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Abstract
In this paper, a new heuristic scheme for the approximate solution of the generalized

Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-

function method with nature inspired algorithm. The given nonlinear partial differential equa-

tion (NPDE) through substitution is converted into a nonlinear ordinary differential equation

(NODE). The travelling wave solution is approximated by the Exp-function method with un-

known parameters. The unknown parameters are estimated by transforming the NODE into

an equivalent global error minimization problem by using a fitness function. The popular ge-

netic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown

parameters. The proposed scheme is successfully implemented to solve the generalized

Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and

the solutions obtained using some traditional methods, including adomian decomposition

method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic

method (OHAM), show that the suggested scheme is fairly accurate and viable for solving

such problems.

Introduction
Most physical phenomena arising in various fields of engineering and science are modeled by
nonlinear partial differential equations (NPDEs). The investigation of solutions to NPDEs has
attracted much attention due to their potential applications and many numerical schemes have
been proposed, see for example [1–4]. The generalized Burgers0-Fisher equation is one of the
important NPDE which appears in various applications, such as fluid dynamics, shock wave
formation, turbulence, heat conduction, traffic flow, gas dynamics, sound waves in viscous me-
dium, and some other fields of applied science [5–10].

The generalized Burgers0-Fisher equation is of the form [10–12]

ut þ audux � uxx ¼ buð1� udÞ 8x 2 ð0; 1Þ; t � 0 ð1Þ
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subject to the following initial condition

uðx; 0Þ ¼ 1

2
þ 1

2
tanh

�ad
2ðdþ 1Þ x
� �� �1

d

ð2Þ

The exact solution is given by [10–12]

uexactðx; tÞ ¼
1

2
þ 1

2
tanh

�ad
2ðdþ 1Þ x � a

dþ 1
þ bðdþ 1Þ

a

� �
t

� �� �� �1
d

ð3Þ

Many researchers have investigated the analytical and numerical solutions of the general-
ized Burgers0-Fisher Equation (1) by using several different methods [8–17]. For example, Is-
mail et al. [11] used adomian decomposition method (ADM), Rashidi et al. [12] employed
homotopy perturbation method (HPM), Nawaz et al. [10]applied optimal homotopy asymp-
totic method (OHAM),for obtaining approximate solutions of the generalized Burgers0-Fisher
Equation (1). Very recently Mittal and Tripathi [8] employed modified cubic B-spline func-
tions for the numerical solution of generalized Burgers0-Fisherand Burgers0-Huxley equations.
Khattak [13] used collocation based radial base functions method (CBRBF) for numerical solu-
tion of the generalized Burgers0-Fisher equation. Javidi [14] used modified pseudospectral
method for generalized Burgers0-Fisher equation.

The Exp-function method was introduced recently by He and Wu [18] to obtain the gener-
alized solitonary solutions and periodic solutions of nonlinear wave equations. The method
has attracted much attention due to its simple and straightforward implementation and many
authors used it [19–24]. Among many authors, Xu and Xian [19] used Exp-function method
for obtaining the solitary wave solutions for generalized Burgers0-Fisher equation. Özişand
Köroğlu[20] used Exp-function method for obtaining travelling wave solutions of the Fisher
equation. Chun[21] used Exp-function method for solving Burgers0-Huxley equation.

In recent years, many authors have used heuristic computation based techniques for solving
variety of differential equations [25–35]. Very recently Malik et al. [25,26]used nature inspired
computation based approach for solving systems of nonlinear ordinary differential equations
(NODEs), including biochemical reaction model [25], and boundary value problems arising in
physiology [26]. Khan et al.[27] used evolutionary computation (EC) based artificial neural
network (ANN)method for solving van der pol oscillator equation. Arqab et al. [28] used ge-
netic algorithm (GA) based method for solving linear and nonlinear ODEs. Caetano et al. [29]
used the ANN based method for solving NODEs arising in atomic and molecular physics.

The aim of this work is to obtain the approximate solution of the generalized Burgers0-
Fisher equation using a novel scheme. The scheme is based on the elegant hybrid approach of
Exp-function method and evolutionary algorithm (EA). In the proposed scheme the Exp-
function method is used to express the approximate wave solution with unknown parameters.
The given NPDE is converted into a global error minimization problem using a fitness function
with unknown parameters. Genetic algorithm (GA), one of the renowned evolutionary algo-
rithms is adopted for solving the minimization problem and to achieve the unknown
parameters.

To the best of our knowledge nobody as yet has tackled with the generalized Burgers0-Fisher
equation with the scheme presented in this work. The proposed scheme is simple and straight-
forward to implement and also gives the approximate solution at any value of choice in the so-
lution domain. The efficiency and reliability of the proposed scheme is illustrated by solving
generalized Burgers0-Fisher and Burgers0 equations successfully.

Hybridization of Exp-Function Method and EA for Solving B-F Equation
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Materials and Methods
In this section, stochastic global search algorithm GA is introduced, the basic idea of Exp-
function method is given, and description of the proposed scheme is provided.

Genetic algorithm (GA)
Genetic algorithm (GA) is one of the well-known evolutionary algorithms (EAs) that find the
optimal solution of a problem from a randomly generated population of individuals called
chromosome. Each individual within a population is regarded as a possible solution to the
problem. The individuals within a population are evaluated using a fitness function that is spe-
cific to the problem at hand. The algorithm evolves population iteratively by means of three
primary operations: selection, crossover, and mutation to reach the optimal solution [36].

The procedural steps of GA are given in algorithm 1, while the parameters settings of the al-
gorithm used in this work are given in Table 1.

Algorithm 1.
Step 1: (Population Initialization)
A population of N individuals or chromosomes (C1, C2, . . ..,CN) each of length M is gener-

ated using random number generator. The length of each chromosome represents the number
of unknown parameters.

Step 2: (Fitness Evaluation)
A problem exclusive fitness function is used to compute the fitness of each chromosome.
Step 3: (Selection and Reproduction)
The chromosomes from the current population are chosen on the basis of their fitness value

which acts as parents for new generation. These parents produce children (offsprings) with a
probability to their fitness through crossover operation.

Step 4: Mutation
Mutation operation introduces random alterations in the genes to maintain the genetic di-

versity to find a good solution.
Step 5: (Stoppage Criteria)
The algorithm terminates if the maximum number of cycles has exceeded or a predefined

fitness value is achieved. Else go to step 3.

Table 1. Parameter settings and values for GA.

Parameter Name Setting/Value

Example 1 Example 2

Population size [310 310] [310 310]

Chromosome size 12 12

Scaling function Rank Proportional

Selection function Stochastic uniform Stochastic uniform

Mutation function Adaptive feasible Adaptive feasible

Crossover function Heuristic Heuristic

Crossover fraction 0.8 0.9

No. of generations 1000 1000

Function tolerance 1e-18 1e-18

Bounds -10, +10 -10, +10

doi:10.1371/journal.pone.0121728.t001
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Overview of Exp-function method
Consider a nonlinear partial differential equation (NPDE) given in the following form

Nðu; ux; ut; uxx; utt; uxtÞ ¼ 0 ð4Þ

Using a transformation, u(x,t) = u(η) with η defined as follows

Z ¼ kx þ ot ð5Þ

Equation (4) is converted into a following ODE

Pðu; ku0;ou0; k2u″; ::::Þ ¼ 0 ð6Þ
where k and ω are unknown constants, and prime denotes derivation with respect to η.

According to Exp-function method [18], the solution of (6) is expressed in the following
form

uðZÞ ¼
Xd

n¼�c
anexpðnZÞXq

m¼�p
bmexpðmZÞ

¼ a�cexpð�cZÞ þ :::::::: þ adexpðdZÞ
b�pexpð�pZÞ þ :::::::: þ bqexpðqZÞ

ð7Þ

where c, d, p, and q are unknown positive integers, an and bm are unknown constants.
The values of c and p are determined by balancing the linear term of highest order in (6)

with the highest order nonlinear term, which gives p = c[18, 37]. Similarly the values of d and q
are determined by balancing the lowest order of linear and nonlinear terms in (6), which yields
q = d[18, 37]. Once c, d, p, q are determined their values are freely chosen [18]. Next the un-
known constants an and bm are determined by substituting (7) into (6) and equating the coeffi-
cients of exp(nη) to zero, which results into a set of algebraic equations with unknown
constants. The systems of algebraic equations are solved using some software package like
Matlab, Maple or Mathematica for determining the unknown constants an and bm, Conse-
quently the solution of NPDE (4) is obtained.

Description of the proposed scheme
We consider the NPDE given by (4) subject to the following initial condition

uðx; 0Þ ¼ f ðxÞ ð8Þ

Apply the transformation variable η = kx + ωt to (4) yields NODE given by (6). We assume
that the approximate solution of (6) is expressed in the following form in view of the Exp-
function method [18].

u_ðZÞ ¼ a�cexpð�cZÞ þ :::::::: þ adexpðdZÞ
b�cexpð�cZÞ þ :::::::: þ bdexpðdZÞ

ð9Þ

As mentioned above the values of c and d can be feely chosen, therefore we accordingly set
their values. The rest of the unknown parameters existing in (9) including (a-c,. . .,ad;b-c,. . .,bd;
k,ω) need to be found to obtain the approximate solution of (6). To determine the values of
these unknown parameters, the transformed NODE (6) along with the initial condition (8) is
converted into an equivalent global error minimization problem by developing a trial solution
using a fitness function (FF). The fitness function (FF) consists of the sum of two parts. The
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first part represents the mean of sum of the square errors associated with the transformed
NODE (6), and the second part represents the mean of sum of the square errors associated
with the initial condition (8), which are given respectively as follows

"1 ¼
1

N � S

XN
i¼1

XS

j¼1

ðPðu_ðkxj þ otiÞ; ku_ 0ðkxj þ otiÞ; k2u_″ðkxj þ otiÞ; :::ÞÞ
2

ð10Þ

"2 ¼
1

S

XS

j¼1

ðu_ðxj; 0Þ � f ðxjÞÞ2 ð11Þ

where N and S are the total number of steps taken in the solution domain of x and t, and u_, u_ 0,
u_″ are given by (9) and its derivates respectively.

The FF which is denoted as "j is accordingly formulated as follows

"j ¼ "1 þ "2 ð12Þ

where j is the generation index.
The error minimization problem given by (12) is solved using the application of evolution-

ary algorithm, such as GA, to find the optimal values of unknown parameters (a-c,. . ..ad;b-c,. . .,
bd;k,ω). Once the values of the unknown parameters are achieved, they are used in (9), which
consequently provides the approximate numerical solution of the given NPDE.

Numerical approximation of generalized Burgers0-Fisher equation
To solve the generalized Burgers0-Fisher Equation (1) using the proposed scheme, we first
apply the transformation variable η = kx + ωt which yield the following NODE

ou0 þ audku0 � k2u″ ¼ buð1�udÞ ð13Þ

Assume the approximate solution of (13) is given by (9) in the view of the Exp-function
method [18]. To determine the unknown parameters (a-c,. . .,ad;b-c,. . .,bd;k,ω) in (9) for obtain-
ing the approximate solution, the FF is formulated as follows (14)—(16)

"1 ¼
1

ðN � SÞ
XN
i¼1

XS

j¼1

ou0ðkxj þ otiÞ þ audðkxj þ otiÞku0ðkxj þ otiÞ
�k2u″ðkxj þ otiÞ � buðkxj þ otiÞð1� udðkxj þ otiÞÞ

 !2

ð14Þ

"2 ¼
1

S

XS

j¼1

uðxj; 0Þ �
1

2
þ 1

2
tanh � ad

2ðdþ 1Þ xj
� �� �1

d

 !2

ð15Þ

"j ¼ "1 þ "2 ð16Þ

The FF given by (16) contains unknown parameters in the form of a chromosome for GA.
The objective is to solve the global error minimization problem given by Equation (16) and to
achieve the optimal chromosome which represents the values of unknown parameters. Conse-
quently the approximate solution u_ðZÞ of the generalized Burgers0-Fisher equation is obtained
using the values of the unknown parameters in (9).

Hybridization of Exp-Function Method and EA for Solving B-F Equation
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Convergence of the Proposed Scheme
Let the exact solution be g(η). By Exp-function method we get the solution u(η) as follows

uðZÞ ¼ a�cexpð�cZÞ þ :::::::: þ adexpðdZÞ
b�cexpð�cZÞ þ :::::::: þ bdexpðdZÞ

ð17Þ

This is a continuous function on a compact set. We apply Stone-Weierstrass theorem to
prove that for any given g(η) on U and arbitrary ε> 0, there exists a system like u(η) as given
above such that

sup
��U u �ð Þ � g �ð Þj j < " ð18Þ

That is u(η)can be a universal approximator. For this three conditions given in Stone-
Weierstrass theorem have to be satisfied.

Let Z be a set of real continuous functions like u(η) on a compact set U.
Condition 1: All these must be closed under addition, multiplication, and

scalar multiplication.
As we can see that addition (u1(η) + u2(η)) will give same type of function. Similarly multi-

plication (u1(η) × u2(η)) will also give same type of function, which is real, continuous and on
compact set of U. The same is true for scalar multiplication.

Condition 2: For every η1andη22U,η1 6¼ η2 there exists function u2Z such that u(η1)6¼u(η2)
Condition 3: u(η)6¼0 for each η2U As we can easily judge from the function that its numera-

tor 6¼0 for 8ai > 0,bi > 0.
Thus with these three conditions satisfied, there exists for g(η) a function u(η) with arbitrary

ε> 0 such that

sup
��U u �ð Þ � g �ð Þj j < " ð19Þ

Numerical Results and Discussion
In this section, we apply the proposed scheme to the Burgers0-Fisher equation to test and assess
its performance and to demonstrate the efficacy of the proposed scheme. Further to prove the
accuracy and reliability of the proposed scheme comparisons of the numerical results are made
with the exact solutions and some traditional methods, including OHAM [10], ADM [11],
HPM [12], and CBRBF [13]. For simulations, Matlab 7.6 has been utilized in this work.

Example 1. We consider the generalized Burgers0-Fisher equation transformed into
NODE given by Equation (13) with the initial condition given by (2). The approximate solu-
tion is obtained in the domain x 2 (0,1) and t 2 (0,1) for different values of α,β,and δ
as follows.

Case 1: α = β = 0.001,δ = 1
Case 2: α = β = 0.1,δ = 1
Case 3: α = β = 0.5,δ = 1
Case 4: α = β = 1,δ = 2
Case 5: α = 2,β = 5,δ = 3/2

Hybridization of Exp-Function Method and EA for Solving B-F Equation
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As mentioned above that the values of c and d can be freely chosen, we set p = c = 2 and
d = q = 2 in Equation (9), therefore we get the approximate solution in the form

u_ðZÞ ¼ a�2expð�2ZÞ þ a�1expð�ZÞ þ a0 þ a1expðZÞ þ a2expð2ZÞ
b�2expð�2ZÞ þ b�1expð�ZÞ þ b0 þ b1expðZÞ þ b2expð2ZÞ

ð20Þ

The unknown parameters (a-2,. . .,a2;b-2,. . .,b2;k,ω) in Equation (20) are achieved using the
stochastic global search algorithm GA by formulating the fitness function given by Equations.
(14)—(16). For instance the fitness function corresponding to case 2, with N = 11 and S = 11is
given by

"1 ¼
1

121

X11
i¼1

X11
j¼1

ou0ðkxj þ otiÞ þ ð0:1Þuðkxj þ otiÞku0ðkxj þ otiÞ
�k2u″ðkxj þ otiÞ � ð0:1Þuðkxj þ otiÞð1� uðkxj þ otiÞÞ

 !2

ð21Þ

"2 ¼
1

11

X11
j¼1

uðxj; 0Þ �
1

2
þ 1

2
tanh � 0:1

4
xj

� �� �� �2

ð22Þ

"j ¼ "1 þ "2 ð23Þ

Similarly we formulate fitness function corresponding to each case defined above. The pa-
rameter settings and values used for the implementation of GA are given in Table 1. The num-
ber of unknown parameters (a-2,. . .,a2;b-2,. . .,b2;k,ω) which need to be tailored is 12, therefore
the size of chromosome is chosen as12. The values of these unknown adjustable parameters are
restricted between -10 and +10. The global search algorithm GA is executed to achieve the
minimum fitness, with the prescribed parameter settings and values given in Table 1.

The optimal chromosomes representing the values of unknown constants corresponding to
the minimum fitness achieved by GA are provided in Table 2. Using the values of unknown
constants from Table 2 in Equation (20), provides the approximate solution of the generalized
Burgers0-Fisher equation at any value of x and t in the solution domain [0, 1].

In Table 3 we have presented numerical solutions obtained by the proposed scheme for
time t = 0.1 for case 1-case 4, also exact solutions are given for comparison. Table 4 shows

Table 2. Optimal values of unknown constants acquired by GA for example 1.

Constant Case 1 Case 2 Case 3 Case 4 Case 5

a-2 0.104865 4.865539 -0.454457 -3.276565 1.060624

a-1 0.003998 5.177595 4.749431 6.935221 1.163479

a0 0.440651 4.968585 3.375969 1.337205 0.805153

a1 0.170067 4.712250 -5.536516 9.076617 0.158400

a2 0.903084 0.134866 6.650495 -0.237617 -0.004869

b-2 1.150501 4.858927 7.013754 -3.081064 1.060638

b-1 0.107163 5.419075 2.313111 3.223797 1.160318

b0 1.346060 8.701317 2.590633 8.442465 0.855922

b1 0.816371 5.305503 -0.481886 9.103490 0.531301

b2 -0.174764 3.799747 6.134235 9.981056 1.441113

k 0.000148 -0.396473 0.035417 -0.222195 -0.396014

ω -0.000297 1.321509 -0.072606 0.499930 2.785516

doi:10.1371/journal.pone.0121728.t002
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absolute errors jðuexact � u_ðZÞÞj obtained by the proposed scheme at time t = 0.1for case 1—
case 4. Further, in Table 5 a comparison of our numerical solutions is made with the exact solu-
tions for various values of x and t for case 5.

Tables 6 and 7 show the comparison of numerical solutions and absolute errors obtained by
the proposed scheme, with the exact solutions, and absolute errors obtained by OHAM [10]
and ADM [11], for α = β = 0.001,δ = 1 and α = β = 0.001,δ = 2 respectively. Further, Table 8
shows comparison of numerical solutions from the proposed scheme with the exact solutions,
and absolute errors obtained by HPM [12].

From the comparison of numerical solutions and absolute errors, the efficiency and reliabili-
ty of the proposed scheme is quite evident. Moreover, it is observed from the findings that the
proposed scheme is more accurate than traditional methods including OHAM [10], ADM
[11], and HPM [12].

Example 2. With β = 0 and α = 1 Equation (1) is reduced to the generalized Burgers0 equa-
tion [11].

Table 3. Numerical solutions of generalized Burgers0-Fisher equation by the proposed scheme for different values of α, β, δ and comparison with
exact solutions for time t = 0.1.

x δ = 1 δ = 2

α = β = 0.001 α = β = 0.1 α = β = 0.5 α = β = 1

Exact Proposed Exact Proposed Exact Proposed Exact Proposed
uexact u_(η) uexact u_(η) uexact u_(η) uexact u_(η)

0.0 0.500025 0.500025 0.502562 0.502562 0.514059 0.514057 0.745203 0.745205

0.1 0.500013 0.500012 0.501312 0.501312 0.507812 0.507811 0.734037 0.734038

0.2 0.500000 0.500000 0.500062 0.500062 0.501562 0.501562 0.722639 0.722640

0.3 0.499988 0.499987 0.498813 0.498812 0.495313 0.495312 0.711024 0.711024

0.4 0.499975 0.499975 0.497563 0.497562 0.489064 0.489064 0.699207 0.699206

0.5 0.499963 0.499962 0.496313 0.496313 0.482819 0.482819 0.687205 0.687204

0.6 0.499950 0.499950 0.495063 0.495063 0.476580 0.476580 0.675035 0.675033

0.7 0.499938 0.499938 0.493813 0.493813 0.470347 0.470347 0.662715 0.662713

0.8 0.499925 0.499925 0.492563 0.492563 0.464124 0.464124 0.650264 0.650261

0.9 0.499913 0.499913 0.491313 0.491313 0.457912 0.457912 0.637701 0.637698

1.0 0.499900 0.499900 0.490064 0.490064 0.451713 0.451714 0.625046 0.625042

doi:10.1371/journal.pone.0121728.t003

Table 4. The absolute errors for example 1 for different values of α, β, δ and for time t = 0.1.

x δ = 1 δ = 2

α = β = 0.001 α = β = 0.1 α = β = 0.5 α = β = 1

0.0 2.236E-08 8.009E-08 1.669E-06 1.396E-06

0.1 1.988E-08 7.001E-08 1.165E-06 8.651E-07

0.2 1.706E-08 5.985E-08 7.771E-07 3.266E-07

0.3 1.390E-08 4.967E-08 4.836E-07 2.146E-07

0.4 1.040E-08 3.954E-08 2.670E-07 7.568E-07

0.5 6.547E-09 2.954E-08 1.123E-07 1.303E-06

0.6 2.354E-09 1.972E-08 6.852E-09 1.859E-06

0.7 2.182E-09 1.018E-08 5.971E-08 2.436E-06

0.8 7.062E-09 9.795E-10 9.571E-08 3.047E-06

0.9 1.228E-08 7.780E-09 1.074E-07 3.704E-06

1.0 1.785E-08 1.601E-08 9.900E-08 4.418E-06

doi:10.1371/journal.pone.0121728.t004
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The approximate solution is obtained by the proposed scheme for three different values of δ
= 1,2,3 in the domain x 2(0,1) and t 2(0,2)for δ = 1,2, and t 2(0,5) for δ = 3.

We assume the solution is expressed by Exp-function method given by Equation (20). The
fitness function is developed for each value of δ with β = 0 and α = 1. For example, the fitness
function with δ = 3 is given as follows

"j ¼
1

121

X11
i¼1

X11
j¼1

ðou0ðkxj þ otiÞ þ u3kðkxj þ otiÞu0ðkxj þ otiÞ � k2u″ðkxj þ otiÞÞ2

þ 1

11

X11
j¼1

uðxj; 0Þ �
1

2
þ 1

2
tanh

�3

8
xj

� �� �1
3

0
B@

1
CA

2 ð24Þ

Table 5. Comparison of numerical solutions and absolute errors for α = 2, β = 5, δ = 3/2.

x t uexact u_(η) Absolute errors

0.1 0.2 0.881815 0.881912 9.65E-05

0.4 0.975295 0.975367 7.15E-05

0.6 0.995333 0.995292 4.15E-05

0.8 0.999137 0.999127 9.74E-06

1 0.999841 0.999874 3.31E-05

0.5 0.2 0.824570 0.824537 3.29E-05

0.4 0.960817 0.960883 6.64E-05

0.6 0.992485 0.992451 3.47E-05

0.8 0.998605 0.998579 2.69E-05

1 0.999743 0.999767 2.43E-05

1 0.2 0.727552 0.727337 2.15E-04

0.4 0.931343 0.931303 3.99E-05

0.6 0.986412 0.986394 1.83E-05

0.8 0.997463 0.997416 4.66E-05

1 0.999532 0.999540 8.35E-06

doi:10.1371/journal.pone.0121728.t005

Table 6. Comparison of numerical solutions and absolute errors between the proposed scheme, OHAM[10] and ADM [11] for α = β = 0.001 and
δ = 1.

Exact Proposed Absolute errors

x t uexact u_(η) Proposed ADM [11] OHAM [10]

0.1 0.001 0.499988 0.499988 1.97E-08 1.94E-06 2.25E-08

0.005 0.499989 0.499989 1.97E-08 9.69E-06 1.12E-07

0.01 0.499990 0.499990 1.97E-08 1.94E-06 2.25E-07

0.5 0.001 0.499938 0.499938 3.58E-09 1.94E-06 4.58E-08

0.005 0.499939 0.499939 3.71E-09 9.69E-06 2.29E-07

0.01 0.499940 0.499940 3.88E-09 1.94E-06 4.58E-07

0.9 0.001 0.499888 0.499888 1.80E-08 1.94E-06 4.58E-08

0.005 0.499889 0.499889 1.77E-08 9.69E-06 2.29E-07

0.01 0.499890 0.499890 1.74E-08 1.94E-06 4.58E-07

doi:10.1371/journal.pone.0121728.t006
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GA is used to solve the minimization problem such as given by Equation (24) and to obtain
the optimal values of unknown constants in Equation (20). The parameter settings for the im-
plementation of GA are given in Table 1.

The optimal values of unknown constants achieved by GA are given in Table 9 for each
value of δ = 1, 2, 3. The approximate solutions of generalized Burgers0 equation are obtained
consequently by using the values of unknown constants in Equation (20).

In Tables 10–13 we provide the comparison of numerical solutions obtained by the pro-
posed scheme with the exact solutions, and the solutions obtained by ADM [11] and CBRBF
[13]. The comparisons of numerical solutions and absolute errors reveals that the proposed
scheme is quite competent with other methods including ADM and RBF used in [11,13] for
solving the generalized Burgers0 equation. The comparison further reveals that the proposed
scheme is capable to achieve the approximate solutions in the larger domain of time t with
greater accuracy. Moreover, for δ = 3 more accurate results are obtained by the proposed
scheme as compared to ADM [11] and CBRBF [13].

Table 7. Comparison of numerical solutions and absolute errors between the proposed scheme, OHAM [10] and ADM [11] for α = β = 1 and δ = 2.

Exact Proposed Absolute errors

x t uexact u_(η) Proposed ADM [11] OHAM [10]

0.1 0.0001 0.695266 0.695267 1.08E-06 2.80E-04 1.17E-05

0.0005 0.695426 0.695427 1.08E-06 1.40E-03 5.87E-05

0.001 0.695625 0.695626 1.08E-06 2.80E-03 1.17E-04

0.5 0.0001 0.646130 0.646129 1.14E-06 2.69E-04 5.33E-05

0.0005 0.646297 0.646296 1.14E-06 1.34E-03 1.06E-05

0.001 0.646506 0.646505 1.14E-06 2.69E-03 1.06E-05

0.9 0.0001 0.595310 0.595306 4.12E-06 2.55E-04 9.29E-06

0.0005 0.595481 0.595477 4.12E-06 1.27E-03 4.64E-05

0.001 0.595695 0.595691 4.12E-06 2.55E-03 9.29E-04

doi:10.1371/journal.pone.0121728.t007

Table 8. Comparison of numerical solutions and absolute errors between the proposed scheme and HPM [12] for δ = 1 at different values of α
and β.

α = β = 0.1 α = β = 0.5

Exact Proposed Absolute errors Exact Proposed Absolute errors

t x uexact u_(η) Exact Proposed uexact u_(η) Exact Proposed

0.1 0.2 0.500062 0.500062 5.98E-08 4.32E-08 0.501562 0.501562 7.77E-07 6.17E-08

0.4 0.497563 0.497562 3.95E-08 1.08E-07 0.489064 0.489064 2.67E-07 1.60E-05

0.6 0.495063 0.495063 1.97E-08 1.74E-07 0.476580 0.476580 6.85E-09 2.58E-05

0.8 0.492563 0.492563 9.80E-10 2.40E-07 0.464124 0.464124 9.57E-08 3.54E-05

0.4 0.2 0.507749 0.507749 6.75E-08 3.85E-07 0.543639 0.543631 7.40E-06 7.87E-05

0.4 0.505250 0.505250 4.89E-08 6.65E-07 0.531209 0.531205 4.69E-06 7.89E-05

0.6 0.502750 0.502750 2.93E-08 1.71E-06 0.518741 0.518738 2.95E-06 2.36E-04

0.8 0.500250 0.500250 9.08E-09 2.76E-06 0.506250 0.506248 1.87E-06 3.92E-04

0.8 0.2 0.517992 0.517992 5.09E-08 7.28E-06 0.598688 0.598635 5.22E-05 1.24E-03

0.4 0.515495 0.515495 4.27E-08 3.08E-06 0.586618 0.586583 3.48E-05 6.22E-04

0.6 0.512997 0.512997 3.09E-08 1.12E-06 0.574443 0.574419 2.32E-05 2.80E-06

0.8 0.510498 0.510498 1.63E-08 5.32E-06 0.562177 0.562161 1.54E-05 6.28E-04

doi:10.1371/journal.pone.0121728.t008
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Table 9. Optimal values of unknown constants acquired by GA for example 2 for different values of δ.

Constant δ = 1 δ = 2 δ = 3

a-2 -0.021250 -1.170684 9.750017

a-1 0.095133 6.455429 -0.688173

a0 4.337944 1.201869 5.579583

a1 3.836255 5.953727 0.674093

a2 2.793948 9.851368 -0.331174

b-2 4.851505 9.542842 9.393467

b-1 3.339690 7.284266 1.566725

b0 7.418916 -3.834267 -0.004362

b1 3.654091 9.419307 8.977442

b2 2.819921 9.113024 -1.054169

k 0.245463 0.179999 -0.231315

ω -0.122734 -0.059993 0.057836

doi:10.1371/journal.pone.0121728.t009

Table 10. Numerical solutions of generalized Burgers0 equation by the proposed scheme and comparison with exact solutions, ADM [11], and
RBF [13] for β = 0, α = 1, and δ = 1.

Exact Proposed ADM CBRBF Absolute errors

t x uexact u_(η) [11] [13] Proposed ADM CBRBF

0.5 0.1 0.518741 0.518740 0.518741 0.518739 1.14E-07 6.34E-08 2.00E-06

0.5 0.468791 0.468791 0.468791 0.468790 1.13E-07 5.66E-08 1.00E-06

0.9 0.419458 0.419459 0.419458 0.419449 1.56E-06 4.12E-08 9.00E-06

1.0 0.1 0.549834 0.549833 0.549832 0.549831 1.17E-06 2.02E-06 3.00E-06

0.5 0.500000 0.499999 0.499998 0.499998 3.79E-08 1.84E-06 2.00E-06

0.9 0.450166 0.450167 0.450165 0.450157 1.28E-06 1.37E-06 9.00E-06

2.0 0.1 0.610639 0.610638 0.610575 0.610635 8.44E-07 6.42E-05 4.00E-06

0.5 0.562177 0.562176 0.562116 0.562175 1.16E-07 6.06E-05 2.00E-06

0.9 0.512497 0.512498 0.512450 0.512488 9.72E-07 4.75E-05 9.00E-06

doi:10.1371/journal.pone.0121728.t010

Table 11. Numerical solutions of generalized Burgers0 equation by the proposed scheme and comparison with exact solutions, ADM [11], and
CBRBF [13] for β = 0, α = 1, and δ = 2.

Exact Proposed ADM CBRBF Absolute errors

t x uexact u_(η) [11] [13] Proposed ADM CBRBF

0.5 0.1 0.714919 0.714918 0.714919 0.714920 7.43E-07 1.25E-08 1.00E-06

0.5 0.666837 0.666836 0.666837 0.666839 1.16E-06 1.49E-08 2.00E-06

0.9 0.616567 0.616565 0.616567 0.616567 2.38E-06 1.39E-08 -

1.0 0.1 0.734037 0.734034 0.734037 0.734037 2.94E-06 1.25E-08 -

0.5 0.687205 0.687202 0.687205 0.687206 3.22E-06 4.75E-07 1.00E-06

0.9 0.637701 0.637697 0.637701 0.637699 4.20E-06 4.39E-07 2.00E-06

2.0 0.1 0.770284 0.770277 0.770272 0.770286 7.21E-06 1.18E-05 2.00E-06

0.5 0.726464 0.726456 0.726449 0.726469 7.35E-06 1.49E-05 5.00E-06

0.9 0.679109 0.679101 0.679095 0.679110 8.03E-06 1.43E-05 1.00E-06

doi:10.1371/journal.pone.0121728.t011
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Finally, we study the effect of change in the values of c and d in Equation (9) on the accuracy
of approximate solution, and show the reliability of the proposed scheme. We used following
test cases

Case (i) p = c = 1 q = d = 1
Case (ii) p = c = 2 q = d = 2
Case (iii) p = c = 3 q = d = 3
Case (iv) p = c = 1 q = d = 2
We consider the generalized Burgers0-Fisher Equation (1) with α = β = 0.001, and δ = 1. The

approximate solution is obtained in the domain x 2(0,1) and t 2(0,1). GA has been used with
the same settings for all the four cases (i)—(iv) as prescribed in Table 1 for example 1, except
with a change in chromosome size for each case which is 8, 12, 16, and 10 for case(i), case(ii),
case (ii), and case(iv) respectively. The approximate solutions have been obtained for each case
and absolute errors have been computed. In Table 14 we provide the approximate solution ob-
tained by the proposed scheme for each case at time t = 0.1. Table 15 shows average absolute er-
rors obtained by the proposed scheme for each case (i)—(iv) for t 2(0,1), also computational

Table 13. Numerical solutions of generalized Burgers0 equation by the proposed scheme and comparison with exact solutions, and CBRBF [13]
for α = 1, β = 0, and δ = 3.

Exact Proposed CBRBF Absolute errors

t x uexact u_(η) [13] Proposed CBRBF

0.5 0.1 0.796173 0.796174 0.796176 1.00E-06 3.00E-06

0.5 0.75487 0.754871 0.754877 1.00E-06 7.00E-06

0.9 0.710485 0.710486 0.710486 1.00E-06 1.00E-06

1.0 0.1 0.808297 0.808299 0.808299 2.00E-06 2.00E-06

0.5 0.768157 0.768159 0.768165 2.00E-06 8.00E-06

0.9 0.724622 0.724625 0.724623 3.00E-06 1.00E-06

2.0 0.1 0.831283 0.831288 0.831286 5.00E-06 3.00E-06

0.5 0.793701 0.793706 0.793709 5.00E-06 8.00E-06

0.9 0.752176 0.752182 0.752177 6.00E-06 1.00E-06

5.0 0.1 0.889248 0.88926 0.889252 1.20E-05 4.00E-06

0.5 0.860439 0.860452 0.860452 1.30E-05 1.30E-05

0.9 0.826825 0.826839 0.826828 1.40E-05 3.00E-06

doi:10.1371/journal.pone.0121728.t013

Table 12. Numerical solutions of generalized Burgers0 equation by the proposed scheme and comparison with exact solutions, ADM [11], and
CBRBF[13] for, α = 1, β = 0, and δ = 3.

Exact Proposed ADM CBRBF Absolute errors

t x uexact u_(η) [11] [13] Proposed ADM CBRBF

0.0001 0.1 0.783660 0.783659 0.784106 - 4.55E-07 4.46E-04 -

0.5 0.741285 0.741285 0.743145 - 5.66E-07 1.86E-03 -

0.9 0.696157 0.696158 0.697089 - 7.00E-07 9.32E-04 -

0.0005 0.1 0.783670 0.783670 0.784115 0.783664 4.57E-07 4.45E-04 6.00E-06

0.5 0.741296 0.741296 0.743150 0.741291 5.63E-07 1.85E-03 5.00E-06

0.9 0.696169 0.696170 0.697089 0.696165 6.98E-07 9.20E-04 4.00E-06

0.001 0.1 0.783683 0.783682 0.784127 0.783664 4.60E-07 4.44E-04 1.90E-05

0.5 0.741309 0.741309 0.743157 0.741293 5.61E-07 1.85E-03 1.60E-05

0.9 0.696183 0.696184 0.697088 0.696168 6.95E-07 9.05E-04 1.50E-05

doi:10.1371/journal.pone.0121728.t012
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time and number of generations utilized are given for the sake of comparison. From the com-
parison of Table 15, it is observed that the average absolute error corresponding to case(i) with
p = c = 1 and d = q = 1 is relatively very high compared to other cases (ii)–(iv). It is also ob-
served that the accuracy is fairly equal for the remaining cases (ii)—(iv), however the computa-
tional time is quite different. It can be seen from Table 14 that for case (iv) we get the average
absolute error fairly comparable to cases (ii) and (iii), but with lesser number generations and
smaller computational time. Therefore it can be concluded on the basis of the simulation re-
sults that the choice of c, d have influence on the accuracy of approximate solutions and
computational time. Nonetheless the comparison clearly demonstrates the accuracy and reli-
ability of the proposed scheme.

Conclusions
A simple straightforward heuristic scheme based on the hybridization of Exp-function method
and evolutionary algorithm has been proposed for obtaining the numerical solution of NPDEs.
The proposed scheme has been successfully implemented for obtaining the numerical solutions
of the generalized Burgers0-Fisher and Burgers0 equations. From the comparisons of numerical
solutions made with the exact solutions, and some traditional methods including ADM, HPM,
OHAM, and CBRBF, it can be concluded that the proposed scheme is effective and viable for
solving such problems. Moreover, the beauty of the proposed scheme is that it can provide the
approximate solution of the given NPDE on continuous values of time in the solution domain,
once the unknown parameters are achieved.

Table 14. Comparison of approximate solutions with different values of c and d at t = 0.1.

Proposed Scheme, u_(η)

Exact Case (i) Case (ii) Case (iii) Case (iv)
x uexact p = c = 1 q = d = 1 p = c = 2 q = d = 2 p = c = 3 q = d = 3 p = c = 1 q = d = 2

0 0.500025 0.499641 0.500025 0.500025 0.500025

0.1 0.500013 0.499629 0.500012 0.500013 0.500013

0.2 0.500000 0.499616 0.500000 0.500000 0.500000

0.3 0.499988 0.499604 0.499988 0.499988 0.499988

0.4 0.499975 0.499591 0.499975 0.499975 0.499975

0.5 0.499963 0.499579 0.499963 0.499962 0.499963

0.6 0.499950 0.499566 0.499950 0.499950 0.499950

0.7 0.499938 0.499554 0.499938 0.499937 0.499938

0.8 0.499925 0.499541 0.499925 0.499925 0.499925

0.9 0.499913 0.499529 0.499913 0.499912 0.499913

1 0.499900 0.499516 0.499900 0.499900 0.499900

doi:10.1371/journal.pone.0121728.t014

Table 15. Effect of change in c and d on the accuracy and computational time of the proposed scheme.

Values of p, q, c, d Average absolute error No. of generations Computational time in sec

Case (i): p = c = 1q = d = 1 1.91E-03 196 80

Case (ii): p = c = 2 q = d = 2 1.97E-07 457 177

Case (iii): p = c = 3 q = d = 3 1.42E-07 279 97

Case (iv): p = c = 1 q = d = 2 1.76E-07 51 40

doi:10.1371/journal.pone.0121728.t015
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