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Abstract: Molecular cytogenetics is a promising field of biomedical research that has recently revolutionized our thinking 

on genome structure and behavior. This is in part due to discoveries of human genomic variations and their contribution to 

biodiversity and disease. Since these studies were primarily targeted at variation of the genome structure, it appears appo-

site to cover them by molecular cytogenomics. Human brain diseases, which encompass pathogenic conditions from se-

vere neurodegenerative diseases and major psychiatric disorders to brain tumors, are a heavy burden for the patients and 

their relatives. It has been suggested that most of them, if not all, are of genetic nature and several recent studies have 

supported the hypothesis assuming them to be associated with genomic instabilities (i.e. single-gene mutations, gross and 

subtle chromosome imbalances, aneuploidy). The present review is focused on the intriguing relationship between ge-

nomic instability and human brain diseases. Looking through the data, we were able to conclude that both interindividual 

and intercellular genomic variations could be pathogenic representing, therefore, a possible mechanism for human brain 

malfunctioning. Nevertheless, there are still numerous gaps in our knowledge concerning the link between genomic varia-

tions and brain diseases, which, hopefully, will be filled by forthcoming studies. In this light, the present review considers 

perspectives of this dynamically developing field of neurogenetics and genomics. 
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INTRODUCTION 

 Molecular cytogenetics is defined as a specific focus of 
biomedical sciences targeted at studying chromosomes at 
molecular resolutions and at all stages of the cell cycle. It 
comprises a set of the techniques that operate with either the 
entire genome or specific DNA sequences to analyze ge-
nomic structural and behavioral variations at chromosomal 
or subchromosmal level [1]. One of the most appreciable 
insights into genomics recently offered by molecular cytoge-
netics (cytogenomics) during the last several years was the 
demonstration of exceedingly high interindividual variation 
of the human genome. Soon after this discovery, it has been 
noticed that genomic variations are an important factor for 
human biodiversity and disease (reviewed and summarized 
in [2-7]). Brain diseases are not an exception and, currently, 
many of them are associated with copy-number genomic 
variation (copy number variants or CNVs) or genomic rear-
rangements [7]. Moreover, the amount of CNVs, that are 
related to brain malfunctioning or produce susceptibility to 
nervous system disorders, grows dynamically [8, 9]. There-
fore, the survey of interindividual genomic variations in con-
text of human brain diseases represents an important part of 
current genomic research in medicine. Since all these studies 
were performed via whole genome screen and were aimed to 
address genomic architecture, “molecular cytogenomics”, a 
term merging “molecular cytogenetics” and “genomics”,  
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appear to be apposite for covering them. Accordingly, this 
term will be used to describe related studies. 

 Genomic variations are also observed at intertissular and 
intercellular level, i.e. several cell populations differing with 
respect to their genomes are present in an organism [10]. The 
latter serves as a probable source for malignization [11], or-
gan dysfunction (including the brain), and intercellular di-
versity [10, 12, 13]. However, these types of genomic varia-
tions are significantly less appreciated. Nevertheless, there is 
growing evidence for the involvement in human brain dis-
eases [12]. This suggests reviewing of intercellular genomic 
variations in context of brain diseases to be of potential in-
terest. 

 Here, we have attempted to compile recent data on human 
genomic variation and its link with human brain diseases. 
The present review also considers the relevance of related 
studies to current knowledge about the association between 
genomic variation and brain functioning as well as their sig-
nificance for identification of genetic determinants for hu-
man brain diseases. Finally, seeing the increase of data that 
are actually appearing, we have tried to suggest future direc-
tions of this dynamically developing branch of genomics. 

TYPES OF GENOMIC VARIATIONS 

 Genomic variations are usually classified according to 
the resolution of techniques for their detection [14]. There 
are three main types of the techniques for uncovering genetic 
changes: cytogenetic, molecular cytogenetic and molecular 
genetic. Cytogenetic approaches are applied for detection of  
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chromosome abnormalities, i.e. gross genomic variations 
that involve more than 3-5 Mb. Molecular cytogenetic tech-
niques are used as for refinement of variations detected by 
cytogenetic analysis as for identification of subtle genomic 
variations at chromosomal or even subchromosomal level 
achieving the highest resolution of ~1 kb. Molecular genetic 
techniques usually operate with DNA sequences less than 1 
kb, being, however, applicable for analysis of breakpoints 
and DNA loss/gain in cases of gross chromosomal (genomic) 
variations [2, 10, 14-17]. According to this classification, 
following types of genomic variations are distinguished: 

- single base-pair modifications: point mutations, inser-
tion/deletions, single nucleotide polymorphisms (SNPs) 
[5, 18, 19]; 

- variations affecting DNA sequences from 2 to 1000 bp: 
micro- and minisatellites, gene mutation (frameshift 
mutations, inversions), small nucleotide repeat expan-
sions, variable number of tandem repeats or VNTRs 
[20-23]; 

- retrotransposition of mobile genomic elements: SINE 
and LINE insertions (0.3-10 kb) [24]; 

- microscopic variations (>1 kb): CNVs, segmental du-
plications, inversions, translocations, microdeletions, 
microduplications [2-7, 14]; 

- subchromosomal/chromosomal rearrangements: struc-
tural chromosome abnormalities (i.e. deletions, duplica-
tions, inversions, translocations) including interchromo-
somal tranlocations, ring chromosomes, isochromo-
somes [25-27]; 

- chromosomal heteromorphisms: variations of hetero-
chromatic or, more rarely, euchromatic chromosome 
regions [28, 29]; 

- chromosome fragility: nonrandom breakage of specific 
chromosome loci [30, 31]; 

- supernumerary marker chromosomes: a gain of a struc-
turally disturbed chromosome [32]; 

- aneuploidy and polyploidy: loss/gain of wholes chro-
mosomes and gain of haploid chromosome sets, respec-
tively [10, 12, 33]. 

 Theoretically, all these types of variations can be ob-
served both at interindividual and at intercellular level. How-
ever, a number of them (micro- and minisatellites length 
changes, CNVs and chromosomal heteromorphisms) have 
not been ever reported to produce intercellular variations of 
the genome. This is probably attributed to relative stability of 
genome regions involved in these variations during mitosis, 
whereas intracellular changes produced by errors in mitotic 
checkpoint or maintaining genome integrity are rather fre-
quent and are consistently observed throughout ontogeny 
[10]. However, the existence of such intercellular genomic 
variations cannot be definitively excluded. Since the scope 
of the present review is genomic variations detectable by 
molecular cytogenetic or cytogenomic approaches, we shall 
essentially focus our attention on microscopic, subchromo-
somal, and chromosomal variations of the genome and their 
relation to brain diseases. 

GENOMIC VARIATIONS IN UNAFFECTED POPU-

LATION 

 Before an association between pathogenic condition and 
genomic variation is made, it is first to identify the frequency 
of similar genome changes in unaffected population. Cur-
rently, there are numerous reports and reviews addressing 
CNV distribution within unaffected cohorts and over 7500 of 
CNVs are reported in the available literature (for more de-
tails see [2-6, 14, 19]). In average, about 12% of the human 
genome is covered by CNVs, which encompass diseases loci 
tracked from the On-line Mendelian Inheritance in Man da-
tabase [19]. Consequently, even though a genomic variation 
is detected in an individual with a disease, its association 
with phenotypic features remains a matter of conjecture 
without extended case-control studies. For instance, a com-
parative analysis of structural variation in two healthy indi-
viduals reveals an immense diversification between them 
suggesting CNV as one of the main contributors to genetic 
heterogeneity in humans [34]. Therefore, to uncover patho-
genic value of genome variations at microscopic and sub-
chromosomal levels, one should test the heritability and oc-
currence in individuals without targeted traits [14]. 

 Constitutional structural chromosomal abnormalities de-
tected by cytogenetic or molecular cytogenetic techniques 
are not usually observed in unaffected individuals. Although 
structural alterations to chromosomes (balanced structural 
rearrangements) are found in presumably unaffected indi-
viduals, the carriers usually have reproductive problems or 
offspring with causative chromosome imbalances [27]. 
Therefore, their occurrence hallmarks clinical population. 
Nonetheless, small structural chromosome abnormalities 
such as subtelomeric rearrangements (discussed hereafter) 
are found to be rather common either in healthy individuals 
or in unaffected parents of malformed children [35, 36]. Fur-
thermore, there is a large set of reports describing benign 
cytogenetically visible structural alterations to gene-contain- 
ing regions of the genome or so-called “euchromatic vari-
ants”. Although these ones are frequently reported, the bio-
medical meaning remains uncertain suggesting them as an 
additional source for genome variation without apparent 
phenotypical effects [29].  

 Another extremely common type of chromosomal struc-
tural diversification is the variation of heterochromatic re-
gions. It has been long noticed that pericentromeric regions 
of human chromosomes, short arms of acrocentric chromo-
somes (13-15, 21 and 22), and heterochromatic regions 1qh, 
9qh, 16qh and Yqh are extremely variable in the general 
population [37]. Throughout the last decades, these types of 
genome variation have been repeatedly described following 
by an attempt to catalogue them [28]. Numerous researchers 
consider heterochromatic variations as benign morphological 
peculiarities of chromosomes [38]. Nevertheless, there are 
reports showing their higher incidence in clinical populations 
[28].  

 Chromosomal fragile sites (nonrandomly located gaps 
and breaks in metaphase chromosomes induced to appear by 
specific culture conditions) are classified as common or rare. 
Common fragile sites are virtually observed in all individu-
als, whereas rare fragile sites are those carried by less than 1  
 



454    Current Genomics, 2008, Vol. 9, No. 7 Iourov et al. 

per 20 people [39]. Therefore, common fragile sites, the 
amount of which is about 90, represent one of the common-
est types of genomic variation. Although the prevalence and 
expressivity of fragile sites are extremely variable, some of 
them (13 common and 9 rare fragile sites) are molecularly 
characterized and some fragile sites are associated with spe-
cific genetic diseases and genesis of chromosomal rear-
rangements related to cancer [30, 31]. 

 Supernumerary marker chromosomes are a common type 
of chromosome abnormalities (0.043% in the general popu-
lation) with extremely variable phenotypic consequences: 
from severe congenital malformations to the lack of abnor-
mal phenotype [32, 40]. Supernumerary marker chromo-
somes are frequently observed in unaffected individuals, the 
reason of which is usually explained by structural peculiari-
ties or mosaicism [41, 42]. The incidence of supernumerary 
marker chromosomes in unaffected individuals remains un-
known. 

 Aneuploidy and polyploidy are generally considered as 
devastative conditions associated with human morbidity and 
mortality. However, this is attributed to aneuploidy (much 
more rarely, polypoidy) affecting the majority of cells of an 
organism or the genomic variation manifested at interindi-
vidual level [10, 12, 33]. Therefore, neither aneuploidy nor 
polyploidy affecting the largest proportion of cells can be 
observed in unaffected individuals. In contrast to interindi-
vidual genomic variations manifested as aneuploidy (poly-
ploidy), these ones are extremely common at intercellular 
level and can be virtually observed in any human cell popu-
lation. Aneuploid and polyploid cells are consistently ob-
served during cytogenetic analyses. Throughout ontogeny, 
these intercellular genomic variations arise due to stochastic 
errors during mitotic cell divisions [10]. Furthermore, tissue-

specific confinement of aneuploid cell lineages is observed 
[12, 43-45]. The latter is usually found among clinical popu-
lation and is used to explain pathogenetic conditions includ-
ing brain diseases [12, 44]. However, tissue-specific ane-
uploidization hallmarks normal prenatal development of the 
central nervous system [45]. To date, there is no consensus 
about the scale of stochastic aneuploidy (polyploidy) occur-
rence in unaffected individuals. Nevertheless, studies tar-
geted at revealing the role of this type of genomic variations 
in human diseases as well as case-control studies always 
show small but significant proportion of aneuploid cells [10, 
12, 45-49]. Fortunately, these genomic variations have been 
precisely evaluated in the brain tissue. It has been shown that 
up to 10% of brain cells could be aneuploid. The latter dif-
fers significantly with aneuploidy rate in the developing hu-
man brain that achieves ~35% of cells [12, 44-48, 49]. Al-
though aneuploidy frequencies achieve large rate in the hu-
man brain and it probably contributes to neuronal diversity 
[12, 13], the increase of aneuploidy rate is hypothesized to 
be a pathogenic mechanism for brain diseases [12]. 

 Making a conclusion of this review part, it is to note that 
each type of genomic variations can be detected in unaf-
fected individuals. However, some of them manifest at inter-
cellular level only, being associated with morbid condition 
affecting all cells of an organism. Subtle and gross chromo-
some rearrangements and heteromorphisms are almost ex-
clusively interindividual genomic variations and have ex-
tremely diversified phenotypic effects [2-7, 10, 12, 14, 25-
28, 43-51]. Table 1 addresses genomic variations detectable 
by molecular cytogenetic techniques in unaffected individu-
als. Taking a look at genomic variations in healthy individu-
als, it is to elucidate one major problem that is referred to 
definition of the pathogenic value of genomic variations. To 
solve this, extended studies of related genomic changes in 

Table 1. The Occurrence of Genomic Variations Detectable by Molecular Cytogenetic (Cytogenomic) Techniques in Unaffected 

Individuals 

Type of Genomic Variations Interindividual Variation Intercellular Variation Key References 

CNVs very common1 unreported [2-7, 14, 19] 

Structural chromosome rearrangements detected by  

molecular cytogenetic techniques 
very rare2 unreported [36, 51] 

Structural chromosome rearrangements detected by  

cytogenetic techniques 
rare3 very rare [25-27, 50] 

Variation of heterochromatic regions common4 unreported [28, 37, 38, 50] 

Euchromatic variants rare unreported [29] 

Fragile sites 

Common 

Rare 

 

— 5 

 

 

very common 

rare6 

[30, 31, 39] 

Supernumerary marker chromosomes very rare rare [32, 40] 

Aneuploidy unreported very common7 [10, 12] 

Polyploidy unreported very common7 [10, 12] 

1almost in all the individuals investigated; 2single case-reports or small cohorts investigated; 3less than 1 per 1000 individuals; 4more than 1 per 1000 individuals; 5fragile sites are 
usually observed in a proportion of cells (metaphase spreads); 6rare fragile are uncommonly observed in healthy individuals; 7low-level mosaics. 
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controls or relatives of individuals with a genomic alteration 
are usually performed. Nevertheless, in cases of intercellular 
genomic variations, the increased incidence in affected tissue 
is likely to be related to tissue-specific malfunction. 

GENOMIC INSTABILITY AND VARIATION IN 

BRAIN DISEASES 

 Chromosome abnormalities (aneuploidy and gross struc-
tural rearrangements) were the first genomic imbalances 
found to be associated with human diseases [52]. Soon later, 
such recurrent conditions were termed “chromosomal syn-
dromes” and, subsequently, it was estimated that together 
these types of genomic variation represent the leading known 
genetic cause of pregnancy losses and developmental dis-
abilities/mental retardation [12, 53]. The development of 
molecular cytogenetic techniques allowed the uncovering of 
another common genetic cause of brain malfunction — sub-
tle chromosomal imbalances. During the latest few years 
alone, numerous new microdeletion syndromes have been 
described [54]. Furthermore, there is growing amount of 
communications defining specific CNVs as a cause or pre-
disposition factors for major psychiatric and neurological 
diseases [5, 7]. Besides this, recent molecular cytogenetic 
studies proposed intercellular genomic variations as an addi-
tional source for the human brain malfunction [10, 12, 44]. 
The aim of this part is to describe the contribution of both 
intercellular and interindividual genomic variations to brain 
diseases. 

Chromosomal Syndromes 

 Chromosomal syndromes can be classified according to 
the pattern of causative chromosome abnormality, i.e. ane-

uploidy, gross structural and subtle chromosome aberration. 
The most frequent cause of chromosomal syndromes is ane-
uploidy. Together it affects no less than 0.5% of newborns 
[12, 50, 55, 56]. Almost all these conditions are associated 
with different kind of brain dysfunction [12, 57-61]. Table 2 
shows the contribution of common chromosomal syndromes 
associated with aneuploidy to brain malfunction in humans. 

 Both gross and subtle structural chromosome imbalances 
make significant contribution to brain diseases. Additionally, 
structural chromosome abnormalities can be the cause of 
recognizable syndromes, i.e. microdeletion syndromes, as 
well as can be found among individuals affected by pre-
sumably idiopathic mental retardation or major psychiatric 
and neurological disorders [10, 12, 61-65]. The main break-
through associated with delineation of new microdeletion 
syndromes was related to creation of new molecular cytoge-
nomic approaches allowing high-resolution screening of the 
genome based on array-CGH (comparative genomic hybridi-
zation) technology [2, 3, 65, 66-81]. However, numerous 
microdeletion syndromes associated with intellectual dis-
abilities were known before the introduction of these ap-
proaches [7, 27]. To distinguish between them, we will term 
syndromes discovered by means of array-CGH technology 
as “new microdeletion syndromes” and syndromes discov-
ered before the introduction of this technique as “old mi-
crodeletion syndromes”, though this is an arbitrary classifi-
cation. Tables 3 and 4 gather the data on “new” and “old” 
microdeletion (deletion) syndromes associated with mental 
retardation (intellectual disability). 

 Tables 3 and 4 give only a brief overview of microdele-
tion syndromes excluding subtelomeric deletions (some of 
them are recognized as microdeletion syndromes) and recur-

Table 2. Aneuploidy Syndromes (Common) and Brain Malfunction 

Disease Chromosome Imbalance Brain Dysfunction Incidence 
Key  

Ref. 

Autosomal aneuploidy 

Down syndrome Trisomy of chromosome 21 
Mental retardation/ neuropathological changes/conspicuous  

brain malformations 
~1:800 [57] 

Edwards syndrome Trisomy of chromosome 18 Severe brain dysfunctions/ malformations hardly compatible with life ~1:7000 [12, 60] 

Patau syndrome Trisomy of chromosome 13 Severe brain dysfunctions/ malformations hardly compatible with life 1:6000-1:29000 [12, 60] 

Trisomy 8 Trisomy of chromosome 8 Mental retardation/different morphological brain abnormalities >100 cases reported [12, 60] 

Trisomy 9 Trisomy of chromosome 9 Mental retardation/different morphological brain abnormalities >40 cases reported [12, 60] 

Sex chromosome aneuploidy 

Turner syndrome Monosomy of  

chromosome X 

Behavioral and cognitive disabilities/psychiatric disorders >1:2000 (females) [58] 

Trisomy X syndrome Trisomy of chromosome X Severe behavioral and cognitive disabilities/psychiatric disorders ~1:1000 [12, 61] 

Klinefelter syndrome 
Additional chromosome  

X in a male karyotype 
Behavioral and cognitive disabilities/psychiatric disorders ~1:500 [59] 

47,XYY 
Additional chromosome  

Y in a male karyotype 
Behavioral disability (aggressive behavior)/psychiatric disorders ~1:800 [12, 61] 
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rent rearrangements of the X chromosome. The exclusion is 
made because these conditions are usually associated with 
idiopathic mental retardation (discussed hereafter). It is also 
to mention subchromosomal duplications and triplications, 
which together significantly contribute to the etiology of 
brain malfunctioning (for more information see [7]). It is 
generally accepted, that these genomic variations are causa-
tive when manifested at interindividual level. However, there 
is growing amount of reports demonstrating that mosaicism 
involving subtle structural chromosome rearrangements (in-
tercellular genomic variations) is involved in brain malfunc-
tioning [10, 12]. Although the latter mainly concerns ane-

uploidy, a number of case reports indicates that this is valid 
for structural chromosome imbalances, as well [74]. 

 As one can notice, all these chromosome imbalances are 
associated with brain dysfunction that is more commonly 
manifested as mental retardation. Additionally, it has be-
come possible to characterize most of them, if not all, when 
corresponding molecular cytogenetic or cytogenemic ap-
proaches were developed. Therefore, a conclusion can be 
made about advancements of molecular cytogenetics provid-
ing for new genetic views on brain functioning and making 
direct link between numerical/structural chromosomal im-
balances and mental dysfunction.  

Table 3. “Old Microdeletion (Deletion) Syndromes” Associated with Mental Retardation 

Deleted Region Disease Technique for Detection References 

1p36 Monosomy 1p36 Cytogenetic/MCG1/MG2 [66] 

4p Wolf-Hirschhorn syndrome Cytogenetic/MCG (large deletions) [67] 

5p Cri du chat syndrome Cytogenetic/MCG (large deletions) [67] 

7q11.23 Williams-Beuren syndrome MCG/MG [27] 

8q42.11-8q24.13 Langer-Giedeon syndrome Cytogenetic/MCG1/MG2 [27] 

11p11.2 Potocki-Shaffer syndrome Cytogenetic/MCG [68] 

11q24.1 Jacobsen syndrome Cytogenetic/MCG [27] 

15q11-q13 Angelman (maternal deletion)/Prader-Willi (paternal deletion) syndromes Cytogenetic/MCG/MG [69] 

15q21 — Cytogenetic/MCG [70] 

16p13.3 Rubinstein-Taybi syndrome (<50% of cases) MCG/MG [71] 

17p13.3 Millier-Dieker syndrome Cytogenetic/MCG/MG [7, 27] 

17p11.2 Smith-Magenis syndrome Cytogenetic/MCG/MG [7, 27] 

22q11.2 DiGeorge syndomre Cytogenetic/MCG/MG [72] 

1molecular cytogenetic; 2molecular genetic. 

 

Table 4. “New Microdeletion Syndromes” Associated with Mental Retardation
1
 

Deleted Region Typical Clinical Features (Apart from Mental Retardation) References 

1q41q42 Seizures, dysmorphic features, midline defects (Fryns syndrome?) [73] 

2p15p16.1 Developmental delay, short stature, microcephaly [74] 

3q29 Speech delay, autistic traits, dysmorphic features [75] 

12q14 Osteopoikilosis, short stature [76] 

15q13.3 Epilepsy, facial and digital dysmorphisms [77] 

15q24 Growth retardation, microcephaly, digital abnormalities, hypospadia, loose connective tissue [78] 

16p11.2p12.2 Distinct facial features, heart defects, short stature [79] 

17q21.31 Characteristic facial dismorphisms, hypotonia [80] 

22q11.2 Learning and behavioral problems [81] 

1all these syndromes were discovered by array-CGH-based approaches. 
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Mental Retardation 

 Mental retardation is one of the most common conditions 
associated with brain impairment. About 3% of the popula-
tion is affected by mental retardation and about of 25% of 
mental retardation cases are associated with known genetic 
defects. Moreover, it is estimated that at least additional 25% 
can be associated with genetic defects, as well [65, 82]. As 
previously mentioned, chromosomal syndromes (including 
microdeletion syndromes) make significant contribution to 
the etiology of mental retardation. However, these are not the 
only genomic variations that are associated with this condi-
tion. Through development of fluorescence in situ hybridiza-
tion (FISH) and specific DNA probes [17], it became possi-
ble to analyze subtelomeric regions of chromosomes at sub-
chromosomal level. Because these regions are gene-rich, it 
has been assumed that the imbalances can lead to different 
pathogenic conditions including those of the brain. Initial 
studies have shown that up to 5% and 7% of cases of idio-
pathic mental retardation (moderate and severe mental retar-
dation, respectively) are associated with subtelomeric dele-
tions [83-85]. The latest studies have confirmed and refined 
this rate and have also showed that numerous subtelomeric 
imbalances could be benign. Current estimates show subte-
lomeric imbalance occurrence among mental retardation 
individuals (>16000) to be about 3% [35, 36, 65]. Although 
it was suggested that due to specifity of genomic organiza-
tion of subtelomeric regions their rearrangements could be 
more common than those of other genomic regions, the sig-
nificance of interstitial chromosome region rearrangement 
was not excluded. However, the lack of the possibility to 
screen the entire genome hindered to address this point. In-
troduction of array-CGH based approaches has solved the 
problem. Furthermore, such techniques allow screening of 
subtelomeric regions, as well. Recent studies have shown 
that together subtelomeric and interstitial subchromosomal 
rearrangements can be responsible for up to 10% of mental 
retardation cases (for review see [65]). It should be noticed 
that these data was obtained by an array-CGH with ~100 kb 
resolution. Therefore, more significant contribution of inter-
stitial subchromosomal rearrangements involving DNA se-
quences less than 100 kb is hypothesized [65]. Another 
common cause of mental retardation is fragile X syndrome. 
Currently, this syndrome affects about 1% of mentally re-
tarded individuals. It was first described as a condition asso-
ciated with fragile site at Xq27.3 or FRAXA. Consequently, 
it was found that chromosome X fragility at this site is due to 
trinucleotide expansion in an X-linked gene, FMR1 (for 
more details see [86]). Apart from fragile X syndrome, nu-
merous X-linked genes are mutated in mental retardation. 
Moreover, X-linked mutations are a well-known source of 
mental handicap and are, probably, a cause of male preva-
lence among mentally retarded individuals. According to the 
latest catalogue, 215 X-linked mental retardation conditions 
are known and 82 genes associated with X-linked mental 
retardation are cloned [87]. Regardless monogenic nature of 
the majority of X-linked mental retardation cases, there are 
numerous reports indicating that genomic variations of the X 
chromosome detected at subchromsomal level are common. 
The array-CGH approaches specially elaborated for detec-
tion of the X-chromosome subtle rearrangements shows sig-
nificant contribution of X-linked gene deletions and duplica-

tions to the etiology of mental retardation (4.6% in individu-
als more than half of which suspected of X-linked mental 
retardation). Current data suggests that no fewer than 7 re-
current CNVs, encompassing genes of both syndromic and 
non-syndromic X-linked mental retardation, are common in 
mentally retarded individuals (for more details see [88, 89]). 
Since the introduction of this array-CGH assay is at the be-
ginning stage, more genomic variations of the X chromo-
some associated with mental retardation are expected [87-
89]. 

 Mental retardation is a genetically heterogeneous condi-
tion. It is assumed that numerous types of genomic variation 
could contribute to the etiology. Current knowledge suggests 
that the most significant alterations to genome in mentally 
retarded individuals manifest at chromosomal and subchro-
mosomal level. Moreover, it has been recently hypothesized 
that intercellular genomic variations are also contributive to 
mental retardation [10, 12]. Therefore, further molecular 
cytogenetic and cytogenomic developments are intended to 
provide new clues on the etiology of mental retardation. 
Thus, it is to conclude that molecular cytogenetic approaches 
are indispensable to define genetic causes of mental retarda-
tion. 

Autism 

 Autism is one of the commonest childhood psychiatric 
disorders with suggested genetic background. In a previous 
issue of this journal, a thorough overview of chromosome 
abnormalities in autism has been provided [90]. This gave a 
comprehensive view on gross genomic variations in autism 
and showed the importance of their surveying for uncovering 
autism susceptibility genes. It was demonstrated that such 
genomic interindividual variations as CNVs and chromoso-
mal microaberrations are probably associated with autism, as 
well [91-98]. Furthermore, it has been shown that intercellu-
lar genomic variations manifested as mosaic aneuploidy (in-
cluding mosaic supernumerary marker chromsomes) are also 
a risk factor for autism [48]. Other types of genome variation 
that are found in autism are heteromorphsisms of hetero-
chromatic regions [99, 100], gross regular and mosaic struc-
tural chromosome aberrations [101-104], and fragile sites 
(additionally to FRAXA (fragile X syndrome) that is com-
mon among individuals with autism) [105]. Table 5 shows 
recently identified genomic variations that are associated 
with autism. 

 The overview of genomic vitiations specific for autism 
demonstrates their vast heterogeneity. Regardless poor re-
producibility of the majority of alterations to the genome, a 
number of microdeletions and microduplications are rather 
common in autism. It is also should be noted that autistic 
individuals frequently exhibit intercellular genomic varia-
tions. One of the commonest types is mosaic aneuploidy. It 
is interesting that aneuploidy manifesting as additional 
chromosome X in male karyotype achieves the highest rates 
(~10% of individuals with idiopathic autism) [48]. Taking 
into account the prevalence of males (the male-to-female 
ratio >3:1), a hypothesis linking mosaic chromosome X ane-
uploidy and male prevalence in autism appears intriguing 
[106]. Another data acquired from related studies (especially 
studying CNVs) is valuable for identification of autism sus-
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ceptibility genes. However, although loci involved in recur-
rent CNVs in autism do not show positive linkage, a number 
of genes was demonstrated to be linked with brain dysfunc-
tion specific for this heterogeneous disease [91, 101]. Never-
theless, molecular cytogenetics and cytogenomics provide 
for detection of new genomic changes as well as elucidate 
genomic instability as a highly probable mechanism for 
autism pathogenesis. 

Schizophrenia 

 Schizophrenia is suggested to be the commonest psychi-
atric disorder affecting up to 1% of general population. 
Throughout last decades, there were brought numerous evi-
dences for genetic background of this disease. However, 
recurrent mutations in schizophrenia have not been found. 
Nevertheless, it was shown that at least some cases of 
schizophrenia are associated with chromosome abnormalities 
[62, 64, 107-110]. Reports on structural chromosome ab-
normalities were used to define specific genes involved in 
the pathogenesis [63], whereas numerical chromosome ab-
normalities were assumed directly to contribute to schizo-
phrenia or schizophrenia-like phenotype [12, 62, 64, 107, 
109]. More specifically, aneuploidy was directly observed in 
the schizophrenia brain [44, 49]. The latter was used as a 
basis of neurocytogenetic theory of schizophrenia suggesting 
that at least some schizophrenia cases result from genomic 
instability (manifested as mosaic aneuploidy) in the brain 
[12]. Schizophrenia patients were also shown to exhibit in-

creased levels of chromosomal fragile site expression [62, 
64, 111]. Finally, several recent reports have demonstrated 
recurrent CNVs in schizophrenia patients [112-115]. How-
ever, other reports have not revealed significant difference 
between CNVs in schizophrenia and unaffected individuals 
[116]. Table 6 address studies of genomic variations in 
schizophrenia.  

 Studying of genomic variations in schizophrenia at high-
resolution level is at the beginning stage. Therefore, it is not 
surprising that some studies contradict each other. It is no-
ticeable that mosaic aneuploidy specifically affecting the 
schizophrenia brain appears to be an intriguing explanation 
of unsuccessful linkage and association studies, inasmuch as 
these variations of the genome are undetectable by molecular 
genetic techniques. Together, data on genomic variations in 
schizophrenia highlight genetic instabilities either at interin-
dividual or intercellular level as a pathogenic factor for this 
disease as well as suggest that schizophrenia pathogenesis is 
probably associated with genetic instability (i.e. mosaic ane-
uploidy) exclusively affecting the brain. The latter can be 
exclusively detected by molecular cytogenetic techniques.  

Other Neurological and Psychiatric Diseases 

 Molecular cytogenetic and cytogenomic studies were 
performed in several other neurological and psychiatric dis-
eases. It has been shown that such common neurodegenera-
tive diseases as Parkinson’s disease and Alzheimer’s disease 
can be associated with a number of genomic variations de-

Table 5. Genomic Variations Associated with Autism 

Type of Variation 
Incidence Among  

Autistic Individuals 
Chromosomes References 

Interindividual genomic variations 

CNVs ~7% almost all chromosomes (in different degree) [91] 

CNVs 10% 2p; 2q; 3p; 6p; 7p; 10q; 13q; 15q; 16p; 20p [92] 

Microdeletions (del) and Microduplications (dup) — 16p13.1 [93] 

Duplications — 7q11.23 (Williams-Beuren syndrome region) [94] 

Microdeletions (del) and  

Microduplications (dup) 

0.6% (del)  

~1% (del+dup) 
16p11.2 

[95] 

[96] 

CNVs ~7% almost all chromosomes (in different degree) [97] 

Submicroscopic chromosome abnormalities 11.6% 
2p; 2q; 3p; 3q; 5q; 7p; 7q; 8q; 10p; 11p; 12p; 13q; 14q;  

15q; 16p; 16q; 17p; 18q; 19q; 20p; 20q; 21q; 22q; Xp 
[98] 

Heteromorphisms of heterochromatic regions 48% 1qh; 9qh; 16qh [99, 100] 

Structural gross chromosome aberrations ~5% almost all chromosomes [90, 101, 102] 

Intercellular genomic variations 

Mosaic structural gross chromosome aberrations single case-reports 3q; 20p (other chromosomes are also reported) [103, 104] 

Fragile sites (+fragile X syndrome) — 1; 2; 3; 4; 5; 7; 9; 10; 11; 16; X [102, 105] 

Mosaic aneuploidy and supernumerary  

marker chromosomes 
16% 9; 15; 16; 18; X [48] 
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tectable at subchromsomal level [117-119]. In contrast, some 
other common neurological diseases (ischemic stroke) have 
not exhibited common specific structural genomic variations 
[120]. Neurodegenerative disorders of proven genetic nature 
have been also reported to result from microdeletions and 
microduplications [121, 122]. Table 7 gives a brief overview 
of interindividual genomic variations detectable by molecu-
lar cytogenetic or cytogenomic techniques in neurodegenera-
tive disorders. 

 Microdeletions, microduplications and CNVs were also 
observed in bipolar disorder and childhood psychiatric dis-
orders [8, 54, 63-65, 90, 93, 94, 112]. Gross structural chro-
mosome abnormalities are occasionally detected in other 
psychiatric disorders and are exclusive in aforementioned 

neurological disorders [12, 62-64]. However, Alzheimer’s 
disease is an exception. Since neurological abnormalities of 
this disease resemble in some extent to those of Down’s syn-
drome, it was hypothesized that Alzheimer disease patients 
should harbor cells with additional chromosome 21. Using 
FISH, it has been shown that intercellular genomic variations 
manifesting as low-level mosaic aneuploidy of chromosome 
21 are observed in fibroblasts of Alzheimer disease patients 
[123]. Intercellular genomic variations produced by cell cy-
cle errors in the Alzheimer disease brain are supposed to be 
closely related to pathogenesis of this common devastative 
neurological disease (for review see [10, 12, 13]). Another 
neurodegenerative disease representing a valuable model of 
selective brain degeneration at the subtissue level is ataxia-
telangiectasia. This disease is associated with chromosome 

Table 6. Genomic Variations Associated with Schizophrenia 

Genomic Variation Brief Description (Persons, n) References 

Interindividual genomic variations 

CNVs Aberrations at 4 loci containing genes encoding brain-expressed proteins (n=35) [112] 

CNVs 
Gain of Xq23 (~50%) and loss of 3q13.12 (~30%) as well as frequent gains/losses  

in several other chromosomal regions (n=30)  
[113] 

CNVs 
Thirteen aberrations, among them 2 were likely to be pathogenic (involving NRXN1  

and APBA2 genes; n=93) 
[114] 

CNVs Gene deletions and duplications in 15% (all the cases) and 20% (only young-onset cases) (n=150) [115] 

CNVs No specific CNVs detected (n=260) [116] 

Microdeletion Microdeletion of 22q11 (~1% in schizophrenia cohorts) [72] 

Heteromorphsims of  

heterochromatic regions 
Mainly pericentric inversion of 9qh (9phqh or 9ph) [64, 108] 

Structural chromosome abnormalities The wide spectrum of cytogenetically visible chromosome abnormalities (single case-reports) [62-64, 107-110] 

Numerical chromosome abnormalities Sex chromosome abnormalities (1-4% in schizophrenia cohorts) [62, 64, 107-109] 

Intercellular genomic variations 

Fragile sites Fragile sites on different chromosomes, that were rarely observed in controls [62, 64, 111] 

Mosaic aneuploidy in blood lymphocytes [64, 109] 

Aneuploidy Mosaic aneuploidy of chromosomes 1 (2 individuals; ~5% of cells), 18 (2 individuals; 2.5  

and 0.5%), X (2 individuals; 4 and 3%) in cells of the schizophrenia brain 
[44, 49] 

 

Table 7. Interindividual Genomic Variations in Neurological Disorders 

Disorder Rearrangement Gene References 

Alzheimer’s Disease Duplication 21q21 APP [117] 

Parkinson’s Disease 
Duplication 4q21 

Triplication 4q21 
SNCA 

[118] 

[119] 

Spinal muscular atrophy Deletion 5q23.2 LMNB1 [121] 

Charcot-Marie-Tooth (1A) Duplication 17p12 PMP22 [122] 

Ischemic stroke Non-specific CNVs — [120] 
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instability and degeneration of the cerebellum in contrast to 
other brain areas. There are growing number of evidences 
that this disease is characterized by abnormal cell cycle 
events in post-mitotic brain cells, which result into intercel-
lular genomic variations manifesting as aneuploidy, super-
numerary marker chromosomes, chromosome breakage etc. 
These observations were used as a basis of hypothesis sug-
gesting ataxia-telangiectasia to be an extraordinary example 
of chromosome instability confinement to the specific brain 
area (cerebellum) [124]. The latter put forward a theory hy-
pothesizing neurodegenerative diseases association with in-
tercellular genomic variations or genomic instability increas-
ing in the degenerated brain areas, which are specific for a 
neurodegenerative disease [12, 124]. Since these intercellular 
genomic variations can only be addressed by molecular cy-
togenetic techniques, one can suggest that molecular cytoge-
netics is needed to uncover complex molecular and cellular 
pathway interaction associated with neurodegeneration. 

Brain Tumors 

 It has been long suggested that multilateral genomic in-
stability lies at the origin of tumorigenesis. Genomic insta-
bilities in human cancer can be viewed as a specific type of 
intercellular genomic variations. Molecular cytogenetics of 
cancer evidences that the commonest variations of the ge-
nome are aneuploidy/polyploidy, structural chromosome 
rearrangements (translocations) producing gene fusion, gene 
amplification, non-specific progressive variable rearrange-
ments originating from an already rearranged karyotype [10, 
11, 125, 126]. Most of these variations being increased in 
malignant cells produce chromosome instability, which can 
be viewed as a type of intercellular genomic variations, as 
well [10]. Chromosome instability being usually manifested 
as aneuploidy in malignant cell lineages is a hallmark of 
cancers and is used to explain numerous specific features of 
cancer cells [11]. 

 Brain tumors are the second most common type of cancer 
in children and are associated with poor survival both in in-
fants and adults, representing, therefore, a heavy burden for 
the patients and their relatives [127]. There have been grow-
ing amount of studies dedicated to detecting chromosomal 
imbalances and intercellular genomic variations in brain tu-
mors. Currently, it is suggested that almost all the chromo-
somes are involved in aberrations associated with brain tu-
morigenesis. Nevertheless, there are a number of chromoso-
mal regions that are recurrently rearranged and some onco-
genes are cloned in brain tumors. Furthermore, aneuploidza-
tion resulting in chromosome instability appear to be in-
volved in brain tumorigenesis [128-130]. It is also to note 
that fragile sites are suggested to play a role in brain malig-
nization [131]. Taking into account the meaning of molecu-
lar cytogenetic techniques for cancer research, one has to 
conclude that molecular cytogenetics and cytogenmics are 
valuable source of discoveries in brain tumor medicine. 

DETECTION OF GENOMIC VARIATIONS: A BRIEF 
TECHNICAL OVERVIEW 

 Molecular cytogenetics provides numerous possibilities 
to detect different types of genomic variations [15-17]. Mo-
lecular cytogenetic approaches can be arbitrarily subdivided 
to those providing the view of the entire genome and to those 

analyzing targeted genomic regions. The former is usually 
applied for genomic screens of chromosome or subchromo-
some abnormalities at different levels of resolution. The lat-
ter is useful for screening of specific chromosome rear-
rangements or detection of intercellular genomic variations. 

 Conventional cytogenetic assays are banding methods 
(e.g. G- or R-banding). These techniques were unique for 
studying karyotype for several decades of the last century 
leading them to become the golden standard against which 
all other techniques of chromosomal analysis are measured 
(molecular cytogenetic techniques) [15]. Standard chromo-
some techniques are based on cell cultivation (preparing 
metaphase spreads) followed by painting with specific stains 
(e.g. Giemsa) to produce specific banding of chromosomes. 
This technique allows the visualization of cellular karyotype 
i.e. the entire genome at cytogenetic level. FISH is one of the 
most applied molecular cytogenetic technique [15, 17]. How- 
ever, only few FISH-based techniques provide for assess-
ment of the whole genome (e.g. spectral karyotyping (SKY) 
and multicolor banding) [15]. FISH appears to be more use-
ful for analysis of specific DNA targets [10]. Furthermore, 
FISH-based interphase cytogenetic assays are almost unique 
well-established approaches towards identification of ge-
nomic variations at all stages of cell cycle. Therefore, inter-
phase FISH is a valuable set of techniques for uncovering 
intercellular genomic variations in non-cultivated cells. The 
ability to provide for scoring large cell populations is another 
advantage of FISH for these aims [10, 12, 17, 45-49, 132, 
133, 134]. To get better resolution in surveying intercellular 
genomic variations, there are two FISH-based approaches: 
quantitative FISH (QFISH) and interphase chromosome-
specific multicolor banding (ICS-MCB). The former is used 
to differentiate between FISH artifacts and true genomic 
variations manifested as loss of chromosomes (chromosomal 
regions) [135]. The latter is the unique way to analyze entire 
interphase chromosome structure and numbers in interphase 
cells [47, 136]. 

 Conventional cytogenetic techniques do not provide for 
detection of genomic variations involving DNA sequences 
smaller than 3-5 Mb. To uncover subtle chromosome varia-
tions via whole genome screening, techniques based on ar-
ray-CGH are more useful, because of the ability to provide 
for genome screening at resolution of less than 100 kb [16, 
137]. The resolution of array CGH, however, depends on 
array platform. Additionally, there are array CGH ap-
proaches performed at single-cell level [138]. Finally, there 
are also several molecular genetic approaches for studying 
single-cell genomic variations [139, 140], that remain, unfor-
tunately, poorly reproducible. Table 8 demonstrates the ap-
plicability of available molecular cytogenetic and cytoge-
nomic techniques for detection of genomic variations. 

 Overviewing molecular cytogenetic and cytogenomic 
techniques, one can conclude that current biomedicine pos-
sesses state-of-art effective techniques to evaluate all types 
of genomic variations. However, there are numerous diffi-
culties encountering during both introduction and application 
of almost all these techniques. Therefore, enhancements and 
modifications of existing approaches are needed for devel-
opment new ones to define new genomic variations, mecha-
nisms of the formation, and consequences of genomic varia-
tion contribution to human biodiversity and disease. 
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CONCLUDING REMARKS 

 Molecular cytogenetics provides for studying the genome 
at molecular resolutions, at single-cell level, and at all stages 
of cell cycle. These opportunities allow uncovering numer-
ous previously unidentified genomic variations, which to-
gether have a tremendous impact on current biomedical re-
search. Related discoveries gave hints about the way ge-
nomic variations influence brain functioning and have eluci-
dated new phenomena underlying brain diseases. It should 
be noted that molecular cytogenetic techniques are highly 
efficient for diagnosis of numerous diseases associated with 
brain dysfunction. Currently, it is estimated that from 8 to 
25% of children with mental retardation and with/without 
additional phenotypic abnormalities require molecular cyto-
genetic diagnosis [10, 12, 17, 141, 142]. Therefore, molecu-
lar cytogenetics gathers indispensable tools for reliable diag-
nosis of brain malfunction conditions. Moreover, molecular 
cytogenetic and cytogenomic approaches have established 
new alterations to the genome that cause previously unidenti-
fied brain diseases or major psychiatric and neurological 
disorders (at least in a number of cases). Together, it is to 
conclude that molecular cytogenetics and cytogenomics will 
soon brought new insights into relationship between ge-
nomic variations and brain diseases. 
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