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ABSTRACT

Objective: Concept normalization, the task of linking phrases in text to concepts in an ontology, is useful for

many downstream tasks including relation extraction, information retrieval, etc. We present a generate-and-

rank concept normalization system based on our participation in the 2019 National NLP Clinical Challenges

Shared Task Track 3 Concept Normalization.

Materials and Methods: The shared task provided 13 609 concept mentions drawn from 100 discharge summaries.

We first design a sieve-based system that uses Lucene indices over the training data, Unified Medical Language

System (UMLS) preferred terms, and UMLS synonyms to generate a list of possible concepts for each mention. We

then design a listwise classifier based on the BERT (Bidirectional Encoder Representations from Transformers) neu-

ral network to rank the candidate concepts, integrating UMLS semantic types through a regularizer.

Results: Our generate-and-rank system was third of 33 in the competition, outperforming the candidate genera-

tor alone (81.66% vs 79.44%) and the previous state of the art (76.35%). During postevaluation, the model’s ac-

curacy was increased to 83.56% via improvements to how training data are generated from UMLS and incorpo-

ration of our UMLS semantic type regularizer.

Discussion: Analysis of the model shows that prioritizing UMLS preferred terms yields better performance, that

the UMLS semantic type regularizer results in qualitatively better concept predictions, and that the model per-

forms well even on concepts not seen during training.

Conclusions: Our generate-and-rank framework for UMLS concept normalization integrates key UMLS features

like preferred terms and semantic types with a neural network–based ranking model to accurately link phrases

in text to UMLS concepts.
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INTRODUCTION

Background and Significance
Mining and analyzing the constantly growing unstructured text in

the biomedical domain offers great opportunities to advance scien-

tific discovery1,2 and improve the clinical care.3,4 However, lexical

and grammatical variations are pervasive in such text, posing key

challenges for data interoperability and the development of natural

language processing (NLP) techniques.

For instance, cardiovascular stroke, heart attack, and MI all refer

to the same concept. It is critical to disambiguate these terms by link-

ing them with their corresponding concepts in an ontology. Such link-

ing allows downstream tasks (relation extraction, information

retrieval, etc.) to access the ontology’s rich knowledge about biomedi-

cal entities, their synonyms, semantic types, and mutual relationships.

Concept normalization (CN) is a task that maps concept men-

tions, the in-text natural-language mentions of ontological concepts,

to concept entries in an ontology. As one of the most comprehensive

biomedical ontologies, the Unified Medical Language System

(UMLS)5 has been widely used in CN such as clinical disorder nor-

malization in 2013 ShARe/CLEF eHealth6 and 2014 SemEval Task

7 Analysis of Clinical Text,7 and adverse drug reaction normaliza-

tion in Social Media Mining for Health shared tasks.8,9 The organiz-

ers of the 2019 n2c2 (National NLP Clinical Challenges) shared

task track 3 Clinical Concept Normalization adopted the medical

concept normalization (MCN) corpus,10 which is annotated with a

broader set of medical concepts than the disease or disorder con-

cepts of previous work. The work described in the current article is

based on our participation in the 2019 n2c2 shared task.

Traditional approaches for CN mainly include dictionary

lookup. These approaches differ in how they construct dictionaries,

such as collecting concept mentions from the labeled data as extra

synonyms,11,12 and what string-matching techniques are used, such

as string edit distance.13 Two of the most commonly used tools,

MetaMap14 and cTAKES (clinical Text Analysis Knowledge Extrac-

tion System),15 both employ rules to first generate lexical variants

for each noun phrase and then conduct dictionary lookup for each

variant. However, end users have to make substantial efforts to

achieve reasonable performance by customizing different mod-

ules.16,17 A few recent CN systems18,19 have demonstrated that rule-

based approaches achieve performance competitive with other

approaches in a sieve-based approach that carefully selects combina-

tions and orders of dictionaries, exact and partial matching, and

heuristic rules. However, such rule-based approaches struggle when

there are great variations between concept mention and concept.

On the one hand, owing to the availability of shared tasks and an-

notated data, the field has shifted toward supervised machine learning

techniques. Such approaches can be divided into 2 categories, classifica-

tion20–28 and learning to rank (LtR).29–33 Classification-based

approaches using deep neural networks have shown strong perfor-

mance. They consider various architectures, such as gated recurrent

units with attention mechanisms26 and multitask learning with auxil-

iary tasks to generate attention weights27; sources for training word

embeddings, such as Google News22 or concept definitions from the

UMLS Metathesaurus24; and input representations, such as character

embeddings.27 All classification approaches share the disadvantage that

the size of the output space is the number of concepts to be predicted,

so these approaches typically consider only a limited number of con-

cepts, for example, 2200 concepts in Limsopatham et al22 and around

22 500 concepts in Weissenbacher et al.8 Classification approaches

cannot predict concepts that were not seen in the training data.

On the other hand, pointwise LtR,29,31 pairwise LtR,30,32 and

listwise LtR33 approaches to CN can handle ontologies with mil-

lions of concepts, as they first reduce the output space to a small list

of candidate concepts, and then rank the concepts in that list.

DNorm,30 which applied pairwise LtR in which mentions and con-

cept names were represented as TF-IDF vectors, was the first to use

LtR for CN and achieved the best performance in the ShARe/CLEF

eHealth 2013 shared task. Listwise LtR approaches are both compu-

tationally more efficient than pairwise LtR34 and empirically outper-

form both pointwise and pairwise approaches.35

Pretrained language models such as ELMo (Embeddings from

Language Models)36 and Bidirectional Encoder Representations

from Transformers (BERT)37 have shown great improvements in

NLP tasks ranging from sentiment analysis to named entity recogni-

tion to question answering. Recently, BERT has been adapted to the

biomedical domain by further pretraining on corpora such as

PubMed abstracts and PubMed Central full-text articles (Bio-

BERT),38 clinical notes in the MIMIC-III (Medical Information

Mart for Intensive Care) (Clinical-BERT),39–41 or combinations of

both sources.39,42 Such biomedical domain specific BERTs achieve

great performance on various biomedical NLP tasks, including con-

cept extraction,39,41,42 concept normalization,43–45 relation extrac-

tion,38,42,46,47 readmission prediction,40 natural language

inference,42 etc. Among all the BERT-based CN systems, 2 systems

take classification-based approaches,43,45 with one showing that a

BERT-based classifier performs poorly when the concept space is

large (around 380 000 concepts in the ontology)43 and the other44

taking a generate-and-rank approach similar to ours, but they do

not leverage resources such as synonyms or semantic type informa-

tion from UMLS in their BERT-based ranker.

OBJECTIVE

We propose an architecture (shown in Figure 1) that is able to con-

sider both morphological and semantic information. We first design

a candidate generator (component [a-e]) to generate a list of candi-

date concepts, and then use a listwise classifier based on the BERT

neural network37 to rank them. In contrast to previous listwise clas-

sifiers,33 which only take the concept mention as input, our BERT-

based listwise classifier takes both the concept mention and the can-

didate concept name as input, and is thus able to handle concepts

that never appear in the training data. We further enhance this list-

wise approach with a semantic type regularizer (ST) that allows our

ranker to leverage UMLS semantic type information during training.

Our proposed CN framework achieved the third-highest perfor-

mance at the 2019 n2c2 shared task track 3.

MATERIALS AND METHODS

Materials
Dataset

All experiments were performed on the MCN corpus, which consists

of 13 609 concept mentions drawn from 100 discharge summaries

from the fourth i2b2/VA shared task.48 The mentions are mapped to

3792 unique concepts of 434 056 possible concepts with 125 semantic

types in SNOMED-CT (Systematized Nomenclature of Medicine

Clinical Terms) and RxNorm. We take 40 discharge summaries from

the released data as the training set, and the remaining 10 as the dev

set, and keep the standard evaluation as the test set. We summarize

dataset characteristics in Table 1. Few mentions are ambiguous in the
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data—around 1% in the dev set and 2.8% in the test set—so the con-

text in which mentions appear plays only a minor role in these data. A

major challenge is the unseen mentions and concepts: 50.76%

(29.85%) of test mentions (concepts) were not seen in the training or

dev data. Systems that memorize the training data or rely on it to de-

termine the space of output concepts will thus perform poorly.

Unified Medical Language System

The UMLS Metathesaurus5 links similar names for the same concept

from nearly 200 different vocabularies including SNOMED-CT,

RxNorm, etc. There are over 3.5 million concepts in UMLS, and for

each concept, UMLS also provides the definition, preferred term,

synonyms, semantic type, relationships with other concepts, etc. Fol-

lowing the procedure in Luo et al,10 we restrict our concepts to the 2

vocabularies of SNOMED-CT and RxNorm in UMLS version

2017AB. In our experiments, we make use of UMLS preferred

terms, synonyms, and semantic types of these concepts. Synonyms

(English only) are collected from level 0 terminologies containing

vocabulary sources for which no additional license agreements are

necessary.

System description
System architecture

We define a concept mention m as an abbreviation such as MI, a

noun phrase such as heart attack, or a short text such as an obstruc-

tion of the blood supply to the heart. The goal is to assign m with a

concept c. Formally, given a list of preidentified concept mentions

M ¼ m1; m2; . . . ; mnf g in the text and an ontology with a set of

concepts C ¼ c1; c2; . . . ; ctf g, the goal of CN is to find a mapping

function cj ¼ f ðmiÞ that maps each textual mention to its correct

concept.

We approach CN in 2 steps (see Figure 1): we first use a candi-

date generator Gðm; cÞ to generate a list of candidate concepts Cm

for each mention m where Cm � C, and jCmj � jCj. We then use a

candidate ranker Rðm;CmÞ ! cCm , where cCm is a re-ranked list of

candidate concepts sorted by their relevance. But unlike information

retrieval tasks where the order of candidate concepts in the sorted

list cCm is crucial, in CN we care only that the one true concept is at

the top of the list.

Table 1. Dataset statistics of the medical concept normalization cor-

pus

Statistics Train Dev Test

# of documents 40 10 50

# of mentions 5334 1350 6925

# of unique concepts 1981 755 2579
of unseen mentions

of mentions %ð Þ — 53.48 50.76

of unseen concepts
of mentions %ð Þ — 32.37 29.85

of CUI�less
of mentions %Þð 2.32 2.00 3.13

of mentions
of unique concepts

2.69 1.79 2.69

of ambiguous mentions
of mentions %ð Þ 3.30 1.04 2.77

The # of unseen mentions for dev indicates the # of mentions that do not

appear in the training set but do appear in the dev set. The # of unseen men-

tions for test indicates # of mentions that do not appear in the training or dev

set but do appear in the test set. The # of unseen concepts for dev indicates

the # of mentions whose normalized concepts do not appear in the training

set but do appear in the dev set. The # of unseen concepts for test indicates

the # of mentions whose normalized concepts do not appear in the training or

dev set but do appear in the test set. The # of CUI-less indicates the # of men-

tions that could not be mapped to any concepts in the ontology. The # of am-

biguous mentions indicates the # of mentions that could be mapped to more

than 1 concept in the dataset.

CUI: concept unique identifier.

Figure 1. Architecture of our proposed framework for concept normalization. The edges out of a search process indicate the number of matches necessary to fol-

low the edge. Outlined nodes are terminal states that represent the predictions of the model. Candidate generator (a–e). Candidate reranker (f). BERT: Bidirec-

tional Encoder Representations from Transformers; CUI: concept unique identifier; UMLS: Unified Medical Language System.
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The main idea of the 2-step approach is that we first use a simple

and fast system with high recall to generate candidates, and then a

more precise and discriminative system to rank the candidates.

Candidate generator

Multipass sieve systems10,18 achieve competitive performance,

though they only generate candidate concepts that are morphologi-

cally similar to the input mention. Inspired by the work in Luo et

al,10 we implement a Lucene-based sieve normalization system that

consists of the following components:

1. Lucene index over the training data finds all concept unique iden-

tifier (CUI)-less mentions that exactly match mention m.

2. Lucene index over the training data finds CUIs of all training

mentions that exactly match mention m.

3. Lucene index over UMLS finds CUIs whose preferred name ex-

actly matches mention m.

4. Lucene index over UMLS finds CUIs where at least 1 synonym of

the CUI exactly matches mention m.

5. Lucene index over UMLS finds CUIs where at least 1 synonym of

the CUI has high character overlap with mention m. To check the

character overlap, we run the following 3 rules sequentially:

token-level matching, fuzzy string matching with a maximum edit

distance of 2, and character 3-gram matching.

If Lucene(b-e) generates Cm such that jCmj > 1, then mention m

and Cm are fed as input to the candidate ranker(f).

Candidate ranker

After the candidate generator produces a list of concepts, we use

a listwise classifier(f) based on the BERT neural network37 to select

the most likely candidate. BERT allows us to match morphologically

dissimilar (but semantically similar) mentions and concepts, and the

listwise classifier takes both mention and candidate concepts as in-

put. Because the candidate generator can generate any concept from

UMLS, this pipeline can handle concepts that never appeared in the

training data.

We use BERT similar to a question answering configuration:

given a concept mention m, the task is to choose the most likely can-

didate concept cm from candidate concepts Cm. As shown in Fig-

ure 2, our classifier input includes the text of the mention m and all

the unique synonyms of the candidate concept cm, and takes the

form “½CLS�m½SEP�Syn1ðcmÞ½SEP� . . . ½SEP�SynsðcmÞ½SEP�,” where

Syn1ðcmÞ is the ith synonym of concept cm. We also experimented

with only using the preferred terms but it resulted in worse perfor-

mance, likely because the synonyms provide useful additional lexical

variants. (For instance, the preferred term for the concept mention

“sinus tract” is “pathologic fistula,” while its synonyms include

“Fistula,” “Abnormal sinus tract,” “Sinus,” “fistulous tract,” etc.)

For each such input, we extract BERT’s final hidden vector

Vðm; cmÞ 2 R
Hcorresponding to the first input token (“½CLS�”), and

then concatenate all such vectors for all candidate concepts to form

a matrix Vðm; CmÞ 2 R
jCm j�H. We use this matrix and classification

layer weights W 2 R
H, and compute a standard classification loss:

LR ¼ y�logðsoftmaxðVðm; CmÞW
TÞÞ (1)

where y is a one-hot vector, and jyj ¼ jCmj.

Semantic type regularizer. To encourage the listwise classifier toward

a more informative ranking, we propose an ST that is optimized when

candidate concepts with the correct UMLS semantic type are ranked

above candidate concepts with the incorrect types. The semantic type

of the candidate concept is assumed correct only if it exactly matches

the semantic type of the gold truth concept. If the concept has multiple

semantic types, all must match. Formally, we define:

Rpðbyt ; byp Þ ¼
X

p2PðyÞ
m1 þ byp � byt (2)

Rnð byp ; byn Þ ¼
X

p2PðyÞ
max

n2NðyÞ
m2 þ byn � byp (3)

where by ¼ Vðm; cmÞW
T , NðyÞ is the set of indexes of candidate con-

cepts with incorrect semantic types (negative candidates), PðyÞ (posi-

tive candidates) is the complement of NðyÞ, byt is the score of the

gold truth candidate concept, and thus byt 2 PðyÞ. The margins m1

and m2 are hyperparameters for controlling the minimal distances

between byt and byp and between byp and byn , respectively. Intuitively,

Rp tries to push the score of the gold truth concept above all positive

candidates at least by m1, and Rn tries to push the best scored nega-

tive candidate below all positive candidates by m2.

The final loss function we optimize for the BERT-based listwise

classifier is:

L ¼ LR þ kRpðbyt ; byp Þ þ lRnð byp ; byn Þ (4)

where k and l are hyperparameters to control the tradeoff between

standard classification loss and the ST. Optimized with such a loss

function, the BERT-based ranker is able to incorporate semantic

type information into its predictions without requiring semantic

types at prediction time.

Experiments
Evaluation metrics

In addition to the official evaluation metric (overall) accuracy, we

also calculate the accuracy for seen concepts (Cseen) vs unseen con-

cepts (Cunseen), that is, concepts that were vs were not seen during

training. For the dev set, concepts in the training data are considered

seen. For the test set, concepts in the training or dev data are consid-

ered seen. Formally,

Figure 2. Outputs of Lucene(b-e) in the candidate generator are fed as inputs into the candidate ranker(f). BERT: Bidirectional Encoder Representations from

Transformers.
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Accuracyoverall ¼
Cpredicted \ Cgold

Cgold

Accuracyseen ¼
Cpredicted \ Cseen

Cseen

Accuracyunseen ¼
Cpredicted \ Cunseen

Cunseen

where Cgold ¼ Cseen [ Cunseen:

Experimental design

We separate out the different contributions from the following com-

ponents of our architecture.

1. Candidate generator: different combinations of components in

Lucene(a-e), eg, indexing the training set, Lucene(aþb), or index-

ing components of UMLS, Lucene(cþd þ e). When used alone,

we take the first matched concept as the prediction.

2. BERT-based ranker(f): the listwise classifier, which always requires

a candidate generator. During training, we experiment with Luce-

ne(e) or Lucene(cþd þ e) to generate training instances for the

BERT-based classifier, with these candidate generators being run

over the training set, and any mentions that have multiple matched

candidate concepts becoming training instances. During prediction,

we experiment with Lucene(e), Lucene(cþd þe) and Lucene(aþb

þ cþd þ e) to generate candidates. For all experiments, we use

BioBERT-base,38 which further pre-trains BERT on PubMed

abstracts (PubMed) and PubMed Central full-text articles. In our

preliminary experiments, we also explored the Clinical-BERT,39

but this resulted in worse performance than BioBERT. This finding

is also shown in Ji et al.44 We use huggingface’s pytorch implemen-

tation of BERT (https://github.com/huggingface/transformers).

3. Semantic type regularizer: the ST, which always requires a BERT-

based classifier f.

Submitted runs

For the shared task, when multiple candidate concepts were

matched by Lucene components b, c, or d, they were sent to a rule-

based reranker that considered section types, and concepts matched

by Lucene component e were sent to the BERT-based listwise classi-

fier. We also implemented an acronym matcher following compo-

nent e that expanded the abbreviations and fed the expanded form

as new input to component a. The BERT-based listwise classier f-

cde was trained on examples from Lucene(cþd þ e), and took the

first 10 matched candidate concepts as input.

We submitted 3 system runs in this task. The first run used

Lucene(aþb þ cþd þ e), the acronym matcher, and the rule-based

reranker. The second and third runs used the same candidate genera-

tor as the first run, but paired it with f-cde. The second run used only

40 files to train f-cde, tuning hyperparameters on the 10 development

files. The third run used all 50 files to train f-cde, but unfortunately

was submitted with a row-alignment bug. The final submitted BERT-

based listwise classier is an ensemble of 3 different training runs.

Postevaluation

After the shared task, we removed the acronym matcher and rule-

based ranker, and used Lucene(e) instead of Lucene(cþd þ e) to

generate training instances for the BERT-based listwise classifier f-e

as it generated many more training examples and resulted in better

performance on the dev set. For the f-e, we take the first 30 matched

candidate concepts as input, and we enhance f-e with an ST. Our fi-

nal model f-e is a single training run. Figure 1 shows our complete

architecture. We tune the hyperparameters via grid search, and se-

lect the best BERT hyperparameters based on the performance on

dev set (see the Supplementary Material for the full hyperparameter

details).

RESULTS

Table 2 shows the accuracy of multiple systems on the dev and test

sets. The submitted run rows show that our Lucene-based lookup

(submitted run #1) outperforms the previous state of the art,10

79.44% vs 76.35%, and our BERT-based ranker (submitted run #2)

further improves performance to 81.66%. Comparing submitted

run #1 and Lucene(aþb þ cþd þ e), which was the same but with-

out the acronym matcher and rule-based ranker, we see that these 2

components make little difference (79.25% vs 79.44%), and hence

we excluded them from the remaining experiments.

Looking at the Lucene-only rows, we can see that using only UMLS

preferred terms—Lucene(c)—yields poor accuracy (34.35%) and low

recall@30 (34.56%), while using all synonyms with either exact match-

ing or partial matching—Lucene(d) or Lucene(e)—yields better accu-

racy (53.26% or 57.50%) and higher recall@30 (62.86% or 85.73%).

However, we can also see that UMLS preferred terms have low cover-

age but high precision: when added to any pipeline, they improve that

pipeline’s accuracy while lowering its recall@30: Lucene(cþd) is more

accurate than Lucene(d), and Lucene(cþd þ e) is more accurate than

Lucene(dþ e), but the reverse is true for recall@30.

Comparing the Lucene þ BERT rows to the Lucene-only rows,

we see that adding the BERT-based ranker always improves perfor-

mance. For example, while Lucene(e) achieves only 57.50% accu-

racy, adding BERT(f -e þ ST) increases accuracy to 77.98%.

Applying the same BERT model on top of Lucene(aþb þ cþd þ e)

yields the best accuracy we achieved, 83.56%. Encouragingly, per-

formance improves not only for seen concepts, but also for unseen

concepts with all BERT models. This suggests that our generate-

and-rank approach to CN is successful, and generalizes better than

the Lucene-based lookup alone. In contrast to our results with

Lucene alone, we find that specially handling preferred terms is no

longer necessary with the BERT ranker: for example, the Lucene(e)

þ BERT(f -e þ ST) that ignores preferred terms actually outper-

forms the Lucene(cþd þ e) þ BERT(f-e þ ST) model that handles

them (77.98% to 75.00%), probably in part because Lucene(e) has

substantially higher recall than Lucene(cþd þ e) (85.73% vs

79.21%).

Comparing the rows with and without the ST (þST) we can see

that encouraging the model to learn about UMLS semantic types

leads to small but consistent gains across all experiments, with larger

gains for unseen concepts than for seen ones. For example, on un-

seen concepts, Lucene(e) þ BERT(f-e þ ST) outperforms Lucene(e)

þ BERT(f-e): 64.01% to 62.26%.

DISCUSSION

Error analysis of the candidate generator
Table 3 shows the performance for each component in the candidate

generator. Components run first have better performance, as is stan-

dard in a sieve-based system. We analyze the errors from each com-

ponent:
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(a 1 b): Exact matching against the training data makes only 705

predictions, even though 913 concepts in the dev data were seen

during training. The missing concepts are string mismatches be-

tween mentions and indexing, including different determiners

such as “your incision” vs “the incision,” abbreviations such as

“an exercise tolerance test” vs “ETT,” typos such as “dressing

changes” vs “adressing change,” prepositional phrases with dif-

ferent orders such as “debulking of tumor” vs “tumor

debulking,” etc. These missed matches demonstrate the fragility

of simply memorizing the training data, and the importance of

using other resources such as UMLS synonyms (which are able to

predict more than 70% of these missing concepts). Most false

positive errors come from ambiguous mentions where the same

string is mapped to more than 1 concept, eg, “acute” could mean

“sudden onset (attribute)” or “acute phase,” “ANTERIOR

MYOCARDIAL INFARCTION” could mean “Old anterior

myocardial infarction” or “Acute Anterior Wall Myocardial

Infarction.” Extra context information would be required to dis-

ambiguate these mentions.

(c): Exact matching against UMLS preferred terms has a great

potential for CN because of its 84.42% accuracy and fewer pre-

dictions with jCmj > 1 than other components. Most false posi-

tive errors come from the lack of context information or domain

knowledge. For instance, c finds a spatial concept “brachial” for

mention “brachial” in “. . . 2þ brachial, 1þ radial . . .,” while the

correct concept is “brachial pulse, function.” There are still

many gaps though between the terms the clinicians use and the

preferred terms in UMLS.

(d): Using synonyms and lexical variants for each concept

increases the search space, which makes it possible to find con-

cepts whose preferred term is lexically dissimilar to the mention,

for example, (d) finds concept “pansystolic murmur” for men-

tion “holosystolic murmur” as one synonym of the concept ex-

actly matches the mention. However, it also has the disadvantage

of finding more than 1 candidate concept, for example, (d) finds

3 candidate concepts “Examination of reflexes,” “Observation

of reflex,” and “Reflex action,” in which all of them share the

same synonym “reflexes.” Additional information such as se-

mantic type, other synonyms, or the context is required to select

the most probable one.

(e): Among 315 mentions predicted by partially matching against

the UMLS synonyms, accuracy is 38.41%, while recall@30 is

69.84%; 98.10% of mentions have more than 1 mapped candi-

date concept. Most false positive errors come from (1) small

character overlaps between mention and concept synonyms, for

example, mention “upgoing” with concept “upward,” mention

“acute cardiopulmonary process” with concept “acute pulmo-

nary heart disease”; (2) abbreviations such as mention “C02”

with “Carbon dioxide content measurement”; (3) lack of domain

knowledge such as mention “an 80% stenosis” with concept

“partial stenosis”; and (4) ambiguous mention such as “an ulcer”

with concept “pressure ulcer” and “ulcer.”

Candidate ranker
We can quantify the remaining error in the system by examining

where there is still room for improvement. Because Lucene(aþb þ
cþd þ e) achieves an recall@30 of 87.41 on the dev set, that is also

the upper bound for the accuracy performance of the BERT-based

ranker. Lucene(aþb þ cþd þ e) þ BERT(f-e þ ST) achieves accu-

racy of 84.44%, a 5.48% improvement over the Lucene accuracy of

78.96%, and 2.97% away from the upper bound. We can also ask

what would happen if the candidate generator always included the

correct concept somewhere in the top-k. Table 4 shows that even

with a top-k list that’s guaranteed to include the correct concept,

Lucene(aþb þ cþd þ e) þ BERT(f-e þ ST) achieves only 88.07%,

11.03% away from the upper bound in this case of 100%. So we

Table 3. Accuracy for each component of the candidate generator in our best complete system Lucene(aþb þ cþd þ e) þ BERT(f-e þ ST)

on dev set

Overall jCmj ¼ 1 jCmj > 1

Components jmj Accuracy (%) Recall@30 (%) jmj Accuracy jmj Accuracy (%) Recall@30 (%)

Lucene(a þ b) 705 97.16 97.59 681 97.65 24 83.33 95.83

Lucene(c) 165 84.42 84.42 161 84.47 4 75 75

Lucene(d) 164 73.78 81.10 127 82.68 37 43.24 75.68

Lucene(e) 315 38.41 69.84 6 16.67 309 38.83 70.87

Lucene(a þ b þ c þ d þ e) 1350 78.96 87.41 976 92.93 374 42.51 72.99

Accuracy indicates how often the first matched candidate concept is correct. Recall@30 indicates how often the correct candidate is within the first 30 matched

candidate concepts. jCmj indicates the size of the candidate concepts. jmj indicates number of mentions predicted by each component.

BERT: Bidirectional Encoder Representations from Transformers; ST: semantic type regularizer.

Table 4. Accuracies of our proposed architectures and their oracle versions on dev set

Overall jCmj > 1

System Accuracy (%) jmj Accuracy Recall@30 (%)

Lucene(a þ b þ c þ d þ e) þ BERT(f-e þ ST) 84.44 374 62.23 72.99

Lucene(a þ b þ c þ d þ e) þ BERT(f-e þ ST) (Oracle CandGen) 88.07 374 75.40 100

Lucene(e) þ BERT(f-e þ ST) 79.85 1327 80.11 86.51

Lucene(e) þ BERT(f-e þ ST) (Oracle CandGen) 89.19 1327 89.60 100

Accuracy indicates how often the first matched candidate concept is correct. Recall@30 indicates how often the correct candidate is within the first 30 matched

candidate concepts. Oracle CandGen indicates that we artificially inject the correct concept into the candidate generator’s list if it was not there when jCmj > 1.

BERT: Bidirectional Encoder Representations from Transformers; ST: semantic type regularizer.
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can conclude that while there is a need to improve the candidate

generator so that it can find the correct candidate for the 12.59% of

mentions where it fails to do so, the BERT-based reranker also needs

to learn more about ranking such mentions to close its 11.03% per-

formance gap.

Semantic type regularizer
We conduct qualitative analysis to show the advantage of the ST.

Figure 3 shows an example in which using ST (þf-e þ ST) and not

using ST (þf-e) makes a correct prediction. The candidate generator

is not able to pick up the correct concept, as its synonyms have less

character overlap with the mention “a right above-knee

amputation” compared with other concepts such as “O/E—Ampu-

tated right above knee.” However, the BERT-based ranker is able to

compare “Amputation of right lower limb above knee” with the

mention, and recognize that as a better match than the other

options, reassigning it to rank 1.

Figure 4 shows an example that illustrates why the ST helps.

The mention “right calf” needs to be mapped to the concept with

the preferred name “Structure of calf of right lower leg,” which has

the semantic type of “Body Part, Organ, or Organ Component.”

The BERT-based classifier alone ranks 2 findings higher, placing

the correct concept at rank 7. After the ST is added, the system rec-

ognizes that the mention should be mapped to an organ, and cor-

rectly ranks it above the findings. We also see the same pattern in

Figure 3, in which using ST ranks concepts with semantic type

“Therapeutic or Preventive Procedure” higher than the remaining

concepts.

Limitations and future work
There are several ways that our system could be improved. First,

our analysis shows that there is room for the candidate generator to

improve, likely via better handling of abbreviations and other or-

thographic variations. Second, the BERT-based ranker is con-

strained by the small size of the training data, and could benefit

from generating training instances directly from UMLS instead of

just the annotated data. Third, our ST is limited to recognizing

when 2 concepts share the exact same UMLS semantic type, and

could be improved by incorporating other UMLS relations, like is-a

and part-of, or by checking partial matching of the semantic types

if these 2 concepts have multiple semantic types. Fourth, our BERT-

based ranker only takes all the synonyms of the matched candidate

concept as input but ignores the Lucene ranking and which of the

synonyms was matched, information that may be beneficial to the

ranker. Finally, our model ignores context completely, and though

the mentions in the MCN corpus have low ambiguity, there a still a

number of errors that could be solved by incorporating contextual

information.

CONCLUSION

We propose a concept normalization framework consisting of a can-

didate generator and a listwise classifier based on BERT that incor-

porates UMLS preferred terms, synonyms, and semantic types. Our

candidate generator, a Lucene-based sieve normalization system,

combines dictionary lookup over training data, UMLS preferred

terms and synonyms. Our BERT-based candidate ranker incorpo-

rates semantic types through a regularizer, and its formulation as a

mention-concept classifier allows it to predict concepts never seen

during training. Our best submission to the 2019 n2c2 shared task

track 3, based on this generate-and-rank framework, ranked third of

33 systems.
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Figure 3. Predictions for mention “a right above-knee amputation” and their rankings from the candidate generator (CG), candidate generator þ BERT-based

ranker þ ST (þf-e þST), and candidate generator þ BERT-based ranker (þf-e). BERT: Bidirectional Encoder Representations from Transformers; CUI: concept

unique identifier; CG: candidate generator; ST: semantic type regularizer.

Figure 4. Predictions for mention “right calf” and their rankings. CG: candidate generator; CUI: concept unique identifier; MRI: magnetic resonance imaging; ST:

semantic type regularizer.
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