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Abstract

Cancer stem-like cells (CSCs) are a subset of cancer cells that are resistant to conventional 

radiotherapy and chemotherapy. As such, CSCs have been recognized as playing a large role in 

tumor initiation and recurrence. Although hyperthermia is broadly used in cancer treatment either 

alone or in combination with radio- or chemo-therapy, its potential to target CSCs is not well 

understood. In this review, we discuss different types of hyperthermia and potential mechanisms of 

action in cancer treatment, particularly in regards to killing CSCs.
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Introduction

Despite advances in understanding the molecular changes underpinning cancer and 

improved technology and treatments, cancer remains a leading cause of death in America. 
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The cancer stem-like cell (CSC) hypothesis posits that a subset of tumor cells have a high 

capacity for self-renewal, have the ability to differentiate into multiple lineages and can give 

rise to tumors [1–4]. These CSCs are highly malignant and can persist or proliferate in spite 

of cytotoxic treatment [1–4]. Therefore, these CSCs play a large role in tumor progression. 

Development of new treatment modalities that are able to target and kill CSCs may provide 

more durable cancer control [1–4].

Hyperthermia is a potent radiosensitizer that has been shown in numerous clinical trials to 

improve tumor control. Importantly, the efficacy of hyperthermia is seen across many cancer 

types, including breast cancer, prostate cancer, melanoma, sarcoma, rectal cancer, bladder 

cancer, esophageal cancer, cervical cancer and glioblastoma suggesting that it has broad 

clinical applicability [5–24]. Recently, combined hyperthermia and radiation has also been 

shown to improve pain palliation in patients with bone metastases compared to radiation 

alone [25]. Therefore, hyperthermia has widespread usage for patients with both 

locoregional disease and advanced cancers and can be used for patients with a variety of 

cancer types. The value of hyperthermia as a treatment has in fact been observed for 

centuries. Hippocrates, the father of modern medicine, is known to have said, “Those who 

cannot be cured by medicine can be cured by surgery. Those who cannot be cured by surgery 

can be cured by heat. Those who cannot be cured by heat, they are indeed incurable”. Over 

the years, medicine and surgery have seen significant advances, and hyperthermia fell by the 

wayside. However, in modern times, hyperthermia is making a resurgence due to improved 

technology in delivering hyperthermia and in non-invasive thermometry techniques.

Hyperthermia is classified into two broad categories based on the target heating temperature. 

Thermal ablation refers to treatments with target temperatures above 50°C and mild 

temperature hyperthermia refers to treatments with temperatures between 39 and 43°C [26]. 

While thermal ablation largely kills tumor cells due to the direct cytotoxic effects of heat, 

mild temperature hyperthermia uses heat as an adjunct treatment to enhance the cytotoxic 

effects of radiation and chemotherapy [26–28]. The biologic effects of thermal therapy are 

dependent on time and temperature. The mechanisms underlying the biologic effects are 

multi-factorial and impact the tumor population itself, the tumor microenvironment and 

immune system.

Methods for Administering Hyperthermia

Radio-frequency hyperthermia is the most widely used hyperthermia technique worldwide 

and is typically used for ablative heating [28–30]. To achieve heating, radio-frequency 

electrodes are passed into the tumor tissue under image guidance. A high-frequency 

alternating current is then passed through the electrodes to cause the rapid oscillation of ions 

in nearby cells, resulting in frictional heating [27,31]. The range of heating is limited to the 

millimeter range because it relies on heated tissue to conduct current to surrounding areas 

[32]. The short range of heating also limits the ability to heat tumors near blood vessels 

because the heat is dissipated too quickly [32,33].

Microwave hyperthermia is an alternate method of delivery that can overcome some of the 

limitations of radio-frequency hyperthermia. Microwave heating uses waves of higher 
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frequency to kill cells. Unlike radio-frequency thermal therapy, microwave hyperthermia 

does not pass an electrical current through tissue, but rather creates an oscillating 

electromagnetic field that forces ions and dipoles to align with the field, causing them to 

rotate as the field oscillates [31,32,34]. This rotation causes friction that heats the tissue. 

Microwave hyperthermia presents several advantages compared to radio-frequency 

hyperthermia. While radio-frequency hyperthermia relies on ions inside tissue to conduct 

current, microwave hyperthermia creates an electric field, the effective range of which is 

larger without risking damage to tissue closer to the antenna or probe [32]. Microwave 

hyperthermia has a much higher effective range of up to 3 cm [32].

Laser interstitial thermal therapy (LITT) is a relatively new method of administering 

hyperthermia that uses a stereotactically placed laser probe to heat surrounding tissue with a 

low power (10–15 Watts) infrared laser (at Nd-YAG range) [35,36]. Heat essentially is 

produced after absorption of laser in the tissue and transferred up to 1.5–2 cm from the laser 

probe by conduction. To control the extent of thermal ablation, a specific sequence of MRI 

(MR-thermometry) is used to measure relative changes of temperature within the magnetic 

field. For deep seated lesions, including brain tumors, LITT is used in conjunction with MR-

thermometry to give accurate thermal ablation of the target lesion [35,36]. The minimally 

invasive nature of LITT under MR-thermometry guidance has permitted the expansion of 

hyperthermia to deep and difficult to access tumors including intracranial and retroperitoneal 

tumors [35,36].

High intensity focused ultrasound (HIFU) (also called focused ultrasound surgery (FUS)) 

utilizes an ultrasound beam with very high energy to increase the temperature rapidly in the 

target tissues [37–39]. A single HIFU exposure usually treats a very small volume along the 

ultrasound axis. Multiple exposures can be used side by side to achieve coverage of a large 

volume of tumor [37–39]. One advantage of HIFU is that it creates a steep temperature 

gradient in a small focused area and effectively creates a sharp boundary of damage in the 

target tissue while sparing adjacent normal tissues [37–39].

Nanoparticles can also be used to augment heating within a tissue when exposed to 

electromagnetic energy [40–42]. These particles include magnetic nanoparticles (such as 

iron oxide), gold-silica nanoshells, solid gold nanoparticles and carbon nanotubes [40,41]. 

The outer shell of nanoparticles can be modified molecularly to facilitate their dissemination 

and uptake by specific cell types, including tumor cells [42]. Additionally, nanoparticles 

may be loaded with cargo including cytotoxic drugs or oncolytic viruses that can be released 

upon disruption by a heat source [43]. Nanoparticles can be administered systemically to 

exploit the leaky vasculature of primary tumors to enhance intra-tumoral delivery [44]. 

However, nanoparticles often display a patchy, near perivascular deposition within the well-

vascularized regions of tumors [45]. Some blood vessels such as those associated with brain 

tumors are not as leaky as blood vessels found in other solid tumors. While the blood-brain 

barrier is partially breached in regions with glioma cells, the ‘compromised’ blood-brain 

barrier still presents a major challenge, especially in hypoxic and avascular regions of 

glioma dispersion [46]. Since high spatial concentrations of nanoparticles are required for 

hyperthermia, direct intratumoral delivery of 12 nm magnetic nanoparticles has been used in 

clinical trials for hyperthermia treatment of prostate tumors and recurrent glioblastoma 
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[47,48]. When subjected to an external alternating magnetic field, the nanoparticles vibrate 

and heat up to kill surrounding cells. Because non-ionizing electromagnetic radiation can be 

applied remotely to heat the nanoparticles, this technology is considered noninvasive but 

requires good visualization of the target tumor [42,49]. A typical drawback of the 

application of iron oxide nanoparticles is associated with the indefinite exclusion of MRI for 

subsequent monitoring of tumor progression after initial injection of nanoparticles and the 

residual MR signals that interfere with follow-up MR imaging.

Hyperthermia in Cancer Therapy

When hyperthermia is applied to a tumor, three different reaction zones can be distinguished 

based on the temperature and duration of heating: a central zone that is directly and 

immediately beyond the application site, a peripheral zone that is around the central zone 

and is heated to a lower temperature, and an outer region which is not directly affected by 

the heat [28,42,50]. Hyperthermia causes cellular injury directly and indirectly in these 

different zones via different mechanisms, although some overlap may exist. The extent and 

type of cellular damage varies as a function of temperature and time. A high temperature for 

a short period of time can achieve similar levels of cell kill as lower temperature heating for 

a longer period of time.

Direct Effects to Tumor Cells

Hyperthermia causes membrane dysfunction to contribute to cell death. Rising temperature 

affects the stability fluidity and permeability of cellular membranes, including the plasma 

membrane, mitochondrial membranes, and other cytosolic membranes [50,51]. These 

membrane changes can compromise the function of transmembrane transport proteins, ion 

channels, cell surface receptors and other membrane-associated proteins and disrupt lipid 

rafts or signal transduction hubs [50,51]. However, the degree of membrane dysfunction 

strongly influences cell fate. For example, some changes in membrane potential, 

intracellular sodium and calcium content do not correlate well with the rate of cell death 

[52–54]. On the other hand, mitochondrial dysfunction induced by hyperthermia can lead to 

cell death [50,55].

Another direct effect of heat is the denaturation of proteins, especially under high 

temperatures. Denaturation and inactivation of these proteins can impact a broad range of 

cellular processes including cellular metabolism, protein synthesis, nucleic acid synthesis 

and DNA/RNA polymerization [50,56]. After mild hyperthermia, some cellular functions 

can recover. Proteins may refold, and RNA and protein synthesis may recover. However, 

DNA replication and repair typically remain repressed [57]. This is thought to be due to the 

aggregation of denatured proteins in the nuclear matrix and irreversible changes to 

chromatin structure that impair DNA synthesis and repair [57]. Hyperthermia can inhibit the 

function of DNA-polymerases-α and -β and can also facilitate degradation of the DNA 

repair protein BRCA2 to inhibit homologous recombination [57,58]. Hyperthermia itself is 

believed not to cause severe DNA damage, but rather indirectly contributes to DNA damage 

by reducing the efficiency of the DNA damage repair machinery [59].
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Hyperthermia can induce cell death by necrosis and apoptosis. The cells in central 

application zones, which are confronted with high temperatures, usually die by necrosis. 

However, some subpopulations of cells may escape immediate hyperthermic killing. These 

resistant cells in the central zone and the cells in the peripheral zone, which receive lower 

temperature hyperthermia, may die within hours of heat cessation [50,51]. Mild temperature 

hyperthermia can induce apoptosis through both the intrinsic and extrinsic pathways. 

Hyperthermia can activate Caspase-2 which then binds to the adaptor protein RAIDD to 

cleave and activate Bim, which promotes mitochondria-dependent apoptosis [60]. 

Hyperthermia can also activate Bim to induce Caspase-2 independent apoptosis. In addition, 

hyperthermia can activate Fas, tumor necrosis factor α (TNF-α) and tumor necrosis factor-

related apoptosis-inducing ligand (TRAIL) to trigger the extrinsic apoptotic pathway 

[61,62]. Additionally, heat treatment can increase the production of reactive oxygen species 

(ROS) by activation of xanthine oxidase and/or facilitating mitochondria respiration to 

produce O2
−. Moreover, hyperthermia negatively affects SOD1 expression and the 

enzymatic activities of SOD1 and SOD2, whereas it is able to activate NADPH oxidase [63–

65]. This increase in ROS can facilitate apoptosis [66,67].

Alterations to the Tumor Microenvironment

Hyperthermia can also modify the tumor microenvironment to modulate tumor growth and 

recurrence. Hyperthermia is well known to increase perfusion within tissue and compromise 

the integrity of blood vessels [33,68–70]. Hyperthermia can damage endothelial cells, alter 

the adhesiveness of the vessel wall, and increase the leakiness of blood vessels and viscosity 

of blood [68]. These changes in perfusion can influence local pH, oxygen and nutrient 

supply in the tumor, rendering them more stressed and more susceptible to cytotoxic therapy 

[71]. Hyperthermia can also improve tumor oxygenation, making cells more susceptible to 

radiation, and may improve the penetration of chemotherapy into the tumors [69,72].

Local hyperthermia can also affect the immune system and augment the anti-tumor immune 

response. With increased perfusion, hyperthermia can increase immune cell penetration into 

the tumor [73,74]. Hyperthermia-mediated tumor cell death releases the intracellular 

contents of tumors including RNA, DNA, metabolites and proteins that are immunogenic 

[75]. The tumor- specific molecules are taken up by dendritic cells and macrophages and 

trigger specific anti-tumor innate and adapted immune responses. Hyperthermia also 

promotes the production and release of pro-inflammatory cytokines from tumor cells and 

increases serum levels of interleukin-1β (IL-1β), IL-6, IL-8 and tumor necrosis factor-α 
(TNFα) [76–78]. Induction of heat shock proteins (HSPs) can also enhance anti-tumor 

immunity. Extracellular HSPs function as chaperones to bind antigens released by dying 

tumor cells. The protein complexes are recognized and internalized by antigen-presenting 

cells (APCs) [79–81]. HSPs also activate NK cells, T-lymphocyte and macrophages to 

provide a multi-pronged anti-tumor response [80–82].

Thermotolerance

When tumor cells are exposed to sublethal thermal treatment, they can develop tolerance to 

sequential thermal stress. This phenomenon is called thermotolerance [83]. Numerous 

biochemical and molecular changes are involved in this process. Thermotolerance may be 
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due to the accumulation of heat shock proteins (HSPs), which are preferentially upregulated 

by transcriptional and translational mechanisms upon hyperthermic stress [83]. Hsp90, 

Hsp70, Hsp60, and Hsp27 families play a critical role in thermotolerance by maintaining 

protein structure, preventing protein aggregation and facilitating re-folding of proteins under 

heat stress [83,84]. HSPs also regulate apoptosis through caspase dependent and 

independent pathways [85]. Hsp27 and Hsp70 can also inhibit the translocation of pro-

apoptotic factor Bid to mitochondria. Hsp70 can inhibit the cleavage and activation of Bid to 

repress mitochondria-mediated apoptosis [86,87]. HSPs can also suppress Fas, TNF and 

TRAIL-mediated apoptosis through binding to and inhibiting Daxx and ASK-1 or 

modulating IKK complex stability and activity. Hyperthermia can also affect other signaling 

pathways, including Integrin-linked kinase, JNK and p38 MAPK kinase activities that 

contribute to thermotolerance [86,87]. While thermotolerance is seen in vitro, its impact on 

clinical efficacy of hyperthermia is controversial.

Side Effects of Hyperthermia

In addition to thermotolerance, another factor to be considered during hyperthermia is its 

potential side effects. These adverse effects are mainly due to normal cell damage and are 

dependent on the area being treated. In whole-body hyperthermia, which has been used to 

treat metastatic cancers with chemotherapy in clinical trials, whole body hyperthermia can 

cause side effects including diarrhea, nausea, vomiting and more rarely results in cardiac and 

vascular dysfunction [6,88]. In regional and local hyperthermia, normal cells in the 

proximity of the targeted cancer cells can be damaged by heat. Limitations in directing heat 

to the tumor volume or suboptimal thermometry in the heated area can cause local areas of 

heat deposition that can damage normal tissue [6,88,89]. These hyperthermia-associated side 

effects include tissue swelling, erythema, blistering of skin, or burning pain in the heated 

volume, in the case of superficial hyperthermia. Most of these side effects are reversible and 

heal after conservative measures [6,9,88,89]. Side effects of hyperthermia for deeper tissue 

heating are dependent on the organ being treated. For example, patients undergoing 

hyperthermia treatment for locally advanced prostate cancer may develop mild urinary 

symptoms due to swelling of the prostate gland and mild proctitis [19,20]. This can be 

mitigated with a short course of steroids. Deep tissue hyperthermia can also increase 

sweating and vasodilation, causing a drop in blood pressure and contributing to postural 

hypotension [90]. The utilization of specific hyperthermia methods may also minimize side 

effects. For example, HIFU causes a very steep temperature gradient and damages tumor 

cells in a small area around the probe. Cancer biomarker-based nanoparticles selectively 

deliver heat to cancer cells. Overall, hyperthermia is relatively safe when administered 

properly, and as seen in many clinical trials, offers clinical tumor control benefits that exceed 

the side effects of hyperthermia [6].

The Effects of Hyperthermia on Cancer Stem-Like Cells

Cancer stem-like cells (CSCs) are a rare population of cancer cells that can self-renew and 

differentiate into progeny with limited proliferative potential. CSCs sit at the apex of 

hierarchically organized tumors. CSCs have strong tumorigenic activity compared to non-

stem cancer cells and can establish an entire tumor [1,3,56]. CSCs usually reside in specific 
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niches that orchestrate their fate. Niche components that support the undifferentiated state of 

CSCs include communication with contacting cells such as other stromal cells and 

endothelial cells, extracellular matrix components, soluble factors including Wnt, TGFβ and 

other cytokines, and physical states such as hypoxia and low pH [91,92].

CSCs are resistant to ionizing radiation and chemotherapy. CSCs preferentially activate the 

DNA damage checkpoint in response to radiation and repair DNA damage more efficiently 

than non-CSC cancer cells [93]. Inhibition of DNA damage checkpoint kinases Chk1 and 

Chk2 sensitizes CSCs to radiation [93]. CSCs can also overexpress ROS scavenger proteins 

to limit the amount of DNA damage after radiotherapy, which is largely mediated by ROS. 

Pharmacological depletion of ROS scavengers can improve the radiosensitivity of CSCs 

[94].

CSCs can develop resistance to chemotherapy via different mechanisms, including 

enhancing efflux of chemotherapy from tumor cells or interfering with chemotherapy 

metabolism. CSCs can overexpress ABC transporters to pump out chemotherapy [95,96]. 

CSCs can express enzymes to inactivate drugs, for example, aldehyde dehydrogenase 

(ALDH) which inactivates cyclophosphamide, temozolomide and doxorubicin [97]. CSCs 

can also epigenetically silence the enzymes that are needed to catalyze prodrugs into their 

active forms [97]. Additionally, CSCs can augment pro-survival signaling pathways, 

including upregulating BCL2 family proteins and activating Notch and Wnt pathways, to 

protect themselves from the cytotoxic effects of chemotherapy [98-101]. Some CSCs can 

also exit the cell cycle and remain in a quiescent state, reducing their sensitivity to 

chemotherapy and radiation, which preferentially targets rapidly proliferating cells 

[102,103].

The CSC niche also plays a major role in therapeutic resistance. The hypoxic regions where 

many CSCs reside are devoid of functional blood vessels and chemotherapy is unable to 

penetrate to these areas in appreciable concentrations. Furthermore, low ROS levels in these 

areas render CSCs more resistant to free radical damage induced by radiation and some 

chemotherapies [104,105]. Other components of the CSC niche including the extracellular 

matrix, cancer-associated fibroblasts and immune cells may provide signaling stimuli 

including hepatocyte growth factor (HGF), interleukin 6 (IL-6), fibroblast growth factor 

(FGF), neuregulin 1 to further facilitate therapeutic resistance [106,107].

Based on its effects on CSCs and their microenvironment, hyperthermia may have the 

potential to eliminate cancer stem cells and sensitize them to radiotherapy and 

chemotherapy. First, hyperthermia can denature proteins that pump out or inactivate 

chemotherapy. Second, hyperthermia can impede DNA damage repair pathways and thus 

sensitize CSCs to radiation and some types of chemotherapy. Third, hyperthermia can kill 

tumor cells independent of their cell cycle status, permitting killing of quiescent CSCs. 

Fourth, heat treatment can increase perfusion inside the tumor and so reduce hypoxia and 

alter ROS levels that support CSCs. Alternatively, hyperthermia can also cause collapse of 

blood vessels and damage endothelial cells to reduce blood flow to create local pockets of 

hypoxia. Therefore, hyperthermia can have complex effects within the tumor and in 

particular, CSCs within the perivascular or hypoxic niches. In addition, hyperthermia can 
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enhance the anti-tumor immune response to target CSCs. This can be mediated in part by 

increasing cell kill, exposing CSC-specific antigens to APCs and improving immune cell 

recruitment to the tumor.

Although hyperthermia is broadly used in cancer treatment alone or in combination with 

surgery, radiotherapy and chemotherapy, whether and how hyperthermia can help to 

eliminate chemo- and radio-resistant CSCs has not been extensively studied. Some studies 

suggest that CSCs may be more sensitive to hyperthermia than normal stem/progenitor cells 

[108]. Wierenga, et al. compared the sensitivity of normal and acute myeloid leukemia 

(AML) stem cells to mild temperature hyperthermia (43°C). While heat treatment had only a 

mild effect on normal stem and progenitor cells, it greatly reduced AML stem cell survival 

and leukemia initiation ability [108]. This suggests that hyperthermia can be used 

therapeutically to purge leukemic stem cells with minimal adverse effects on normal stem/

progenitor cells.

However, in some other tumors, hyperthermia alone may have little effect or even negative 

effects on CSCs in terms of cell kill. In a model of breast cancer, breast CSCs can scan 

survive better than bulk breast cancer cells to water bath hyperthermia, and the CD44high/

CD24low stem cell fraction in bulk breast cancer cells was increased after hyperthermia 

[109]. This increased survival of breast CSCs was attributed to overexpression of Hsp90. 

Interestingly, the addition of an Hsp90 inhibitor sensitized breast CSCs but not bulk cancer 

cells to hyperthermia, suggesting that under thermal stress, breast CSCs are dependent on 

Hsp90 for survival and that combining Hsp90 inhibition with hyperthermia can target the 

breast CSC population [109].

However, hyperthermia mediated by nanoparticles may overcome CSC resistance to 

conventional heat treatment. Burke, et al. showed significantly reduced tumor size and 

prolonged mouse survival when treated with multi-walled carbon nanotubes, which were 

heated by near-infrared radiation [109]. Breast CSCs, as well as bulk tumor cells, died from 

necrosis in their study. In another report, superparamagnetic iron oxide nanoparticles have 

been used to induce magnetic hyperthermia in A549 lung cancer and MDA- MB-231 breast 

cancer cell lines [110]. This magnetic hyperthermia compromised stem-cell properties, 

including reduced side population phenotype, mammosphere formation ability, ALDH 

activity and tumor initiation ability [110]. In contrast, conventional water bath thermal 

treatment was less efficacious [110]. Notably, magnetic nanoparticle based hyperthermia 

promoted higher ROS generation for a prolonged time compared to conventional 

hyperthermia [110], suggesting the method of hyperthermia delivery can influence the extent 

of cell death.

Hyperthermia has also been combined with radiotherapy, chemotherapy or antibody-based 

targeting technology to improve CSC elimination. Atkinson, et al. reported that optically 

activated gold nanoshell-based hyperthermia sensitized breast cancer stem cells to radiation 

and reduced the percentage of Lin−CD29HCD24H CSC subpopulation, which are resistant to 

radiation [111]. Hyperthermia reduced DNA damage repair in breast CSCs, rendering them 

vulnerable to radiation-induced DNA damage [111]. Similarly, in glioblastoma, 

hyperthermia alone had no appreciable effect on the survival or proliferation of glioma CSCs 
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[112]. However, when combined with radiation, hyperthermia preferentially reduced glioma 

CSC self-renewal, viability and proliferation. This was mediated by suppression of 

radiation-induced AKT signaling and impaired DNA damage response. Combined 

hyperthermia, delivered by a microwave applicator, and radiation reduced tumor growth and 

extended mouse survival in a CSC-derived mouse model of glioblastoma [112].

Hyperthermia can also induce metabolic stress and enhance the effects of chemotherapy. 

This strategy has been used to sensitize CSCs to metformin, a diabetes drug that also has 

anticancer activity [113]. Thermal therapy can activate AMPK and suppress the mTOR/S6K 

pathway to enhance the cytotoxic effects of metformin [113]. Wierenga, et al. also reported 

that hyperthermia can improve the leukemic stem cell killing mediated by ET-18-OCH3, an 

anti-tumor lipid chemotherapy that is toxic to leukemic cells in a temperature-dependent 

manner [108].

The combination of hyperthermia treatment with CSC targeting technology shows promise. 

Single-walled carbon nanotubes (SWNTs) conjugated with CD133 monoclonal antibody 

(anti-CD133) were used to target glioma stem cells, which frequently express the cell 

surface marker CD133 [114]. Upon nanotube internalization and heating with a near infrared 

laser, CD133+ but not CD133− cells were killed. Additionally, heating significantly 

suppressed the tumor initiation ability of CD133+ cells [114]. These data suggest that 

hyperthermia combined with antibody-based strategies can be used to kill CSCs efficiently.

Conclusion

The use of hyperthermia to treat cancer has a long history. Hyperthermia has consistently 

improved the efficacy of radiotherapy and chemotherapy for many types of cancers. The 

CSC model sheds light on another potential therapeutic benefit of hyperthermia. Strategies 

that combine hyperthermia with cytotoxic agents, metabolic stressors or immune therapies 

may improve CSC kill by targeting the cancer cells themselves and modulating their 

microenvironment. The method of administering heat may also influence cell kill. More 

work is needed to define the optimal modes of hyperthermia to kill CSCs safely and 

efficiently. The combination of hyperthermia and immunotherapy to target CSCs also holds 

great potential, and further studies are needed to understand how best to integrate 

hyperthermia with immuno-oncology. Heat therapy was recognized for its therapeutic effects 

by ancient physicians. It is once again emerging as an important treatment modality that 

fights cancer through multiple mechanisms.
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