stroke now facilitates a better understanding of
how these cells might be specifically targeted to retain their initial functional support. Between six
and 24 h after stroke glycogen breakdown in astrocytes becomes impaired [70] resulting in less ATP
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availability for both neurons and astrocytes, with reduced neurotransmitter re-uptake and recycling
from the synapse. This inability to access the glucose reservoir within the brain impairs the role of
astrocytes in supporting neural metabolism for neurotransmission. Loss in ATP may also drive changes
within astrocytes to initiate reactive morphological transition. Astrocyte shape, movement and cell
division is highly governed by the actin cytoskeleton and alterations in gene signaling during stroke
drives changes in Notch signaling and Rho GTPases (Rho, Rac, Cdc42) that regulate proliferation and
movement [66,71,72]. These changes within the cytoskeleton further impair glutamate re-uptake and
turnover through down-regulation of glutamate transporters, EAAT1 and 2 [73–77]. In particular, the
glutamate transporter EAAT2 is considered a specific marker for astrocytes with genomic interactions
detected with GFAP [78]. Increased expression of GFAP and Rho GTPases, results in cytoskeletal
rearrangement and retraction of astrocytic end feet connections from both blood vessels and neurons.
Therefore, specific changes within astrocyte signaling pathways may be intimately involved in the
varying degrees of reactive astrocyte transition resulting in breakdown of the neurovascular unit.
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Figure 2. Over activation of astrocytes adjacent to the stroke lesion breaks neurovascular coupling in
structurally intact nerves: Schematic diagram of healthy astroctyes with end feet coupling to blood
vessels and neurons (long black arrow); following stroke (blue arrow) reactive astrocytes retract their
end feet connections to break coupling (short black arrow) to form the glial scar. Targeting astrocytes to
reduce the glial scar whilst retaining trophic astrocyte support is a new target for brain rescue.

5. The Glial Scar

As discussed above, activation of astrocytes following brain injury involves complex chemical and
structural modifications that culminate in long-lasting scar formation [52]. Astrocytes within the glial
scar appear densely arborized and display a high degree of overlapping processes that are intensely
stained for GFAP, which is significantly upregulated with changes in cytoskeletal rearrangement. In
addition to activation of pre-existing brain astrocytes, new GFAP positive radial glial cells are also
generated in the neurogenic niche of the subventricular zone after stroke, which by three days can
be seen migrating towards the intensifying glial scar [44,79]; between 7 and 14 days, large, densely
arborized nestin positive astrocytes can be observed around the infarct border [38,44,79], which by
28 days poses a major physical and chemical barrier to the stroke affected brain [38,55,65,79]. Whilst it is
important to seal the wound after stroke, the glial scar also spreads into regions of the brain where there
are often surviving neurons [38,44]. Whilst many deficits incurred after a stroke are directly associated
with neuronal loss within the lesion core, advances in functional Magnetic Resonance Imaging based
tractography now show us that loss of electrical activity in otherwise structurally intact pathways also
accounts for functional loss [80]. Overactive astrocytes within the glial scar not only represent a physical
barrier to neurons trying to re-form connections but are also the source of many inhibitory molecules
that prevent axon regrowth [81–83] (Figure 3). These inhibitory molecules include chondroitin sulphate
proteoglycans (CSPGs) [84,85], ephrins, semaphorins and slit proteins [86,87], which are upregulated
by astrocytes following injury. The glial scar also incorporates myelin-associated inhibitory molecules
such as Nogo, oligodendrocyte-myelin glycoprotein (OMgp) [88,89] and repulsive guidance molecules
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(RGM) [90], which are released by oligodendrocytes upon injury. Cultured neurons grown on medium
collected from reactive astrocytes show reduced axonal outgrowth compared to neurons grown on
control medium [84], due to the inhibitory molecules released by reactive astrocytes. Thus, in addition
to changes in chemical metabolism in surviving nerve pathways, changes in astrocyte transition
and glial scar formation are also highly inhibitory towards axon regrowth in damaged pathways,
thereby preventing neuronal connections from re-forming and hindering functional recovery. Targeting
transitional activation of astrocytes after stroke might therefore be an alternative strategy for restoring
functional activity in both surviving neurons and damaged nerve pathways, where the trophic effects
of activated astrocytes are retained without over activation.
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Figure 3. Simple schematic representation of Gliotic scar mediated Rho-kinase (ROCK, blue circle)
activation in neurons. Inhibitory molecules released by the glial scar include CSPGs, Nogo (Nogo66
and Amino Nogo), OMgP, RGM, Ephrin and semaphorins. Activation of receptors present on axon
membranes (red shapes) signal change in Rho-ROCK activity within neurons resulting in growth
cone collapse, neurite retraction and apoptosis. Black arrows reference signaling events from the
glial scar that activate receptors on neurons that trigger internal signaling events (Grey arrows) that
activate ROCK.

6. Modulating Astroctye Transition after Stroke

Investigation into inhibiting the response to astrocytes after stroke resulted in negative effects to
both lesion development and functional outcomes. This was clearly demonstrated with transgenic
mice lacking proteins known to be involved in astrocyte activation. Following ischemia, knock-out
mice lacking the astrocytic intermediate fibres upregulated after stroke (GFAP and Vimentin) showed
reduced glial scarring but an increase in infarct size and reduced functional recovery [91,92]. Likewise,
conditional deletion of the transcription factor STAT3 in astrocytes following spinal cord injury resulted
in reduced glial scarring which was associated with greater damage and increased inflammation [93,94].
It therefore appears that reactive astrocytes limit the spread of neurotoxic molecules by acting as a
diffusion barrier as a result of morphological changes and the release of ECM components [95]. These
above studies suggest that preventing the initial activation of astroctyes (through gene knockout)
blocks the protective role of these cells in the initial stage of stroke. However, what if astrocytes
could be modulated to allow initial activation whilst preventing over activation? Indeed studies
investigating the effect of environment on recovery after stroke show that astroctyes can be temporally
modulated through environmental enrichment with correlated benefits to recovery and reduced
scar volume [96]. The use of a pharmacological approach to modulate astroctyes also results in
improved outcomes. Chronic immunosuppression with Cyclosporine A prior to and after stroke was
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reported to attenuate the development of deficits in the h to days after stroke with reduced glial scar
formation [97]. This occurred in the absence of neuroprotection or change to microglial responses,
but trophic astrocyte morphology identified by spindly, elaborate processes were retained. In this
study, astrocytes were shown to undergo transition into a reactive morphology but failed to progress
to their over-activated state associated with the glial scar. Due to the absence of neuroprotection, it
was therefore suggested that trophic astrocyte support without glial scar formation resulted in brain
rescue where neurotransmission in regions of the brain that would otherwise succumb to functional
loss, due to scar progression, were retained.

Whether activated astrocytes are beneficial or an impediment is therefore largely due to timing
and the extent of reactive astrogliosis. Whilst initial activation limits damage in the early stages of
stroke, over-activated astrocytes form a persistent glial scar that disrupts nerve transmission and
impedes later recovery [98]. Identifying intracellular signaling pathways that can modulate astrocyte
responses more specifically after stroke is therefore an exciting new approach to treating stroke.

6.1. The Rho/ROCK Pathway

Chronic immunosuppression is not a favorable pharmacological approach to treating stroke.
Therefore alternative strategies must be explored. One potential strategy might be to target intracellular
pathways involved in over-activation of astrocytes. One such pathway is the Rho/ROCK pathway, the
inhibition of which could be used to disrupt glial scarring while maintaining the initial beneficial effects
of activated astrocytes. Rho and its downstream effector, the Rho associated coiled coil protein kinase
(ROCK), form an important pathway that regulates motility and cytoskeletal structure. Rho, a family
of the small GTPases can switch between inactive GDP-bound and active GTP-bound states. This
switching is controlled by Guanine Exchange Factors (GEFs) and GTPase Activating Proteins (GAPs).
GEFs enhance activation by aiding the substitution of GDP for GTP. Conversely GAPs inactivate Rho
by increasing the hydrolysis of GTP into GDP. In addition, Guanine nucleotide Dissociation Inhibitors
(GDIs) bind and sequester inactive Rho in the cytoplasm, preventing localization to the membrane, the
site of Rho activity [99]. Active GTP bound Rho can bind and activate its downstream effector ROCK
(Figure 4).
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Figure 4. The Rho/ROCK signaling pathway. Rho is kept in the inactive GDP-bound state (yellow/blue
complex) by sequestration with Guanine nucleotide Dissociation inhibitors (GDIs; green comples) and
the activity of GTPase activating proteins (GAPs). Rho can be activated through Guanine Exchange
Factors (GEFs), enabling the exchange of GDP for GTP. Rho-GTP (orange/blue complex) can then
activate ROCK (blue/red complex) by binding to the Rho binding domain. Active ROCK can then
phosphorylate multiple downstream effectors eliciting changes in actin membrane stabilisation, growth
cone collapse and increased cell adhesion, which in astrocytes results in glial scar formation. Arrows
indicate activation events, whereas blunted lines indicate inhibitory effects.
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ROCK has multiple downstream effectors, which it phosphorylates to elicit changes to
cell morphology and migration. These substrates are involved in multiple processes including:
(1) Cytoskeletal rearrangement via stress fiber formation and actin polymer stablization. Stress fiber
assembly is coordinated through myosin light chain (MLC) phosphorylation as well as phosphorylation
and subsequent inhibition of myosin light chain phosphatase (MLCP) [100]. Actin polymer stabilized
by phosphorylation of LIM kinase which inhibits co-filin; (2) Growth cone collapse via Collapsin
Response Mediator Protein (CRMP-2) activation; (3) Focal adhesion formation via Sodium–hydrogen
exchanger (NHE) activation [99]; (4) Association between actin filaments and membranes through
ERM phosphorylation [101]; and (5) Apoptosis [102].

6.2. The Rho/ROCK Pathway in Stroke

Many studies have reported the up-regulation of the Rho/ROCK pathway after stroke. Increased
Rho and ROCK expression have been observed in neurons and astrocytes of the ischemic hemisphere
of rodents and human within h of stroke [103] resulting in increased ROCK activity [104]. In
astrocytes, increased ROCK activity is implicated in reactive astrogliosis and glial scar formation.
However, this effect was initially debated due to problems associated with the use of astrocyte cultures.
Cultured astrocytes have very different morphologies to healthy astrocytes of the brain. Rather
than the star-like shape with many fine projections observed in native astrocytes, cultured astrocytes
adopt a flat polygonal morphology, which is actually more akin to reactive astrocytes. Indeed, the
transcriptome of cultured astrocytes is now known to be closer to that of reactive astrocytes than
healthy brain-derived astrocytes [105]. Debate over what constituted a reactive astrocyte initially led
to ROCK inhibitors being thought to induce reactivity as cultures treated with ROCK inhibitors adopt
a stellate morphology [73,105]. However, using modern techniques such as 3D culturing [76,77] and
with greater appreciation of astrocyte heterogeneity, it is now apparent that ROCK inhibition results in
reduced astrocyte reactivity [73–77]. Changes in actin dynamics are responsible for the morphological
changes associated with reactive astrogliosis [100]. These changes are controlled by Arp2/3 signaling,
which lies upstream of the Rho/ROCK pathway. Astrocytic cultures that adopt a reactive morphology
following Arp2/3 inhibition have been shown to have a higher proportion of active GTP-bound Rho
than inactive GDP-bound Rho. These morphological changes are reversed upon ROCK inhibition [106].
Thus, it would appear the Rho/ROCK pathway is essential for reactive astrogliosis.

In neurons, ROCK activity is also upregulated in response to multiple inhibitory molecules
released by the glial scar following a stroke (see Figure 3). These inhibitory molecules also include
CSPGs, myelin-associated inhibitors, ephrins, semaphorins and slit proteins [90,107–109] lead to
ROCK activation in axons [108–110]. ROCK in turn phosphorylates CRMP-2 leading to growth cone
collapse and inhibition of axon growth [99,108,110]. Inhibition of the Rho/ROCK pathway has been
found to attenuate the growth cone collapse caused by these inhibitors, with greater axon length
and sprouting observed in neurons grown on medium containing CSPGs and myelin-associated
inhibiters when treated with ROCK inhibitors [107,108,110–112]. This enhanced nerve outgrowth
is also seen in rats with spinal cord injury that have been treated with ROCK inhibitors, leading to
improved functional recovery [108]. ROCK-mediated axon growth inhibition prevents the re-formation
of damaged neuronal pathways following a stroke and so prevents effective functional recovery.
Therefore, inhibition of ROCK may promote recovery by minimizing the effects of inhibitory molecules
released by the glial scar on neurite regeneration and outgrowth.

6.3. Inhibition of the Rho/ROCK Pathway

Fasudil is an isoquinoline sulphonamide derivative that inhibits ROCK activity by binding to its
ATP binding site. The isoquinoline of Fasudil acts as a competitive inhibitor by occupying the same
site as ATP’s adenosine ring [113,114]. Fasudil is selective for ROCK, but, due to the similar structure
of many kinase ATP binding sites, it can also bind to Protein kinase A (PKA) and AMP-activated
protein kinase (AMPK) with lower affinity. However, in the body, Fasudil is quickly converted to its
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metabolite, hydroxyl-Fasudil, which has a much higher specificity for ROCK [114]. Currently, Fasudil
has been clinically trialed to treat vasospasm [115] and is under investigation for the treatment of
other diseases including amyotrophic lateral sclerosis [116], multiple sclerosis [117] and spinal cord
injury [118]. Notably, a placebo-controlled double-blind clinical trial has been conducted using Fasudil
to treat stroke [119]. This resulted in significant improvements in both functional and clinical outcomes,
albeit with low cohort numbers.

Multiple mechanisms have been identified through Rho-kinase inhibition. It has been found to
increase cerebral blood flow by preventing down regulation of endothelial nitric oxide synthase [120]
and to act as a neuroprotectant, reducing neuronal death by inhibiting apoptotic pathways [121]. While
these effects are beneficial, like all neuroprotectants they depend on the early administration. However,
mechanisms that are also associated with brain recovery have also been proposed. Firstly, fasudil
attenuates the inhibition of axon growth associated with CSPGs released from reactive astrocytes [122].
Other Rho/ROCK inhibitors have also been effective at reversing inhibition caused by the inhibitory
molecules of the glial scar [107,108,110–112]. Furthermore, Fasudil stimulates astrocytes to produce
increased levels of Brain derived neurotrophic factor and granulocyte colony stimulating factor and
upregulates glutamate transporters (EAATs) [74,77]. G-CSF is also a growth factor associated with
increased neurogenesis, so its upregulation could promote neuronal differentiation and subsequent
functional recovery [122].

Pretreatment with Fasudil prior to stroke has been found to result in improved functional
outcomes, reduced infarct size, less neuronal death and less BBB permeability [120,121,123]. Of
course, pretreatment is not a viable option for real stroke patients. Administering Fasudil from
between five minutes to 6 h after stroke has also been shown to result in improved functional outcomes,
with the same neurological effects as pretreatment [124,125]. Only one study has significantly delayed
treatment until after the acute phase of stroke, where Fasudil treatment commenced at three days
and still resulted in improved functional recovery [126]. When delivered soon after stroke, Fasudil
is believed to be beneficial by increasing vasodilation and reducing apoptosis, as discussed earlier.
However, following the acute phase of stroke once damage has matured, delayed treatment with
Fasudil is unlikely to contribute to functional improvement through these actions. For this reason,
Lemmens et al. [126] attributed the effects of delayed treatment with Fasudil to interruption of the
axon growth inhibitor EphA4 which is released by the glial scar. Targeting inhibitory actions on the
nerve growth cone from the glial scar, Fasudil is therefore reported to support nerve regeneration and
recovery. However, the effect on the glial scar itself was not assessed.

6.4. Rho/ROCK Inhibition Modulates Reactive Gliosis after Stroke

Despite the recent interest in Fasudil, its effect on astrocytes and the neurovascular unit in an
in vivo model of stroke have not been widely explored. Using in vitro models, Fasudil treatment
of cultured astrocytes results in morphologies and gene expression associated with less severe
astrogliosis [74]. As discussed above, these included increased expression of glutamate transporters
and growth factor BDNF, as well as decrease in Aquporin-4 associated with BBB dysfunction [73].
Combined, these modulations alone would be expected to benefit functional recovery and retain the
role of astrocytes within the NVU.

Although not a stroke model, the effect of Fasudil on glial scarring has been investigated on
injured retinas in vivo [127], where it was demonstrated that Fasudil reduced reactive astrogliosis and
glial scarring, which was associated with increased neuronal survival. However, as different injury
models are associated with different protein expression patterns for reactive astrocytes, it is important
to investigate the effects of Fasudil on astrocytes using a clinically relevant stroke model to properly
characterize its effect as a treatment for stroke. To date, no study has reported the effect of Fasudil
on transitional changes in astrocytes after stroke in vivo. Studies in our laboratory, however, have
recently found that Fasudil treatment commencing three days after stroke indeed modulates reactive
gliosis to reduce glial scarring in rats, as evidenced by reduced GFAP staining and the adoption of less
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reactive morphologies up to 28 days (Figure 5B) [128] (unpublished data). Importantly modulation
of the astrocyte response resulted in time dependent reversal of functional deficits in the absence of
neuroprotection (Figure 5C) [128].
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commencing three days after stroke significantly improved contralateral forepaw deficit by 14 days (C).
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The model of stroke chosen for this study was the endothelin-1 model of conscious stroke in
rats based on recent quantification and characterization of multiple remodeling events shown to be
similar to that in humans [44]. In this model of middle cerebral artery occlusion, neuronal loss to
the dorsal motor cortex is rarely observed, yet clear motor deficits to the contralateral forepaw are
detected and persist over time. This is in keeping with MRI studies in humans where functional loss is
detected in regions of the brain where there are surviving neurons. We suggest that surviving neurons
within the perifarct territory are in a state of inactivity due to breakdown in the NVU and expansion
of the glial scar, resulting in functional loss to an otherwise undamaged structure. Treatment with
Fasudil potentially targets this area by modulating astrocytes to retain trophic support for brain rescue
and neurovascular coupling to prevent loss of neurotransmission in surviving nerve pathways. This
of course warrants further extensive investigation to address this hypothesis, but it does offer an
alternative strategy for targeting brain rescue and recovery of the stroke-affected brain after stroke.

7. Conclusions

Breakdown in the neurovascular unit after stroke involves reactive morphological transition
of astrocytes that initially protect the brain against the ischaemic insult but ultimately results in
extensive glial scar formation and spread of injury. The glial scar is also a major impediment to the
recovery processes through lost neural connectivity in surviving pathways due to breakdown in the
neurovascular unit, as well as preventing nerve regeneration through inhibition of axonal growth cone
extension. Whilst inhibiting the initial activation of astrocytes after stroke results in bad outcomes,
modulating this response might be better approach, where initial responses by astrocytes are preserved,
but overall glial scarring reduced. The Rho-kinase pathway is a potential target for modulating this
effect. Its inhibitor, Fasudil, has previously been investigated as a potential neuroprotectant following
stroke, with positive results. However as ROCK is involved in multiple signaling pathways, it is likely
to have an additional mechanism. As such, new evidence suggests that inhibition of ROCK stabilizes
astrocytes after stroke by retaining their trophic reactive phenotype without over activation and scar
formation, even when treatment is significantly delayed in vivo. This approach results in better long
term functional outcomes and importantly highlights the need to address different approaches to
treating stroke beyond targeting specific events within neurons.
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