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THE BIGGER PICTURE Large datasets are abundant in various scientific and engineering disciplines. Mul-
tiple physical variables are frequently gathered into one dataset, leading to high data dimensionality. Visu-
alizing and modeling multivariate datasets can be achieved through dimensionality reduction. However, in
many reduction techniques to date, there is no guarantee that the reduced data representation will possess
certain desired topological qualities. We show that the quality of reduced data representations can be
significantly improved by informing data projections by target quantities of interest (QoIs), some of which
are functions of the projection itself. The target QoIs can include closure terms required in modeling, impor-
tant physical variables, or class labels in the case of categorical data. This work can have particular rele-
vance in data visualization and efficient modeling of dynamical systems with many degrees of freedom,
as well as in fundamental research of representation learning.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
A fundamental hindrance to building data-driven reduced-order models (ROMs) is the poor topological qual-
ity of a low-dimensional data projection. This includes behavior such as overlapping, twisting, or large cur-
vatures or uneven data density that can generate nonuniqueness and steep gradients in quantities of interest
(QoIs). Here, we employ an encoder-decoder neural network architecture for dimensionality reduction. We
find that nonlinear decoding of projection-dependent QoIs, when embedded in a dimensionality reduction
technique, promotes improved low-dimensional representations of complex multiscale andmultiphysics da-
tasets. When data projection (encoding) is affected by forcing accurate nonlinear reconstruction of the QoIs
(decoding), weminimize nonuniqueness and gradients in representing QoIs on a projection. This in turn leads
to enhanced predictive accuracy of a ROM. Our findings are relevant to a variety of disciplines that develop
data-driven ROMs of dynamical systems such as reacting flows, plasma physics, atmospheric physics, or
computational neuroscience.
INTRODUCTION

High-dimensional datasets are collected in large volumes in

various scientific and engineering disciplines. This is due to

advances in high-performance computing that allow for the

collection of data from numerical simulations (e.g., from multi-

component turbulent reacting flow simulations) and advances
This is an open access article under the CC BY-N
in experimental techniques that enable collection of massive

numbers of features simultaneously (e.g., the entire genome in

single-cell data). Techniques that help us understand multivar-

iate data and build data-driven models have thus become a

necessary apparatus in a researcher’s toolbox. To this end, effi-

cient dimensionality reduction is crucial, as it allows one to repre-

sent high-dimensional data in a lower-dimensional latent space,
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where, it is hoped, understanding1–5 andmodeling6–9 of complex

systems are easier.

Many dimensionality reduction strategies can provide subop-

timal data representations when they are not informed by the in-

tended use case or by the knowledge of the problem at hand.

Commonly used techniques do not inform the projection topol-

ogy by variables other than the independent state variables.10–13

This hindrance has an impact on efficient data visualization

and hypothesis generation because relevant information can

become obscured in latent space. It also has an impact on build-

ing data-driven reduced-order models (ROMs) of complex

dynamical systems. The predictive capability of a ROM can be

hampered by poor-quality low-dimensional data representation.

Independent of the discipline from which the dynamical sys-

tem originates, ROMs share some salient characteristics.7,14–19

First, a low-dimensional basis is computed from the state vari-

ables known from either simulations or experiments. Next, we

map the governing equations of a dynamical system (e.g.,

nonlinear, coupled partial differential equations [PDEs]) to the

lower-dimensional basis.7 When a nonlinear regression map is

incorporated into the reduced-order modeling workflow (e.g.,

for handling the nonlinear terms in the projected PDEs), the pro-

jection should be optimized toward representing the recon-

structed target variables, different from the state variables. The

success of that reconstruction, and hence the success of a

ROM, depends on the topological quality of the data projection.

We argue that data projections should be informed by the quan-

tities of interest (QoIs) that are the regression targets and include

the QoIs whose reconstruction is required at ROM runtime.20,21

We formulate an autoencoder-like neural network architecture

with a linear encoder and a nonlinear decoder. The difference

from the ordinary autoencoder (AE)22,23 is that at the output layer

we reconstruct various QoIs, different from the original state vari-

ables but crucial for constructing the ROM.When the dimension-

ality reduction task and the nonlinear reconstruction task

communicate with each other through backpropagation, a linear

projection created by the encoder is optimized to result in a good

nonlinear reconstruction of important QoIs by the decoder. This

approach naturally penalizes projections that exhibit nonunique-

ness or large gradients, since any difficulties in representingQoIs

on a projection immediately increase the mean-squared-error

(MSE) loss function during training. Evidence from the existing

research24–26 suggests that such a joint encoding-decoding27–31

approach provides improvements to the topology of a low-

dimensional data projection. Here, we demonstrate quantita-

tively that this is the case.

The recently developed cost function that allows one to assess

the quality of a low-dimensional manifold32,33 is extensively used

in this work to quantify the benefits of the proposed approach.

Linear reconstruction error optimality34 often proves an insuffi-

cient metric to guarantee the quality of the projection topol-

ogy.33,35 Therefore, we require optimality measures other

than those present in, e.g., principal-component analysis (PCA)

or its time-series variant, proper orthogonal decomposition

(POD). We find that nonlinear reconstruction of QoIs provides

significant improvements in (linear) projection topology as

measured by the quantitative cost function. Moreover, further

improvements are achieved when the very definition of some

of the QoIs depends on the projection operator. Our conclusions
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hold for different projection dimensionalities and for a variety of

reacting flow datasets representing the combustion of different

fuels in air.

RESULTS

The outstanding challenges of data-driven reduced-
order modeling
It has been recognized that, under some conditions, ROMs work

very well, but they can fail dramatically under others. At the same

time, many aspects of ROMs are not yet understood. In partic-

ular, undesirable topological behaviors can be introduced on a

data projection through dimensionality reduction. The most

problematic behavior is an overlap on a projection. An overlap

can occur on a projection when different observations in state

space are projected onto the same location in the latent space.

Overlap can lead to nonuniqueness in representing a QoI on a

projection. When observations inside the overlapping region

correspond to different values in a QoI, they can be mapped

onto only one output (QoI) value based on the same input

(lower-dimensional coordinates) value. This leads to errors in

modeling QoIs over a projection and can hinder the performance

of a ROMand data-driven workflows in general.36 Two important

questions that ought to be answered to enhance the predictive

performance and our understanding of ROMs are the following:

1. How can we define a low-dimensional data projection

such that it possesses certain desired topological

qualities?

2. How do poor low-dimensional data projections affect

reduced-order modeling?

Here, we tackle these outstanding questions and demonstrate

that significant improvements in projection topology can be

achieved thanks to nonlinear decoding of QoIs.

From a full-order model to a reduced-order model
The PDEs that describe the full-order model (FOM) often have

the form of an advection-diffusion equation with source terms

shared between various disciplines. In this work, we are focused

on a FOM that describes a multicomponent reacting flow. The

PDEs can be written in matrix form:

vXu

vt
= � V$Cu � V$Du +Su; (Equation 1)

where X˛RN3Q is the thermochemical state, C˛Rd3N3Q is the

convective flux, D˛Rd3N3Q is the diffusive flux, and S˛RN3Q

are the thermochemical source terms. In a reacting flow, S are

nonlinear functions of the state variables and can be computed

explicitly from a known chemical mechanism. Here, Q is the

number of state variables (equal to the problem dimensionality),

d is the number of spatial dimensions of the problem, andN[Q

is the number of observations (equal to the number of grid

points). The magnitude ofQ depends on the number of chemical

species in the mechanism. The appropriate formulation of X, C,

D, and S depends on the problem at hand.

Data-driven model order reduction starts with changing the

basis to represent the original high-dimensional system as

per Equation 1. Let A˛RQ3q be the matrix defining the new
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Figure 1. The QoI-aware encoder-decoder dimensionality reduction strategy and its effect on the projection topology

(A) The topology of the low-dimensional projection computed at the bottleneck layer is affected by backpropagating MSEs when nonlinearly reconstructing the

relevant QoIs at the output of the decoder. The projection can be explicitly optimized for representing variables required by the ROM; we mix projection-in-

dependent variables (selected state variables, XðSÞ) and projection-dependent variables (the projected source terms, Sh). This requires an intrusive modification

to the neural network training, where at each training step, the current basis matrix, A, is extracted from the encoder, and Sh are recomputed. Here, Sh are the

projected source terms, and ~Sh is their signed square-root transformation (more information is provided in the main text).

(B) We visualize the evolution of one example 2D projection of a reacting flow dataset during neural network training. The overlap initially present in the projection

topology is minimized and eventually resolved with a sufficient amount of training. The projection also becomes more spread out in the new coordinate space,

reducing gradients in QoIs. Projections are colored by the temperature, T. h denotes the low-dimensional data projection, where hi are the individual lower-

dimensional coordinates.
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low-dimensional basis. As long as A is constant in space and

time, the PDEs presented in Equation 1 can be transformed to

that new basis:

vhu

vt
= �V$Cu

h|fflfflfflfflffl{zfflfflfflfflffl}
Advection

�V$Du
h|fflfflfflfflffl{zfflfflfflfflffl}

Diffusion

+ Su
h|{z}

Source

; (Equation 2)

where h = X$A, Ch = C$A, Dh = D$A, and Sh = S$ A. Here,

h = ½h1; h2;.; hq� is a matrix defining the low-dimensional data

projection and Sh = ½Sh;1;Sh;2;.;Sh;q� are the q projected

source terms.With this transformation, we obtain amuch smaller

set (q instead of Q) of PDEs compared with Equation 1 that need

to be solved numerically. We train a nonlinear regression model,

F, to provide the map ShzFðhÞ. At ROM simulation runtime, Sh

are reconstructed from the current location on a projection using

the trained regression model. The success of that reconstruction

depends on the topological quality of the data projection, h. The

QoI-aware encoder-decoder that we propose in this work ad-

dresses this challenge.
The QoI-aware encoder-decoder approach to
dimensionality reduction
A schematic illustration of the proposed QoI-aware encoder-

decoder approach is presented in Figure 1A. A standard AE

uses the same variables at the input and at the output. In this

work, we do not restrict ourselves to having the same output

as the input. We propose to use the independent state variables

at the input layer but use the relevant QoIs at the output layer.

The QoIs can be selected as the important state variables,
XðSÞ, such as temperature or pressure, and any other relevant

physical variables, such as density or viscosity. The QoIs can

also include any variables required to close the system of the

projected governing equations from Equation 2, e.g., the pro-

jected source terms, Sh.

We classify the QoIs as ‘‘projection dependent’’ and ‘‘projec-

tion independent.’’ The projection-dependent QoIs are the

ones whose very definition depends on the projection operator,

A. These can, for instance, be the projected source terms, Sh,

whose definition changes during training with every change to

the basis matrix, A. This is in contrast to projection-independent

QoIs such as XðSÞ; their definition remains fixed throughout

training, regardless of the projection operator.

Due to decoding QoIs that depend on a low-dimensional basis

(such as Sh), we introduce an intrusive modification to the neural

network training process. At each training step, the current ma-

trix A is extracted from the encoder (see Figure 1A) and the pro-

jection-dependent QoIs are recomputed as Sh = S$A. We

observe that the MSE loss still converges during training despite

this modification. Under ‘‘methods’’, we provide complete de-

tails on the encoder-decoder training. Figures S1 and S2 provide

insights into the MSE loss convergence when training with vs.

without projection-dependent QoIs.

We use linear activation functions in the encoder to obtain a

new basis for a straightforward projection of the governing equa-

tions (recall Equation 2). But we use nonlinear activation func-

tions in the decoder to accurately reconstruct QoIs. Building

ROMs becomes less straightforward with nonlinear manifold

learning. If the projection operator is not linear or varies in space

or time, applying it to transform the original system of PDEs
Patterns 4, 100859, November 10, 2023 3



ll
OPEN ACCESS Article
requires solving nontrivial closure problems. Thus, to the extent

possible, a linear projection is desired. We note that the projec-

tion dimensionality, q, is specified by the user. The projection

becomes optimized for the requested dimensionality q.

Evolution of one example 2D projection of a combustion data-

set during neural network training is visualized in Figure 1B. The

changing projection is colored by temperature, which is one of

the QoIs. The overlap initially present in projection topology gen-

erates significant nonuniqueness in the temperature variable and

in other important QoIs. The overlap is minimized and eventually

resolved during neural network training. The projection also be-

comes more spread out in the new low-dimensional space

defined by h1 and h2, reducing gradients in QoIs. This single illus-

trative example is representative of changes in a projection

topology that we have observed using the QoI-aware encoder-

decoder strategy on a variety of datasets.

Quantitative assessment of projection quality
The topological quality of a low-dimensional manifold can be as-

sessed using the recently proposed normalized variance deriva-

tive metric.32 The metric scans the data projection for variation in

a QoI using Gaussian kernels of different widths. Regions of high

variation in a QoI over small widths can be linked to steep gradi-

ents or nonuniqueness resulting from an overlap. The recently

proposed cost function for characterizing projection quality33

builds upon the topological metric proposed by Armstrong and

Sutherland.32 It distills the topological information to a single

number associated with a given projection and a given QoI, giv-

ing a compact quantitative measure. The mathematical formula-

tion of the normalized variance derivative metric and the cost

function can be found under ‘‘methods.’’

The cost function is extensively used in this work to assess

projections coming from the QoI-aware encoder-decoder

approach. Analysis of projection quality can be performed on

projections of any dimensionality and from the perspective of

any QoI. The cost function becomes particularly powerful when

building ROMs. We can assess how well the data projection

represents QoIs reconstructed at model runtime, such as the

projected source terms. In the remainder of this work, the cost

is referred to as L. High L comes from high variation in a QoI’s

values at very small scales on a projection. It is indicative of prob-

lems such as overlap, where data points corresponding to very

different QoI values can be projected right on top of one another.

A smaller L indicates an improved projection topology. We note

that other distance-based metrics for assessing the quality of

data projections exist in the literature,37–39 but they do not

perform the assessment from the perspective of representing

various QoIs on a data projection, which is the main focus of

this work.

Nonlinear decoding of QoIs improves projection
topologies
We first demonstrate the benefits of nonlinear decoding of QoIs

on a synthetic 2D dataset generated from a Gaussian bivariate

distribution. In Figure 2A, we visualize the synthetic dataset in

the original coordinate system defined by x and y. With the

dashed line, we mark the 1D subspace, h1, that PCA finds on

that dataset. In PCA, this subspace is found using information

about the original (state) variables, x and y, only. Such subspace
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might not be optimal for representing certain QoIs. In Figure 2B,

we color the same synthetic dataset by one example QoI, 4,

which exhibits a gradient in a direction perpendicular to the

main direction of data variation. To represent this particular

QoI, a 1D subspace that is perpendicular to the PCA subspace

would be ideal, as it would minimize nonuniqueness in repre-

senting the QoI. With the dashed line, we mark the 1D subspace,

h1, that the QoI-aware encoder-decoder finds guided by

nonlinear decoding of the QoI.

In Figure 2C, we perform cost function assessments of various

1D subspaces, h1, that are at an angle to the original x axis, using

the dataset and the QoI from Figure 2B. A smaller cost value, L4,

indicates an improved projection topology; a larger cost indi-

cates a more problematic projection that can include overlaps

generating nonuniqueness in QoIs and/or steep gradients in

QoIs. We find a distinct minimum in L4 that happens when h1
is at an approximately 135� angle to the x axis. This finding

agrees with our visualization of the QoI in Figure 2B and with

the optimized 1D subspace that the QoI-aware encoder-

decoder finds. We mark this range of the ‘‘best’’ 1D subspaces

in gray in Figure 2C. For subspaces at an angle outside of the

marked range, the cost function detects significant levels of

nonuniqueness. The noisy behavior in the graph of L4 stems

from the data scatter in the synthetic dataset. A small variation

in the angle can cause some points to suddenly overlap one

another, thereby increasing the L4 value.

Finally, we demonstrate the benefits that nonlinear decoding

provides as opposed to linear decoding. In Figure 2D, we visu-

alize the same 2D synthetic dataset colored by four new QoIs,

4, each with a different functional form (noted). The first QoI is

a function of x only. The three remaining QoIs are functions of

both x and y and thus there exists no 1D subspace that can

represent these QoIs uniquely. However, there still exists the

‘‘best’’ 1D subspace that represents a given QoI with the small-

est amount of nonuniqueness. The goal of our dimensionality

reduction strategy is to find that subspace.

In Figure 2E, we generate 1D subspaces at varying angles to

the original x axis corresponding to the cases visualized in Fig-

ure 2D. For each subspace, we compute the cost, L4, of repre-

senting a particular QoI. We measure the final MSE loss of linear

vs. nonlinear decoding of QoIs. Costs and MSE losses are visu-

alized in Figure 2E. With the red dashed line, we mark the mini-

mum L4 and the minimum MSE loss that happens for each

QoI. We note that the minima in L4 always coincide with the

minima in the MSE loss when using nonlinear decoding and

not with the minima when using linear decoding. The minima in

L4 indicate that 1D projections generate the smallest amount

of nonuniqueness in each QoI. Unsurprisingly, these 1D projec-

tions also lead to the best nonlinear reconstruction performance

in terms of the MSE. This is an expected outcome, since

nonuniqueness in a QoI cannot be overcome during training a

regression model, no matter how accurate the regression tech-

nique is otherwise.

Application to reacting flow dynamical system:
nonlinear decoding of projection-dependent outputs
We now apply our QoI-aware dimensionality reduction strategy

to reacting flow datasets representing the combustion of various

fuels in air. The training datasets are generated from numerical
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Figure 2. Nonlinear decoding of QoIs promotes improved low-dimensional data representations

(A) A synthetic 2D dataset with x and y representing the original (state) variables. With the dashed line, we mark the 1D subspace, h1, that PCA finds on that

dataset.

(B) The same synthetic 2D dataset colored by a QoI, 4. With the dashed line, we mark the 1D subspace, h1, that a QoI-aware encoder-decoder finds. This

subspace minimizes nonuniqueness in representing 4 after projection and is thus an optimal subspace for that particular QoI.

(C) Cost function,L4, assessments of 1D subspaces at an angle to the original x axis for the dataset and theQoI from (B).We achieve theminimumL4 when the 1D

subspace is at approximately 135� to the x axis, which is consistent with the visualization in (B).

(D) Various QoIs, 4, represented on the same synthetic 2D dataset. We note the exact functional form for each 4.

(E) Costs,L4, andMSEs for various 1D subspaces at an angle to the x axis corresponding to QoIs visualized in (D). We show the final MSE loss from nonlinear and

linear decoding of each of the four QoIs.With the red dashed line, wemark the global minimum inL4 orMSE. TheminimumL4 always coincides with theminimum

MSE using nonlinear decoding and not using linear decoding.
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simulations of simplified combustion models with varying stoi-

chiometric and flow conditions to cover a wide range of possible

thermochemical states of a burning flame (see ‘‘methods’’ for

more information on how the datasets were generated). In a

ROM, these states are accessed at specific locations on a low-

dimensional projection. At ROM simulation runtime, projection-

dependent QoIs are reconstructed from the current location on

a projection, e.g., using a trained regression model.

Here, the relevant QoIs are the important state variables, such

as temperature and major chemical species, XðSÞ, and the pro-

jected source terms, Sh, required by the reduced model (recall

Figure 1). For reacting flow datasets, Sh are highly nonlinear

functions of temperature, pressure, and chemical composition.

We also include a nonlinear signed square-root transformation

(see ‘‘methods’’) of the projected source terms, ~Sh, which high-

lights the importance of states Shz0, important from the phys-

ical point of view but easy to miss in a regression model due to

the highly nonlinear nature of Sh.
40

We find that including projection-dependent QoIs, Sh and ~Sh,

at the output of the decoder yields further improvements in pro-

jection topologies. This result can explain the improved ROM

performance reported in the literature.24–26 In Figure 3A, we

demonstrate this using three reacting flow datasets for the com-
bustion of hydrogen, methane, and ethylene in air. We generate

2D and 3D projections of high-dimensional thermochemical

state spaces. We highlight, however, that the projection dimen-

sionality, q, can be arbitrarily selected by the user. For each fuel

and each dimensionality, we compute 100 projections resulting

from a different random initialization of the weights in the neural

network (drawn from the Glorot uniform distribution41). We again

quantify the projection quality using the cost function. We visu-

alize probability density functions (PDFs) of averaged costs, L,

across target QoIs. Each PDF is thus computed from 100 values

of L corresponding to 100 different neural network initializations.

The PDF for each fuel is plotted with a different line style in Fig-

ure 3A. We test two scenarios for the QoIs included at the output

of the decoder: (1) selected state variables, XðSÞ, and the pro-

jected source terms, Sh and ~Sh, and (2) only the selected state

variables, XðSÞ. We note that the mean of the PDFs is generally

shifted toward smaller L when Sh and ~Sh are included at the

decoder output. For 2D projections of the 32-dimensional state

space corresponding to themost complex fuel tested, the hydro-

carbon ethylene, 91% of random initializations lead to better

projection topologies when the projected source terms are

included at the decoder output compared with when they are

not included. We have, however, encountered one combustion
Patterns 4, 100859, November 10, 2023 5
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Figure 3. Including projection-dependent QoIs at the decoder output promotes improved projection topologies across three combustion

datasets for various fuels

(A) Projection qualities are assessed using the cost function, L. PDFs of averaged L for each fuel are plotted with a different line style.

(B) Example 2D projections from different ranges in the cost function as tagged in (A). All projections are colored by the corresponding first projected source

term, Sh;1.

(C) Correlation between the cost,L, and the coefficient of determination, R2, for kernel regression reconstruction of the two projected source terms for 2D and 3D

projections from (A).
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dataset for a syngas fuel for which nonlinear decoding of Sh and
~Sh did not bring further benefits.

Since the thermochemical source terms, S, are nonlinear func-

tions of state variables, the projected source terms, Sh, are also

nonlinear functions of the state variables. Much different features

show up in Sh represented on a projection compared with the

selected state variables, XðSÞ, represented on a projection. We

hypothesize that including Sh as QoIs at the decoder output

highlights those new features during encoder-decoder training.

The projection now has to be well behaved with respect to these
6 Patterns 4, 100859, November 10, 2023
additional regions of steep variation in Sh. This promotes

resolving any remaining overlaps that state variables alone could

not resolve because they do not exhibit much variation across

certain regions on a projection. We highlight that, also in this

context, the projection-dependent QoIs are distinctly different

from other, projection-independent, variables.

In Figure 3B, we visualize representative 2D projections com-

ing from different ranges in the cost function’s PDF for each fuel.

The best projections formed when including Sh and ~Sh at the

decoder output are characterized by minimized overlaps and a
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more spread-out topology. The offset in the PDFs between

cases of including vs. not including Sh and ~Sh is enough to

resolve significant overlaps on a projection. Finally, we note

that there is no guarantee that the basis obtained with the QoI-

aware encoder-decoder approach is orthogonal (unlike, e.g., in

PCA). We have observed, however, that many of the best projec-

tions are associated with nearly orthogonal bases. This indicates

that the encoder-decoder dimensionality reduction strategy can

be successfully coupled with an orthogonality constraint42,43 in

future research.

A good-quality low-dimensional system representation facili-

tates building models on top of a projection. In Figure 3C, we

quantify the benefits that improved low-dimensional projections

bring in ROMs. We build nonlinear kernel regression models for

the projected source terms, Sh, on top of 2D and 3D projections

computed in Figure 3A (more information on the kernel regres-

sion model is provided under ‘‘methods’’). We visualize the cor-

relation between the coefficient of determination, R2, and the

cost function assessment for each individual Sh;i. For 2D projec-

tions, there are two projection-dependent variables, Sh;1 and

Sh;2, and for 3D projections, there are three: Sh;1, Sh;2, and Sh;3.

We compare two scenarios where we include or do not include

projection-dependent QoIs at the decoder output. We note

that, generally, regression models perform better at reconstruct-

ing the highly nonlinear projected source terms when improved

projections are used as regressors. Cases corresponding to

including Sh and ~Sh at the decoder output tend to be clustered

in the region of lowestL and highestR2. This result is of particular

relevance in systems without advection and diffusion, where the

problem dynamics is evolved solely based on the reconstructed

projected source terms (see Equation 2). We are now going to

look further into one such system.

The effect of projection topology in reduced-order
modeling
We solve a simplified system of an adiabatic, incompressible, 0D

reactor. All spatial derivatives vanish for a 0D reactor, and the

FOM from Equation 1 simplifies to:

dXu

dt
= Su : (Equation 3)

This set of ordinary differential equations (ODEs) is closed by

appropriate initial conditions (ICs), Xðt = 0Þ. We can project

Equation 3 onto a lower-dimensional basis, A:

dhu

dt
= Su

h ; (Equation 4)

similar to what was done in Equation 2. We formulate a deep

neural network (DNN) regression model, F, to predict Sh from

the low-dimensional projection, h, at the current time step.

More details on the DNNmodel are presented under ‘‘methods.’’

The ODEs solved by the numerical solver are effectively:

dhu

dt
= FðhÞu : (Equation 5)

Evolving q-dimensional parameters is thus described by a set

of q ODEs. The transport equations for the low-dimensional pa-

rameters are a set of coupled ODEs; the model used for predict-
ing each Sh;i is a function of all low-dimensional parameters, h.

We use scipy.odeint for numeric integration of the system

of ODEs.44

We generate training data by solving Equation 3 for a variety of

ICs that specify different initial stoichiometries in the reactor.

Temporal trajectories that form the dataset are visualized in Fig-

ure 4A. The mixture initially present in the reactor autoignites

within a few milliseconds and shortly then reaches chemical

equilibrium (whichwe denote as the steady state, SS). By varying

the IC, we cover a wide range of thermochemical states, which

helps broaden the training manifold.

Dimensionality reduction techniques that are indifferent to

projection topology can severely affect the ROM. For example,

overlapping regions on a projection can cause unphysical

behavior at simulation runtime, e.g., prematurely move the

solution toward the steady state or push the solution outside

of the training manifold. This is conceptually demonstrated in

Figures 4B and 4C, where we numerically transport a single tra-

jectory in time according to Equation 5 over an overlapping re-

gion on a 2D projection of a combustion dataset. This particular

data projection visualized in Figure 4B is generatedwith PCA and

thus without incorporating information about the relevant projec-

tion-dependent QoIs.With the black dashed line in Figure 4C, we

show the true trajectory that the dynamical system with a given

IC should follow. With the blue solid line, we show the path

that the ROM takes. In the gray background in Figure 4C, we

visualize the 2D projection used for training the DNN regression

model. We note that the projection exhibits significant overlap

between the nearly horizontal (lighter shade of gray) and the

nearly vertical (darker shade of gray) training trajectories. When

the ROM solution enters the overlapping region, it is being incor-

rectly deflected away from the true solution, influenced by

the nonunique values of the projected source terms, Sh. In the

zoomed-in box, we show how the ROM solution snaps to the

overlapping vertical trajectories on the projection instead of

following the trajectories lying underneath. From that point on,

the solution continues in a diverging direction. This behavior

can lead to large errors in reconstructing physical variables

from the transported trajectory. It can also move the ROM

solution past the termination point at steady state, causing un-

physical results when the simulation ventures into an undefined

region of a low-dimensional space.

For comparison, we generate an improved-quality 2D projec-

tion of the dataset from Figure 4A using the QoI-aware encoder-

decoder. The improved, unique projection is visualized in

Figure 4D. In Figure 4E, we show the behavior of the ROM

when the improved projection topology is used. We observe

that the selected temporal trajectory maintains the correct path

along the projection. In Figure 4F, we visualize the predictive

performance of a poor ROM vs. an improved ROM. We train a

separate DNN model, FX , to predict the thermochemical state

variables, X, from the low-dimensional projection, h. More de-

tails on the DNN model are presented under ‘‘methods.’’ In Fig-

ure 4F, we predict the formation of one of the main combustion

products, H2O, during autoignition from the numerically evolved

ROMs corresponding to using the projection with overlap from

Figure 4B vs. using the improved, unique projection from Fig-

ure 4D. We note that a significant error is incurred in predicting

the H2O profile when the ROM is forced to traverse the
Patterns 4, 100859, November 10, 2023 7
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Figure 4. The effect of projection topology on a reduced-order model

(A) Dataset generated from the full-order model (FOM) representing autoignition in a 0D reactor. Different temporal trajectories correspond to different initial

stoichiometries in the reactor. ‘‘IC’’ denotes initial condition, and ‘‘SS’’ denotes steady state.

(B) 2D projection of the 0D reactor dataset from (A) computed by PCA. This projection exhibits significant overlap affecting temporal trajectories in the vicinity of IC

and SS. The projection is colored by the first projected source term, Sh;1.

(C) Behavior of a single time trajectory solved by a ROM when the projection exhibits overlap. The training manifold is visualized as the gray background. In the

zoomed-in box, we show how the time trajectory of a ROM snaps to the nearly vertical training trajectories once it reaches the region of overlap. From that point

on, the ROM continues in a direction diverging from the true transport direction.

(D) An improved 2D projection of the 0D reactor dataset computed using the QoI-aware encoder-decoder. The projection is colored by the first projected source

term, Sh;1.

(E) Behavior of a single time trajectory solved by a ROM using the improved projection. The selected trajectory, evolved using a ROM, follows the true path.

(F) Prediction of H2O formation during autoignition from the numerically evolved ROMs corresponding to using the projection with overlap from (B) vs. using the

improved, unique projection from (D).
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nonunique projection. Conversely, we obtain an excellent pre-

diction of the H2O profile using the ROM solved for the improved

projection. While in this work we build separate DNN models, F

and FX , we note that one could use the already trained decoder

to reconstruct Sh at ROM runtime and to predict the most impor-

tant state variables, XðSÞ.
Finally, we note that a steep gradient in a QoI can also be diffi-

cult to model with nonlinear regression. Not every available

regression technique is able to adapt to rapid changes in a re-

gressed variable. Steep gradients can occur in a model due to

the large compression of certain regions of a projection in a sub-

optimal dimensionality reduction. It can also occur for highly

nonlinear QoIs whose large absolute values are present only

on small portions of a projection. In the context of reacting flows,

which exhibit a highly multiscale structure, these QoIs can, for

example, be minor species, present only in a small region of a

projection associated with their formation and short lifetime.45

In the autoignition problem tackled here, mispredictions of steep

gradients in the projected source terms near the IC can cause

mispredictions of the ignition time (recall Figure 4A). The error

from a regression model incurred at the start of the simulation

propagates throughout the entire transported trajectory. The

simulation originating from the IC mispredicts the ignition time

in a reactor due to a poor prediction of Sh at the start of the simu-

lation. What follows is a shift along the time domain in the a pos-

teriori reconstruction of the thermochemical state variables.
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DISCUSSION

We argue that if nonlinear regression models are required in the

downstream use of reduced-order modeling, we may want to

pay attention to aspects such as reducing nonuniqueness and

smoothing out gradients in QoIs on a low-dimensional data pro-

jection. We demonstrate that a dimensionality reduction strategy

that uses nonlinear decoding of QoIs to inform the low-dimen-

sional projection can enhance ROMs across various disciplines.

Improved projection topologies naturally emerge during training

of the proposed QoI-aware encoder-decoder. We show the ben-

efits of including projection-dependent QoIs, in addition to pro-

jection-independent QoIs, at the output of a decoder. Our results

are relevant to many scientific and engineering disciplines that

construct ROMs.46–50 Our findings can also be applicable in

the broader field of representation learning.4,51–55

We now discuss the bigger picture of the current trends in

reduced-order modeling and latent space data representations

for understanding and modeling high-dimensional datasets.

Latent space data representations are abundantly used, e.g.,

in fluid dynamics, atmospheric physics, climate science, compu-

tational neuroscience, or single-cell omics.We foresee a number

of potential multidisciplinary applications for the QoI-aware

encoder-decoder approach proposed in this work. Below, we

provide avenues for future work where the QoI-aware dimen-

sionality reduction strategy can become useful.
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Dimensionality reduction for categorical data
Future research can focus on incorporating class label informa-

tion as the relevant QoI for categorical datasets to improve data

projections and reduce class overlap. This idea falls within the

family of supervised dimensionality reduction56–58 and can be

used for efficient data visualization3,58–60 given user-defined la-

bels. For datasets where class labels exhibit a hierarchical,

multiscale structure, such as single-cell data,61,62 the exact

label values become meaningful when training the QoI-aware

encoder-decoder. For example, during training that uses the

MSE loss, there is a larger penalty for placing classes ‘‘1’’ and

‘‘9’’ close to each other in the latent space compared

with placing classes ‘‘1’’ and ‘‘2’’ close to each other (because

1=n
Pn

i = 1ð1 � 9Þ2 > 1=n
Pn

i = 1ð1 � 2Þ2 for n overlapping sam-

ples). Therefore, providing a meaningful class hierarchy at the

decoder output can promote projections where that hierarchy

is preserved in the latent space. It is also expected that the

QoI-aware strategy will minimize class overlap in the latent

space by penalizing nonuniqueness in representing a QoI.

From dimensionality reduction to manifold learning
using nonlinear encoders
In this work, we focus entirely on linear data projections. While

linear dimensionality reduction may be sufficient for some clas-

ses of problems,58,63 future research can also explore a fully

nonlinear QoI-aware encoder-decoder. This can be achieved

by using nonlinear activation, a deep architecture in the encoder,

and possibly other constraints.42 Nonlinear encoding can have

applications in efficient data visualization and hypothesis gener-

ation based on latent space representations.64,65 Nonlinear data

transformations to latent space are still underdeveloped for

building ROMsdue to challenges in formulating closure for trans-

formed PDEs, although models for simple dynamical systems

have recently been formulated.66

Toward reduced-order model adaptivity
Model adaptivity has been noted as a desired characteristic that

ROMs should possess.67 This might mean, in practice, being

able to increase prediction accuracy in a region or for a variable

of interest, even with the trade-off of losing accuracy in a region

(or for a variable) where high accuracy is not required. A

commonly invoked characteristic of data-driven ROMs that

steers the model accuracy is the projection dimensionality (or,

equivalently, the number of transported low-dimensional param-

eters, q). In PCA, this is a straightforward parameter to use, since

principal components are ordered; increasing q will always

improve the linear reconstruction errors of the original state vari-

ables. However, when both state variables and other dependent

variables (such as the projected source terms) are to be nonli-

nearly regressed based on the q low-dimensional parameters,

the quality of the parameterization becomes another important

factor.

Strategies for improving projection quality developed in this

work can be utilized in the context of model adaptivity. For

example, we can target a good reconstruction of specific state

variables by calibrating the projection topology directly from

the perspective of that variable.Moreover, the recently proposed

metrics for assessing the quality of data projections32,33 allow us

to perform assessments of isolated regions of the projection.
This can, for instance, include regions corresponding to certain

important physical phenomena that we would like to capture

particularly well in a ROM. In the context of reacting flows, these

regions can include ignition, extinction, or reaction zones and

can be isolated with data clustering techniques.68 We can then

focus on improving those local regions on a projection, for

example, by reducing overlap, data compression, or curvature.

In the context of model adaptivity, we may also be willing to sac-

rifice the orthogonality of a low-dimensional basis in favor of an

improved projection topology.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Kamila Zdyba1 (kamila.zdybal@gmail.com).

Materials availability

This study did not generate new unique reagents or materials.

Data and code availability

Original code has been deposited at https://github.com/kamilazdybal/

nonlinear-decoding and is publicly available as of the date of publication. Da-

tasets from numerical simulations of reacting flow for various fuels are avail-

able in the same public repository. Code and datasets are archived on Zenodo:

https://doi.org/10.5281/zenodo.8319055.69 To enable researchers to apply

the QoI-aware encoder-decoder approach to their own datasets, we have im-

plemented all of the relevant functionalities in our open-source Python library,

PCAfold.70,71 The user can easily implement the QoI-aware encoder-decoder

by instantiating an object of the QoIAwareProjection class from the

utilitiesmodule. The PCAfold library is required to reproduce our results.

More information can be found in the documentation: https://pcafold.

readthedocs.io. Figures presented in this paper use sequential color maps de-

signed by Crameri et al.72 The neural network schematic in Figure 1A was

drawn using the NN-SVG tool.73
Methods

Reacting flow datasets

Reacting flow datasets used in this work were generated using the Spitfire Py-

thon library.74 We numerically solved the steady laminar flamelet model,75

which provides a simplified description of a reacting flow system. The steady

laminar flamelet model allows for varying the mixture stoichiometry, f, and the

strain rate, c, imposed on the flow conditions. Themixture stoichiometry spec-

ifies the ratio at which the fuel and oxidizer are mixed. The strain rate mimics

the effect that turbulence has in a chemically reacting flow. For example, a

large strain acts to extinguish the flame. By varying the twomodel parameters,

f and c, we are able to cover awide range of possible thermochemical states of

a burning flame, from equilibrium toward steady extinction and from a pure

oxidizer stream toward a pure fuel stream. Those states are collected into a

state-space matrix, X˛RðN3QÞ, defined as:

X =

2
4 « « « «
T Y1 Y2 . Yns � 1

« « « «

3
5; (Equation 6)

where T is temperature and Yi is a mass fraction of the ith chemical species.

Only ns � 1 chemical species are included in the matrix, since mass fractions

satisfy the relationship
Pns

i = 1Yi = 1. Thus, of ns chemical species mass frac-

tions, only ns � 1 are independent. The correspondingmatrix of thermochem-

ical source terms, S˛RðN3QÞ, is defined as:

S =

2
6664

« « « «

� 1

rcp

Xns

i = 1
hiui

u1

r

u2

r
.

uns � 1

r

« « « «

3
7775; (Equation 7)
Patterns 4, 100859, November 10, 2023 9

mailto:kamila.zdybal@gmail.com
https://github.com/kamilazdybal/nonlinear-decoding
https://github.com/kamilazdybal/nonlinear-decoding
https://doi.org/10.5281/zenodo.8319055
https://pcafold.readthedocs.io
https://pcafold.readthedocs.io


ll
OPEN ACCESS Article
where r is mixture density, cp is mixture specific heat capacity, hi is the

enthalpy of species i, and ui is the net mass production rate of species i.

Matrices X and S are high dimensional. Below, we note the sizes of those

matrices for each dataset:

d hydrogen/air: N = 58; 101 and Q = 9;

d methane/air: N = 54; 000 and Q = 52;

d ethylene/air: N = 60;000 and Q = 32.

The number N denotes the number of observations in a dataset and can be

thought of as the number of grid points. In a steady laminar flamelet model, the

grid points are not related to physical space. Instead, each observation can be

linked to a specific stoichiometry and a specific strain rate, the twomodel vari-

ables that act as proxies for a spatial location in a turbulent reacting flow. The

number Q denotes system dimensionality.

In Figure 4, we use a 0D reactor dataset also generated using the SpitfirePy-

thon library.74 The structure of the state space matrix is the same as in Equa-

tion 6 and the structure of the thermochemical source termsmatrix is the same

as in Equation 7. We use the combustion of syngas in air. The dataset hasN =

68; 140 and Q = 11.

Training the QoI-aware encoder-decoder

Here, we provide details on how the QoI-aware encoder-decoder neural

network was built and trained on the datasets presented in the main text.

We used the Keras Python library76 to set up the DNN architecture. We used

the Adam optimizer with an initial learning rate of 0.001 and an MSE loss func-

tion.We used a linear activation function in the encoder and hyperbolic tangent

activation functions in the decoder. The only exception was for generating re-

sults from Figure 2E, where linear decoding was accomplished by using a

linear activation function in the entire encoder-decoder. The weights were

initialized in the neural network using the Glorot uniform distribution41 and

the biases were initialized to zeros. The inputs to the neural network were

scaled to a C0; 1D range.77 The outputs of the neural network were always

scaled to a C� 1; 1D range tomatch the hyperbolic tangent output range. For re-

sults reproducibility, we used fixed random seeds for network initialization. The

exact values for random seeds can be retrieved from the code that we provide

in the public GitHub repository.

We did not train using mini-batches, following the premise that at any given

time during training we should be evaluating the MSE loss from the entire data

projection and not from small samples (batches) of it. Evaluating predictions

from a sampled projection can miss the severity of nonuniqueness or can

underresolve steep gradients in a QoI. We have observed that training on small

batches of data instead of a full dataset at once can lead to suboptimal projec-

tions. We thus used the entire 90%of the data observations (N) at each training

step. The remaining 10% was used as validation data. For reacting flow data-

sets, we trained the network for 20,000 epochs. For a much simpler synthetic

dataset in Figure 2 we used 1,000 epochs. The optimized basis matrix, A, was

retrieved once the MSE loss reached convergence, and it always corre-

sponded to the epoch at which the MSE loss was smallest. This follows

from the argument that if the projection topology is well behaved, nonlinear

regression performed by the decoder should lead to small reconstruction er-

rors. The basis matrix was the weights from the encoding layer, normalized

to yield unit length. The basis matrix had q columns that denoted projection

dimensionality (or, equivalently, the number of neurons in the bottleneck layer).

For 2D projections, we used the following network architectures for each

dataset:

d hydrogen/air: 9-2-6-9-10-10;

d methane/air: 52-2-6-9-10-10;

d ethylene/air: 32-2-6-9-10-10.

For 3D projections, we used the following network architectures for each

dataset:

d hydrogen/air: 9-3-7-10-11-12;

d methane/air: 52-3-7-10-11-12;

d ethylene/air: 32-3-7-10-11-12.

These were the architectures when the projection-dependent QoIs were

included at the decoder output. When projection-dependent QoIs were not
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included at the decoder output, only the number of neurons at the last decod-

ing layer changed, and we used the same interior architecture.

The signed square-root transformation of each individual projected source

term, Sh;i, was computed as per Armstrong40 in the following way:

~Sh;i = sign
�
Sh;i + 10� 4

�
$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��Sh;i+10� 4
��q
: (Equation 8)

This is a way of stretching values Sh;iz0, maintaining sign changes,

and reducing the overall variation in the projected source terms. We call
~Sh = ½ ~Sh;1; ~Sh;2;.; ~Sh;q�.
Cost function evaluations

The recently proposed normalized variance metric can be used to assess the

quality of a low-dimensional manifold.32 The data projection was first scaled to

a unit box such that each hi ˛ C0; 1D. Next, the projection was scanned at length

scales given by s˛ Csmin;smaxD, for any variation in a QoI’s values. The normal-

ized variance, N ðsÞ, was computed for a single QoI, 4, as:

N ðsÞ =

PN
k = 1ð4k � K4ðhk ; sÞÞ2PN

k = 1ð4k � 4Þ2 ; (Equation 9)

where N is the number of observations in a dataset, 4 is an arithmetic average

of 4, and K is a weighted average of observations of 4 computed as:

K4ðh; sÞ =

PN
j = 1wj4jPN
j = 1wj

; (Equation 10)

where the weights, wj , are determined using a Gaussian kernel. We then

computed a derivative of N ðsÞ as per Armstrong and Sutherland32:

DðsÞ =
dN ðsÞ

dlog10ðsÞ
+ lim

s/0
N ðsÞ; (Equation 11)

and normalized it by its maximum value:

bDðsÞ =
DðsÞ

maxðDðsÞÞ : (Equation 12)

The normalized variance derivative, bDðsÞ, provides a graph for each as-

sessed QoI that can be analyzed visually. We took it one step further and

turned this graph into a single number that provides a ‘‘cost’’ of representing

a QoI on a projection. The cost function for low-dimensional manifold topology

assessment33 is therefore defined as:

L4 =

Z ~smax

~smin

Pðs; speakÞ$ bDðsÞd~s; (Equation 13)

where Pðs;speakÞ is the penalty function defined as:

Pðs; speakÞ =
��~s � ~speak

��r + b$
~smax � ~smin

~speak � ~smin

; (Equation 14)

and speak is the length scale that determines the largest-scale variation of a QoI

on a projection. Tilde over s denotes a log-transformed quantity. We per-

formed log transformation of length scales to give equal importance to scales

that were orders of magnitude smaller than the characteristic length scale of

the projection. Throughout this work, we performed assessments of projection

quality taking s˛ C10� 7; 103D in order to span a wide range of length scales at

which a QoI could vary on a (normalized) projection.

The cost function has two hyperparameters, as seen in Equation 14: power,

r, and vertical shift, b. Increasing the power allows for a higher penalty for pro-

jections that exhibit nonuniqueness, while increasing the vertical shift allows

for a higher penalty for projections that exhibit steep gradients. Steep gradi-

ents in a QoI can be modeled with a well-trained regression model, but

nonuniqueness cannot be overcome even with the best regression models

available in the research community. We thus used power r = 4 and vertical

shift b = 1 to better discriminate between unique and nonunique projections

while maintaining a moderate penalty for small feature sizes in QoIs.

The averaged cost value as reported in Figure 3 was computed as the root-

mean-squared norm over the individual costs for the relevant QoIs. The
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relevant QoIs taken for each fuel included temperature; mass fractions of ma-

jor chemical species (fuel, oxidizer, and major combustion products) and

selectedminor chemical species; the projected thermochemical source terms,

Sh; and the nonlinearly transformed projected source terms. For each fuel,

these relevant QoIs were the same as variables included at the output of a

decoder. For 2D projections, there were 10 QoIs, and for 3D projections, there

were 12 QoIs.

Kernel regression model

In Figure 3C, we used Nadaraya-Watson kernel regression to predict the pro-

jected source terms, Sh, from the 2D and 3D low-dimensional projections. Pre-

dictions were made as a weighted average of the neighboring observations.

Weights were established using a Gaussian kernel with an isotropic bandwidth.

The bandwidth was adapted locally based on the 100 nearest neighbors.

Deep neural network model for Sh

In Figures 4B–4E, a DNN was trained as a regression model, F, to close the

system of projected PDEs in Equation 5. Here, we provide details on how

this model was set up. We used a DNN with a 2-5-10-15-10-5-2 architecture

and hyperbolic tangent activation functions. We used the Adam optimizer

with an MSE loss and a learning rate of 0.001. We trained the model for

1,500 epochs. The weights were initialized in the neural network using the

Glorot uniform distribution,41 and the biases were initialized to zeros. The input

to the neural network was the data projection, h, scaled to a C�1; 1D range. The
outputs of the neural network were the projected source terms, Sh, scaled to a

C�1; 1D range to match the hyperbolic tangent output range. For results repro-

ducibility, we used a fixed random seed of 100 for network initialization.

Deep neural network model for X

In Figure 4F, a separate DNNwas trained as a regression model, FX , to predict

the thermochemical state variables from the evolved ROM solution. Here, we

provide details on how this model was set up. We used a DNN with a 2-5-10-

10-10-11 architecture. We used hyperbolic tangent activation functions in the

first three layers and sigmoid activation functions in the last two layers. We

used the Adam optimizer with an MSE loss and a learning rate of 0.001. We

trained the model for 1,500 epochs. The weights were initialized in the neural

network using the Glorot uniform distribution,41 and the biases were initialized

to zeros. The input to the neural network was the data projection, h, scaled to a

C�1; 1D range. The outputs of the neural network were the thermochemical

state variables, X, scaled to a C0; 1D range to match the sigmoid output range.

For results reproducibility, we used a fixed random seed of 100 for network

initialization.
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