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Abstract

The high rates of failure in oncology drug clinical trials highlight the problems of using pre-clinical data to predict the
clinical effects of drugs. Patient population heterogeneity and unpredictable physiology complicate pre-clinical cancer
modeling efforts. We hypothesize that gene networks associated with cancer outcome in heterogeneous patient
populations could serve as a reference for identifying drug effects. Here we propose a novel in vivo genetic interaction
which we call ‘synergistic outcome determination’ (SOD), a concept similar to ‘Synthetic Lethality’. SOD is defined as the
synergy of a gene pair with respect to cancer patients’ outcome, whose correlation with outcome is due to cooperative,
rather than independent, contributions of genes. The method combines microarray gene expression data with cancer
prognostic information to identify synergistic gene-gene interactions that are then used to construct interaction networks
based on gene modules (a group of genes which share similar function). In this way, we identified a cluster of important
epigenetically regulated gene modules. By projecting drug sensitivity-associated genes on to the cancer-specific inter-
module network, we defined a perturbation index for each drug based upon its characteristic perturbation pattern on the
inter-module network. Finally, by calculating this index for compounds in the NCI Standard Agent Database, we significantly
discriminated successful drugs from a broad set of test compounds, and further revealed the mechanisms of drug
combinations. Thus, prognosis-guided synergistic gene-gene interaction networks could serve as an efficient in silico tool
for pre-clinical drug prioritization and rational design of combinatorial therapies.
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Introduction

The development of effective cancer drugs is a particularly

challenging problem, and selection of appropriate preclinical

cancer models has emerged as a key factor affecting successful

oncology drug discovery and development [1]. There are multiple

examples of drug candidates that showed promise in the pre-

clinical stage but which then failed to demonstrate benefits in

clinical trials. EGFR- and VEGF-blocking combo are recent

examples of drugs which ultimately produced disappointing results

after encouraging pre-clinical results [2]. One of the commonly

accepted reasons is that the targeted therapies provide benefit only

to a subset of patients who have the appropriate genetic changes in

their cells; for example, Herceptin (trastuzumab) shows efficacy

only in HER2-positive breast cancers [3]. Thus the key to success

in the clinical stage may depend strongly on precise selection of

target populations.

In the modern drug discovery pipeline, assessments of the

efficacy and toxicity of therapeutic agents are based on relatively

homogeneous cell or animal models, and the heterogeneity issue is

only encountered once the most expensive clinical trials are

underway in human subjects. The poor success rate of oncology

drug development suggests that the standard preclinical cancer

models are failing to predict how the drug candidate works in

clinical trials [4]. Furthermore, recent results from comprehensive

genomic efforts such as The Cancer Genome Atlas (TCGA) have

highlighted the marked heterogeneity of genetic alterations in

patient populations [5]. It suggests that the intrinsic heterogeneity

in genetic and/or epigenetic alterations which are driving the

tumorigenesis might be one of the main causes for the observed

discrepancies between clinical trials and standard pre-clinical

models. Thus, efforts to establish new cancer animal models which

mimic heterogeneous patient populations might be even more

challenging than initially realized [1,4].

Nevertheless, several promising new paradigms in cancer

drug development have recently been introduced of which

Network Pharmacology and Synthetic Lethality seem to hold

particular promise. Network Pharmacology attempts to model

the effects of a drug action by simultaneously modulating mul-

tiple proteins in a network [6,7]. However, this approach still

faces a number of challenges. In particular, the absence of

cancer-specific functional gene/protein networks and the lack of

further characterization of the network behavior (e.g, network

robustness [8] under perturbation) makes it difficult to design
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an accurate perturbation strategy [6,9]. Synthetic Lethality

refers to a specific type of genetic interaction between two genes,

where mutation of one gene is viable but mutation of both

leads to death [10]. It has already been demonstrated that this

concept can be exploited to develop a therapeutic strategy. For

example, by using an inhibitor targeted to a Poly(ADP-Ribose)

Polymerase (PARP) that is synthetically lethal to a cancer-specific

mutation (BRCA), researchers could target cancer cells to achieve

antitumor activity in tumors with the BRCA mutation[11].

However, because of the difficulties of systematically identifying

in vivo synthetic lethal genes in human individuals, current high

throughput Synthetic Lethality screening is limited to only in

vitro cell lines [12].

Transcriptome profiles of heterogeneous patient populations

have been comprehensively sampled by high throughput gene

expression microarrays in ongoing prognosis studies (the original

motivation being to identify gene expression signatures for

prognostic or predictive biomarkers) [13]. Recognizing this, we

propose that this kind of patient prognosis data could be used to

help prioritize drug candidates or drug combinations at the pre-

clinical stage. To test the feasibility of this hypothesis, we

combined microarray gene expression data with cancer prognostic

information to identify cancer-specific gene-gene interactions. We

achieved this by defining a set of ‘gene modules’ and then used the

microarray data to identify cancer specific gene interactions that

occurred between genes in different modules. A single gene

module represented a list (as opposed to a network) of genes that

shared a similar function or regulatory mechanism and was

defined as one of the following four collections: (1) a group of genes

in a protein-protein interaction network or protein complex; (2) a

set of genes sharing a common function annotation in the Gene

Ontology; (3) a set of genes which are involved in the same

pathway; (4) a set of genes which are governed by a common

regulation mechanism. i.e., targets of the same microRNA. The

gene interactions were identified by using an information theoretic

measure of synergy[14] based on the microarray expression data.

Two genes that are identified to be synergistically related form a

‘‘Synergistically Inferred Nexus’’ (SIN). These SINs together form

an inter module network where the nodes in the constructed

network represent functional gene modules, and links between two

nodes represent interactions between modules. We found that the

constructed network contained a number of highly connected

nodes and, given the potential pivotal role of the associated

modules in affecting patient outcome, we named them ‘gatekeeper’

modules. Furthermore, by examining their associated GO terms,

we found that drug accessibility, microenvironment and immune system

regulation are common themes in the gatekeeper modules identified

from multiple types of human cancers.

Finally, by projecting drug sensitivity-associated genes on to

the cancer-specific inter-module network, we defined a ‘perturba-

tion index’ to quantify the potential efficacy of drugs in terms

of the drugs’ perturbation pattern on the inter-module network

(see Methods). We demonstrated that this index could success-

fully discriminate drugs from candidate pools (i.e., drug candi-

dates in the NCI Standard Agent Database, see Methods).

With this approach, we have illustrated an objective way to

quantify the synergistic effects of drug combinations, and the

rationale of combinatorial perturbations on these intrinsic co-

operation networks. Thus, the integration of action data

(describing the effect of a drug acting on a cell) with an intrinsic

gene network (derived from a patient population) not only

provides a novel in silico prioritization tool in the early preclinical

stage, but can also suggest a potential treatment strategy based on

the gene networks.

Results

The framework of in silico modeling
The basic framework of our modeling method is illustrated in

Figure 1a. There are three independent components in the

method: (1) construction of gene modules; (2) identification of

disease-specific gene-gene interactions from patient gene expres-

sion and prognosis data; (3) identification of drug sensitivity

associated genes.

A key step in the method is the identification of gene-gene

functional interactions as synergistic events; these events are

determined not only by gene expression data but also by prognosis.

The proposed in vivo genetic interaction which we call ‘synergistic

outcome determination’ (SOD) is a concept similar to ‘Synthetic

Lethality’ [10]. SOD is defined as the synergy of a gene pair with

respect to cancer patients’ outcome, whose correlation with

outcome is due to cooperative, rather than independent, contribu-

tions of genes (see Methods). Identification of a synergistic gene

pair leads to the creation of a Synergistically Inferred Nexus (SIN)

which, when combined with other SINs, produces an Inter-Module

Cooperation Network (IMCN). An important distinction between

our method and the concept of Synthetic Lethality is that in the

latter the phenotype is defined at the cell-level (i.e. cell death),

whereas we define the phenotype at the physiological level (i.e. the

survival outcome of the individual). Furthermore, the gene

expression profiling data for a tumor is from a mixture of tissues

which include epithelial cells and other cells in the microenviron-

ment; thus a SIN captures events at the tissue level rather than at

the cell level. This also leads to differences in the interpretation of

the constructed network. In Synthetic Lethality, the nodes

represent individual genes, but we use a gene module as the

principal unit and thus capture a higher level inter-module of

cooperation. We mapped a list of genes onto a set of gene modules

according to a comprehensive range of functional data based on

currently available sources (the gene function annotation database,

protein network and protein complexes, annotated pathways, and

genes co-regulated by microRNA, Figure 1a and Methods). The

reasons for capturing module level cooperation rather than

considering the interactions between individual genes were as

follows: (1) a gene module (or corresponding ‘gene set’) is a more

appropriate representation of the functionality of the system, which

occurs as a series of interactions between elements. It is widely

accepted that one shortcoming of microarray prognosis experi-

ments is the low reproducibility. It often leads to completely

different prognosis-associated gene signatures based on different

patient cohorts. Considering that the subnetwork marker extracted

from protein interaction databases are more reproducible than

individual gene markers [15,16], we assume that the identification

of module-module interactions is more robust than that of gene-

gene interactions. For example, if the interaction between gene

modules A1 and B1 (in Figure 1c) is true, then many of the genes

in gene module A1 could interact with a many of the genes in

module B1. The robust identification of individual gene-gene

interactions between A1 and B1 is harder, because it is possible that

different set of B1 genes will be identified as interacting with A1

genes when different patient cohorts or microarray datasets are

examined (Figure 1c); (2) Multiple genes within a gene module

might have redundant functionality, and a tumor could exploit

alternative pathways or mechanisms within a gene module to

develop drug resistance [17,18]. Since therapeutic intervention

targeting different yet functionally redundant genes within a gene

module might be equivalent, it is important to highlight a drug

perturbation pattern on an inter-module rather than an intra-

module network.

Network Based Drug Screening
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There are two methods which are commonly used to

interrogate the action of compounds on cells. The first method,

adopted by the Connectivity Map [19] effort, measures a

‘compound response signature.’ In this approach gene expression

signatures are established based on changes in gene expression in

response to short term treatment with particular compounds; this

response signature can serve as an effective tool for probing the

compound(s) mechanism of action (MOA) [19]. A second method

is measurement of a ‘drug sensitivity signature’ and is used by

various applications based on the National Cancer Institute NCI

60 in vitro drug screen project [20]. The NCI 60 cell lines screen

panel has proved to be an effective way to identify drug sensitivity

specific biomarkers [21] as the panel has already been compre-

hensively characterized via profiling at different levels (mRNA,

protein, microRNAs, DNA methylation and metabolites etc.).

To incorporate the data describing the perturbation effects of

drug compounds we constructed cancer specific inter-module

cooperation networks based around the identified gene modules

Figure 1. The proposed schema for compound Pattern of Action (POA) analysis. a. The workflow of POA analysis, which relies on
converging two lines of information: the intrinsic module structure which cooperatively determine the clinical prognosis outcome of heterogeneous
patient population (blue rectangles); and the gene signatures for compound sensitivity resulting from in-vitro cell line screen (pink rectangles). b.
Illustration of the ‘synergistic outcome determination’ (SOD), a proposed in vivo gene-gene functional interaction. SOD is defined as the synergy of a
gene pair with respect to cancer patients’ outcome. Here gene A and gene B have two states: high expression or low expression level. Red triangles
represent ‘bad outcome’ patients (shorter survival time or metastasis), and green rectangles represent ‘good outcome’ patients (longer survival time
or non metastasis). In combination, the two genes are sufficient to determine the patient outcome, but each of them individually is uncorrelated with
patient outcome. For example, given gene A state as ‘low expression’, all patients with A(Low) are distributed in two clusters and thus insufficient to
determine the patients outcome. Given combination of A and B state, i.e., A(Low) B(high), its sufficient to determine the patient outcome as ‘good
outcome’. c. Inter-module cooperation network construction. For each gene (g1,g4 at left) in a given gene module, we identify their synergistic
partner genes (the link from gene in module A1 to gene module B1 form a ‘Synergistically Inferred Nexus’, see Methods). Then the gene modules
which are over-represented in the resulting gene list are identified as the ‘cooperative modules’ corresponding to the query gene module. d.
Compound perturbation pattern. Genes associated with compound sensitivity (nodes within blocks) might be topologically cross-linked to the
functional pathway (red rectangles) induced by compound perturbation. e. Disease specific inter-module cooperation network, nodes represent
gene modules and the direct link represents the relationship between the ‘query module’ (A1) and its ‘cooperative module’ (B1). Here B1 cooperates
with a large number of modules (with flow-in links), thus we called this special class of modules ‘gatekeeper modules’ (B1, B2) and others (without
flow-in links) as ‘checkpoint modules’ (A1–A5). f. The Pattern of Action (POA) of one candidate compound generated by overlapping the disease-
specific inter-module network (e) with the module hits by sensitivity-associated genes (d).
doi:10.1371/journal.pone.0013937.g001
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and using a query-based approach that incorporated both

microarray gene expression data and prognosis information

(Figure 1e and Methods). This inter-module network allowed

us to mine the drug action pattern by incorporating drug-gene

relationships. To represent the characteristic pattern of drug

action on cells, we chose the genes that were significantly

associated with drug sensitivity across NCI 60 cell lines (drug-

gene association [21], see Methods). As illustrated in Figure 1d,

although these genes may not be directly linked to the primary

drug targets (i.e. the mechanism of action), they should be close to

the pathway in which the targets are involved. Thus these drug

sensitivity associated genes can indicate the key pathways

associated with drug efficacy [21] and the overlap of sensitivity

associated genes (Fig. 1d) with the baseline inter-module network

(Fig. 1e) could highlight the characteristic compound perturba-

tion pattern, which we call the Pattern of Action (POA, Fig. 1f).
For simplicity, the genes which were significantly correlated with

compound(s) sensitivity across 60 cell lines were selected

(Methods) and are referred to as compound gene ‘hits’ in this report.

Inter-module networks associated with prognosis
outcome

If two genes A and B could synergistically determine or predict

prognosis outcome (form a SIN), we call B a synergistic partner of

A (or vice versa). By enumerating all genes in a gene module and

identifying their synergistic partners, followed by further identify-

ing the enriched gene modules within these partners (Supporting
Text S1), the inter-module network was first constructed for a

patient population of non-small cell lung carcinoma (NSCLC), a

major type of lung cancer. To get a more specific view of the

constructed networks, we illustrate a network hit by Cisplatin (the

first line treatment option for NSCLC) in Figure 2a.

Analysis of the inter-modules network obtained from three other

types of cancer (breast cancer, ovarian cancer and leukemia, see

Supporting Text S1), also identified common features shared

between these networks. Specifically, there exist several hub nodes

which have a large number of flow-in links, indicating they play a

central role in determining the clinical outcome. We named these

highly connected influx nodes ‘gatekeeper modules’ and other

outflux nodes as ‘checkpoint modules’.

Figure 2b illustrates the high connectivity of the gatekeeper

modules. In the intrinsic network for lung cancer (NSCLC), a

small set of gatekeeper modules cooperate with a large number of

modules (in terms of outcome prediction). The largest identified

hub was ‘BP: complement activation, classic pathway’ which,

according to the Gene Ontology biological process definition, has

cooperation with 567 checkpoint modules. This high connectivity

was evident in all the four types of cancers we studied as there was

significant overlap amongst most of the gatekeeper modules (see

Figure S1 for gatekeeper modules of breast cancer, ovarian

cancer and leukemia).

Based on this analysis, the biological themes of the most highly

connected gatekeeper modules in multiple types of cancer are

summarized in Figure 2c, and comprise 3 major themes: (1) drug

accessibility to tumor cells (drug absorption/metabolism/delivery),

(2) tumor microenvironment and (3) immune regulation (also a key

component of the tumor microenvironment). These common

themes indicate the pivotal role of the in vivo tumor microenviron-

ment, and the efficacy of drugs could be regulated by these

components (Figure 2c). For example, the control of drug

accessibility to tumor cells by increasing the efflux of the drug

molecules (multidrug resistance) is a major factor in the failure of

multiple forms of chemotherapy [22]. Furthermore, the most

common gatekeeper module identified is ‘BP: complement

activation, classic pathway’, which plays a pivotal role in the ‘fine

tuning’ of both the innate and cognate immune responses [23];

there is evidence that shows a tumor could exploit the complement

activation to set up an immunosuppressive microenvironment,

thereby gaining a growth advantage [24].

Considering the increased recognition of the complexity of

tumor regulation in vivo, the difficulty of identifying effective cancer

cures (as evidenced by drug resistance) may be a consequence of

the robustness of physiology-level (or microenvironment-level)

network regulation [8]. Our results suggest characterization of this

cooperation network and the potential co-opt strategies which the

tumor may exploit will aid in the development of new strategies to

efficiently disrupt the highly robust network established by the

tumor.

Association of gatekeeper modules with genetic and
epigenetic aberration events

To characterize the intrinsic features of an inter-module

network, particularly the identification of ‘gatekeeper modules’,

we further compared the rates of genetic (somatic mutation) and

epigenetic (DNA methylation) aberration on tumor vs. normal

tissues. For each type of module, we selected genes which were

identified as being highly used (i.e. one gene involved in multiple

gene modules) as representative of the whole set (Methods).

Results for the lung cancer (NSCLC) IMCN show that gatekeeper

modules have a significantly lower incident rate of somatic gene

mutation, but a notably higher incident rate of DNA methylation

aberration (Figure 3a). All other types of cancers studied show a

similar pattern (data not shown). Current strategies to treat cancer

is mainly driven by identifying genetic changes (e.g., EGFR,

epidermal growth factor mutations in lung cancer), but recent

evidence suggests that epigenetic plasticity together with genetic

lesions also drives tumor progression [25,26]. Our data indicates

most genes involved in gatekeeper modules frequently undergo

epigenetic aberration during cancer, supporting the role of

epigenetic lesions in tumor phenotype.

Contribution of various evidence sources for gene
module definition

Our gene modules were generated by integrating multiple large

scale evidence of gene function categorizations such as protein-protein

interaction networks, gene annotation databases, and microRNA

target genes. To analyze the contribution from different evidence

sources to the IMCN, we summarized the evidence sources in all gene

modules of the lung cancer (NSCLC) network (Figure 3b). The other

three types of cancers studied showed a similar pattern (data not

shown). The top contribution was from protein-protein interaction

subnetworks (47%) which were identified by simply fetching the

neighboring proteins of hub nodes in a physical protein interaction

network (Methods). Clearly, a more comprehensive decomposition

of the modularity and community structures within a protein

interaction network will provide a more extensive result set, given

the large amounts of methodology and data from related systems

biology studies [27]. It was not unexpected to see that the Gene

Ontology, as a hierarchical knowledge representation system, made a

major contribution to the definition of the gene modules (e.g.

biological process category contributes 13%). However, it was more

surprising to see that microRNAs modules made a similarly significant

contribution of 16%, given these modules were defined by predicted

microRNA target genes collected in the mirBase database [28].

Perturbation index and validation
Based on the above characterization of the intrinsic features of

the inter-module cooperation network, we hypothesized that the

Network Based Drug Screening
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Figure 2. Topological characteristics of the Pattern of Action network. a. Gatekeeper modules and checkpoint modules, demonstrated by
an example (the POA result of Cisplatin on non-small cell lung carcinoma). We define the flow-out nodes (blue circles) as ‘checkpoint modules’ (from

Network Based Drug Screening
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potential efficacy of drug intervention relies on its perturbation

pattern on this network (Figure 4a). For a drug designed to

perturb genetic aberrations (checkpoint modules), the key to

success is whether it simultaneously perturbs the corresponding

gatekeeper modules which cooperatively determine the outcome

with the former. Thus there are two key factors in determining the

extent of perturbation on the cooperation network: (1) the number

of gene hits in gatekeeper modules and (2) the number of active

links between gatekeeper modules and checkpoint modules

(meaning simultaneous hits on gatekeeper modules and their

linked checkpoint modules). As a measure of these quantities we

defined the perturbation index (PI) as the summation of these two

factors followed by appropriate normalization by the total number

of gene hits (see Methods).

To assess the potential application of this approach for

prioritizing compounds for clinical trials (based on the information

available in pre-clinical stage), we studied a subset of compounds

defined in the ‘Standard Agent Database’, originally created by Boyd

[29] and ultimately finalized by the NCI. The selection criteria

was compounds which have been submitted to the FDA for review

as a New Drug Application, as well as compounds that have

reached a particular high stage of interest at the NCI. For each

type of cancer, we divided this compound list into two parts: FDA

approved and routinely used drugs (the Successful drug list) and

the remainder (the Candidate list), and tested whether we could

statistically discriminate between these two compound lists using

the perturbation index.

A bootstrapping-based method showed that the PI of successful

compounds is significantly higher than the corresponding PIs for the

candidate list in lung cancer (NSCLC) (p-value 0.01, Figure 4c).

Because our perturbation index definition is highlighting the

importance of gatekeeper modules, we also calculated a different

measure of the perturbation index which is based on the number of

gene hits in checkpoint rather than gatekeeper modules, multiplied

by the number of active links, as a control. The result demonstrated

that this modified index cannot achieve significant discrimination

(Figure 4d), which confirmed the unique role of gatekeeper

modules in drug efficacy. When we further removed the

information contribution from active links and only counted the

gatekeeper module hits, it turned out that there was a partial loss in

discriminative power although the difference was still significant (p-

value 0.04, Figure 4e). Finally, much poorer performance was

achieved when a count based on only checkpoint module hits was

used (Figure 4f). Our results also showed that the perturbation

index is independent of the total number of gene hits for each

compound and other parameters (see Figure S2, S3, S4, S5, S6,
S7, S8, S9). In summary, the results demonstrate the effectiveness

of the perturbation index, and confirm that the key factors which

account for drug efficacy are primarily the hits on gatekeeper

modules; and additionally, this could be further influenced by the

‘active’ control scope of the gatekeeper modules.

Rationale and synergy quantification of drug
combination

Having established the validity of the perturbation index we

then estimated it for lung cancer (NSCLC) drugs and related

targeted agents in clinical development (Figure 5a). The first line

treatment drug Cisplatin achieved a rank of two (PI = 21.09, see

Figure 2a for the Pattern of Action for Cisplatin). In the

simulation of two-agent combinations, Bortezomib, the proteo-

some inhibitior, gained the largest number of benefits when

combined with other agents (Erlotinib, Paclitaxel, Rapamycin,

Etoposide, Gefitinib and Gemcitabine, Figure 5b), suggesting a

multifaceted potential in combinatory treatment.

As a successful drug for treating multiple myeloma, Bortezomib

is also being studied in the treatment of other types of cancer

(There are 189 Bortezomib related clinical trials to date according

to the NCI website: www.cancer.gov). The interference with

ubiquitin pathways, which labels proteins for degradation by the

proteasome, has proved to be a valid strategy for the development

of anticancer drugs [30]. In a RNA interference (RNAi)-based

synthetic lethal screen seeking paclitaxel chemosensitizer genes in

a human NSCLC cell line, proteasome is the most enriched gene

group [12]. Recently, a phase II clinical trial reported notable

survival benefits in lung cancer (NSCLC) patients using a

Bortezomib plus Gemcitabine/Carboplatin combination as first-

line treatment [31]. In line with the above result, here we

identified the combinatory benefits of both the Bortezomib-

Paclitaxel and Bortezomib-Gemcitabine combos (Figure 5b).

Impressively, in the intrinsic inter-module network, the gene

modules ‘UBQLN4 (ubiquilin 4) subnetwork’ shared synergy with

360 gene modules (Figure 2b).

Taking Bortezomib-Bemcitabine as an example, we further

studied the mechanism of drug combination benefits. Compared

to the chemotherapy agent Gemcitabine (Figure 5c), the Pattern of

Action for Bortezomib shows a more focused hit pattern (Figure 5d).

For the gatekeeper module hit pattern, Bortezomib has relatively

more hits on the ‘UBQLN4 (ubiquilin 4) subnetwork’, and shows a

very strong association with the ‘MMP2 (matrix metallopeptidase)

subnetwork’ and ‘digestion’, which are targeted less frequently by

Gemcitabine. As matrix metallopeptidases play an important

regulatory role in the ubiquitylation pathway [32], the synergistic

benefit of the Bortezomib-Gemcitabine combo in bladder tumors is

related to matrix metalloproteinases and other microenvironment

factors [33]. In terms of checkpoint modules, Bortezomib also has

more gene hits on microRNA target modules has-mir-301a, which is

revealed as a human embryonic stem cell-specific microRNA [34].

The results for our initial design for the mechanism of drug

combination synergy (Figure 1e) confirmed the proposed

rationale: Gemcitabine serves as a drug establishing a baseline

perturbation on the inter-module network, but Bortezomib could

add a more focused perturbation on key gatekeeper modules

which are linked to the checkpoint perturbation established by

Gemcitabine (Figure 5d). Knowledge of a drug’s mechanism of

action is critical for successful optimization of therapeutic drugs,

especially for rational design of drug combinations. Our models

could serve as a powerful tool for generating testable hypotheses

on the mechanism of synergistic drug combinations. For example,

our result suggests that the MMP2 subnetwork might be one of the

key gene modules which are involved in the synergy between

Gemcitabine and Bortezomib (Figure 5d). If this hypothesis could

gene signatures of drug sensitivity), and the flow-in nodes (red circles) as ‘gatekeeper modules’ (which cooperate with a large number of modules to
determine the clinical prognosis outcome). The radius of the red circles is proportional to the in-degree (number of flow-in links) of the node in the
generic inter-module cooperation network. b. All of the ‘gatekeeper’ modules in a generic inter-module cooperation network generated for lung
cancer (non-small cell lung carcinoma). The length of bars and annotated numbers indicate in-degree (number of flow-in links) for each gatekeeper
module (y-axis). c. An ensemble of common gatekeeper modules in multiple cancer types highlights a physiology-level ‘pathway’ of drug action.
Gene module names start with a 2-character header that indicates the gene module definition source, PN: protein subnetwork; PA: pathway; BP: Gene
Ontology biological process; MF: Gene Ontology molecular function; CC: Gene Ontology cellular component; MR: microRNA targets.
doi:10.1371/journal.pone.0013937.g002

Network Based Drug Screening
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Figure 3. Biological function characterization of the inter-module cooperation network. a. For each type of module (gatekeeper and
checkpoint), the top 10% and 20% most highly used genes are used as the representative genes for each module, and their incident rate of somatic
mutation frequency and DNA methylation aberrant was calculated for lung cancer (NSCLC); p-value for incident rate difference was calculated using
the binomial distribution (see Methods). b. Contribution of various evidence sources for gene module definition in lung cancer (NSCLC). We
summarized the number of various types of gene module definitions in the identified inter-module network for lung cancer (NSCLC) and the
proportional contribution of various evidence sources for the gene modules were plotted.
doi:10.1371/journal.pone.0013937.g003
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be experimentally verified, a series of new drug combinations

could be proposed based on this assumption.

Discussion

The preclinical development process has been criticized for its

inability to identify drugs that are most likely to succeed in the

human clinic. Many attempts have been made to address this issue

by creating novel genetically engineered animal models for human

cancers [35]. However, creating novel animal models to mirror the

natural distribution of mutations is still a challenge, due in part to

heterogeneity and unknown mutations (i.e., structure aberrations),

which need to be revealed via ongoing efforts such as next

generation sequencing. In this context, in silico modeling or

simulations, which are based on the heterogeneous patient

populations, provide an alternative yet cost-effective way to identify

key factors affecting success rate in the human clinic. The modern

drug discovery and development process is mainly a forward (and

stepwise) approach: from drug target identification, preclinical

assessment and mechanism studies, towards clinical trials. The in

Figure 4. Principle and validation of perturbation index (PI). a. Perturbation index for single compound perturbation. According to our
definition of perturbation index (PI, see Methods), PI (drug 1) = 3 (Three active links from A1, A2, A5 to B1), while PI (drug 2) = 1 (one active link from
A3 to B1). b. The rationale of drug POA analysis applied to in silico drug combination assessment. If we assume one drug already has an established
action (primary drug at left), then for each candidate auxiliary drug (shown at right), the perturbation index is re-calculated after adding the additional
module hits provided by the secondary drug (see Methods). Here drug 1 is ‘‘better’’ than drug 2 because drug 1 has more active links (3 links from
A5, A2 and A4) with the primary drug. c. Perturbation index can be used to discriminate successful drugs against candidate compounds. We use a
bootstrap-based method to evaluate if the average PI of successful drugs against lung cancer (NSCLC) is significantly different from the candidate
compounds (see Methods). Blue line shows background distribution and the red line shows the average PI of successful drugs. We also considered
modified PI definitions and investigated their effect/contribution on the performance of PI. These modifications include: d. bootstrap result from
pseudo PI definition by using checkpoint modules information to replace gatekeeper modules information, e. bootstrap result from pseudo PI
definition by only using gatekeeper modules hits, and f. bootstrap result from pseudo PI definition by only using checkpoint modules hits.
doi:10.1371/journal.pone.0013937.g004
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Figure 5. A proof-of-principle demonstration for a drug combination study based on POA analysis. a. Rank of drugs and agents in
clinical development for lung cancer (NSCLC) according to their perturbation index. Text after agent name indicates the mechanism of action. b. The
perturbation index of pair-wise combination of NSCLC agents. The widths of links between two drugs are proportional to their combined PI index
(see Methods), and red links indicates the potential benefit of the combination: PI (combination) . maximum (PI (drug 1), PI (drug 2)). c. POA of
gemcitabine, red (at right) circles represent all gatekeeper modules. For clarification, selected checkpoint modules (top number of gene hits) are
shown as blue (at left) circles. The size of circle is proportional to the number of gene hits for each module and the link widths are also proportional
to the number of gene hits from the source node (checkpoint modules). d. POA of bortezomib with same schema. Gene module names start with a
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silico model we present here establishes a new information link

between clinical trials to aid informed preclinical decisions.

Our analysis scheme has several unique characteristics as a

preclinical in silico modeling tool. Specifically these are: (1) mirroring

drug behavior on heterogeneous patient populations; (2) cost-

effectiveness: One of the key inputs for effective modeling is the

prognosis data, which is already available for large populations in

various cancer types. Furthermore, this kind of retrospective study is

cheap and less time consuming; (3) flexibility: It is easy to integrate

the model with compound action mechanisms or patterns such as,

for example, the NCI 60 in vitro cell line screening data used in this

study. (4) extensibility: The pool of gene modules serves as a ‘library

of mechanisms’ to probe the intrinsic gene network, and the power

of the model can be sustainably improved along with emerging new

gene module definitions. The ongoing efforts on interrogating

genetic and epigenetic functional elements (e.g., the ENCODE

project [36]) will greatly enhance the available options for gene

modules definition and improve the resolution, specificity and

multi-faced coverage of biological processes. For example, our

analysis shows that microRNA regulated genes are very informative

data sources in terms of gene module definitions.

The view that genomic instability is the key factor in tumorigenesis

and tumor progression has been the prevailing paradigm for many

years. Based on this, most of modern oncology drug discovery efforts

are targeting to the etiology of cancer by seeking the key genetic

lesions which are driving the tumorigenesis. However, recent

evidence suggests epigenetic plasticity is an alternative driving force

for the somatic evolution of tumors [37,38], and some novel

therapeutic strategies such as epigenetic treatments have emerged

[39]. Our results highlight that drug metabolism, microenvironment

and immune system modulation play a pivotal role in determination

of the robustness of cancer phenotype, and these modules have high

epigenetic instability in tumor cells. Given the high connectivity of

these gatekeeper modules, it is a reasonable inference that tumor

cells could exploit the epigenetic plasticity within these key modules

and thus gain a drug resistance phenotype, as suggested by the

‘phenotypic plasticity’ hypothesis [26] and the ‘epigenetic progenitor

model’ of cancer [25].

The potential strategy that tumors could exploit against the drug

treatment cannot be fully determined by etiology studies, but in silico

systems biology modeling will provide a way to predict the survival

strategies of a tumor when undergoing drug treatment. The task

presented here mainly aims to identify the central players in the

determination of the robustness of a cancer network, which is only

the first step in using systems biology modeling in the battle against

cancer. The next step will be behavior simulation based on this

network. We believe that the next generation therapeutics might

represent a paradigm shift from ‘etiology-based strategy’ towards

‘prediction-based strategy’ against the tumor. The former paradigm

relies on the comprehensive understanding of tumor history, but the

latter requires precise prediction of the tumor survival strategy

under therapeutic interventions. Systems biology modeling such as

we have presented in this study will enable this paradigm shift and

make a unique contribution to this continually evolving challenge.

Methods

Construction of gene modules
A gene module was defined as a group of genes which share a

similar function or regulation mechanism. The following types of

information were used to construct gene modules: (1) Protein sub-

network Data. In a protein-protein interaction network, nodes

represent proteins and edges represent a physical protein

interaction. A protein sub-network was defined by querying the

nearest neighborhood nodes of high connectivity nodes (hubs,

degree. = 20), and named according to the gene name of the hub

protein. The human protein-protein interaction dataset in the

HPRD (human protein reference database, www.hprd.org, Sep 1,

2007 release) was used as the source dataset. (2) Gene sets which

share a common functionality in the gene annotation database.

Here all three categories in the Gene Ontology were used:

Biological Process, Molecular Function and Cellular Component

(geneontology.org). The Entrez Gene ID to Gene Ontology

mapping was downloaded from http://www.biomart.org. All

genes associated with one GO term was defined as one gene

module and the module was named according to the name/title of

GO terms. (3) Pathway Data. Genes in one KEGG pathway

(www.genome.jp/kegg) formed a gene module. (4) Protein

complex data. Genes in one protein complex formed a gene

module. The CORUM database [40](http://mips.gsf.de/genre/

proj/corum/index.html) was used as the source dataset. (5)

MicroRNA data. Genes regulated by the same microRNA formed

one gene module (where predicted target genes of the microRNAs

were taken from miRBase, http://www.ebi.ac.uk/enright-srv/

microcosm/htdocs/targets/v5/, target gene set version 5).

Because of the hierarchical structure of the ontology tree, the

parent nodes (gene modules) in ontology hierarchy might inherit

SINs from their children nodes (gene modules). To ensure the

specificity of inter-module interaction, we control the gene module

size and only gene modules containing between 100 and 200

genes were selected.

Generation of compound sensitivity gene signatures
Biological response and gene expression data from the NCI/

NIH Developmental Therapeutics Program In Vitro Cell Line

Screening Project [20] (http://dtp.nci.nih.gov) was used to

determine gene signatures for a series of compounds. The project

screens test compounds against a panel of 60 cell lines and for each

compound measures: (i) a biological response pattern (i.e., the

GI50 value, the compound concentration that causes 50% cell

growth inhibition) which is represented by a Response matrix R

(compounds 6 cell lines); and (ii) the baseline gene expression

profile for each compound for each of the 60 cell lines which is

represented by a gene expression matrix G (genes6cell lines). For

each compound, the Pearson Correlation Coefficients (PCC)

between the GI50 pattern across 60 cell lines and each gene

expression pattern across 60 cell lines were calculated [21], and

genes with a PCC P-value,0.05 were selected as the compound

sensitivity associated genes. The effects of other p-values were also

examined but were not found to have much effect on the results

(Table S1).

Construction of inter-module cooperation networks from
prognosis data

(1) Identification of query modules. Over-represented gene

modules in genes interrogated in the NCI 60 project (gene

expression matrix G) were detected by a fitting to a hypergeo-

metric distribution (see Supporting Text S1 for details). These

identified modules were then used as query modules (Figure 1c,
A1; Figure 1e, A1) to search for cooperative modules to form a

2-character header indicating the gene module definition source, PN: protein subnetwork; PA: pathway; BP: Gene Ontology biological process; MF:
Gene Ontology molecular function; CC: Gene Ontology cellular component; MR: microRNA targets.
doi:10.1371/journal.pone.0013937.g005
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directed network where all edges ran from the Query nodes to the

Cooperative nodes;

(2) Identification of cooperative modules and creation of

Disease-specific inter-module cooperation network. Cooperative

modules were identified from prognosis data, which comprised

microarray gene expression data generated from cancer patients

and a prognosis that was classified as either good outcome (longer

survival time) or bad outcome (shorter survival time). Data sets

were analyzed for lung cancer [41], breast cancer [42], ovarian

cancer [43] and leukemia (AML) [44] (Supporting Text S1). For

each module in the query set from (1), we scanned the prognosis

data to identify synergistic gene partner, resulting in a synergistic

gene list. Synergistic partners were identified using an information

theoretic measure of synergy based on the patient microarray

expression data and the prognosis outcome [45] (Supporting
Text S1). Over-represented gene modules in this synergy gene list

were identified by fitting to a hypergeometric distribution,

resulting a list of gene modules (Figure 1c, B1; Figure 1e,
B1). For each cancer dataset, this produced a Disease-specific

Inter-Module Cooperation Network (IMCN) consisting of Query

and Cooperative nodes with edges running from Query nodes to

Cooperative nodes (Figure 1e).

(3) Perturbation modules and Pattern of Action (POA): In order

to investigate the effect of a drug compound on a IMCN we

generated an associated Pattern of Action (POA) for each

compound. This was done by selecting modules identified in the

previous step that were associated with the compound and

overlaying them on the disease-specific IMCN (Figure 1f).

Compound Pattern of Action map and the definition of
perturbation index

To quantify the compound ‘Pattern of Action’ we defined a

perturbation index that was defined in terms of the number of

compound gene ‘hits’ on modules within the IMCN. Compound

gene ‘hits’ were defined as the genes which were significantly

correlated with compound sensitivity across 60 cell lines. If at least

one gene within a module (node in IMCN) is hit by the compound,

this module is said to be hit by the compound. The perturbation

index (PI) of a compound c was defined as

PI cð Þ~
PN

i~1 Hi|Lið Þ
G cð Þ

where N is the number of gatekeeper modules. For each

gatekeeper module, Hi is the number of gene hits by compound

c and Li is the number of active links, where a link is formed when

both source node and target node are hit by compound c. The

index is normalized by the total number of gene hits by the

compound: G(c).

Bootstrapping-based assessment of ability of
perturbation index to discriminate successful drugs from
the candidate pool

To investigate whether the Perturbation Index could be used

to identify successful drugs from a broader range of compounds,

a Drug Candidate set C was downloaded from the NCI Stan-

dard Agent Database (http://www.dtp.nci.nih.gov/docs/cancer/

searches/standard_agent.html); a set S of successful lung cancer

drugs were identified from a review paper [46], and overlapped

with C. The perturbation index was then calculated for each entry

in C and S. To test the significance of the differences in the PI

distributions for S and C we utilized a bootstrap based method

(with replacement). Given there are n compounds in S, we

generated the background distribution by sampling n compounds

20000 times from candidate pool C, and calculated the average of

the perturbation index. Then we calculated the p-value based on

the number of times the average index of the candidate pool was

larger than the index for set S.

Quantification of drug combination synergy
To examine the effects of combined drug treatment, the drug

list was expand to include both approved lung cancer drugs (set S,
from review paper [46]) and new molecularly targeted drugs in

clinical development (from review paper [47]), and overlapped

with screened compounds in NCI 60 cell lines screening project.
All possible pairwise combinations of compounds in this combined

list were investigated. For each combination of two compounds,

the union of sensitivity associated gene lists of the two compounds

was formed and the perturbation index of each drug combination

was calculated in the same way as the individual compound.

Determination of genetic and epigenetic aberration
frequency in inter-module network

It has been proposed that events such as DNA mutation and

CpG methylation may play an important role in cancer. Thus,

genes that were highly represented in the IMCNs were identified

and then inspected to see their frequency characteristics of

mutation and methylation events.

(1) Identification of highly represented genes in gatekeeper and

checkpoint modules

As the gene modules were created from relationships defined in

ontologies, protein interaction networks, pathways and miRNA

targets, individual genes will, in general, be present in multiple gene

modules. Therefore, the number of times each gene appeared in

checkpoint modules and gatekeeper modules, respectively, was

calculated and two sets of the 10% and 20% most frequently

occurring genes were selected as representative genes. This produced

1230 representative genes for checkpoint modules and 183 genes for

gatekeeper modules for a 10% cutoff; and 2461 genes for checkpoint

modules, 366 genes for gatekeeper modules for a 20% cutoff.

(2) Gene-level somatic mutation and DNA methylation data

Somatic mutation data was obtained from the Sanger Institute

Catalogue Of Somatic Mutations In Cancer web site, http://

www.sanger.ac.uk/cosmic (version 42, May 28, 2009) [48].

Aberrant CpG methylation data in human tumours was obtained

from the ‘MethCancer DB’ web site, http://www.methcancerdb.

net (April 22, 2008) [49].

(3) Somatic mutation and DNA methylation incident rates

Incident rate of somatic mutations for each type of gene module

(gatekeeper and checkpoint) was defined as:

IRmut~
Xmut

N

Where Xmut is the number of mutated representative genes, and

N is the total number of representative genes.

Incident rate of aberrant CpG methylation (IRmet) for each type

of gene module was defined as:

IRmet~
Xmet

N

Where Xmet is the number of aberrantly methylated represen-

tative genes, and N is the total number of representative genes.
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To test whether the gatekeeper IRmut was significantly different

from the checkpoint IRmut, a p-value was calculated according to

p~1{binocdf Xmut,N,Pmutð Þ

Where binocdf is the Binomial cumulative distribution function,

Xmut is the number of mutated gatekeeper genes in the test set, N is

the total number of gatekeeper genes in the test set and Pmut is the

probability of a mutation event in checkpoint modules (equal to

the checkpoint IRmut).

The final two-sided p-value p2 was then calculated from

p2~2| min p,1{pð Þ

where min returns the smaller of p or 1-p.

The p-value for methylation events in the gatekeeper and

checkpoint modules was calculated in the same manner.

Supporting Information

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pone.0013937.s001 (0.12 MB

DOC)

Table S1 The effect of drug-gene association P-value cutoff on

bootstrap result.

Found at: doi:10.1371/journal.pone.0013937.s002 (0.04 MB

DOC)

Figure S1 Gatekeeper gene modules in various type of cancer.

Found at: doi:10.1371/journal.pone.0013937.s003 (0.63 MB TIF)

Figure S2 Bootstrap results for pseudo index. To test whether

our results are biased by study bias introduced by gene module

definition, we defined a pseudo index for each compound =

Nnet/Ntotal, where Nnet is the number of gene hits in lung cancer

network for a given compound, and Ntotal is the number of genes

in the compound sensitivity-associated gene list. The same

bootstrap procedure (as demonstrated in Figure 4) run on this

pseudo index and result are demonstrated here. Blue line shows

background distribution and the red line shows the average pseudo

index of successful drugs. This figure clearly shows that this pseudo

index could not discriminate success drugs from candidate pool (P-

value.0.05).

Found at: doi:10.1371/journal.pone.0013937.s004 (0.45 MB TIF)

Figure S3 The effect of network size on perturbation index. This

figure shows that the number of network hits is proportional to the

overall number of compounds gene signatures (left), whereas the

perturbation index is independent of the number of compounds

gene signatures (right).

Found at: doi:10.1371/journal.pone.0013937.s005 (0.56 MB TIF)

Figure S4 The effect of gene module size on bootstrap results

(gene module size from 50–100 genes/modules, 24 gatekeeper

modules). In the main text we only selected modules which

contained 100–200 genes. To test whether our results were

sensitive to gene module size, we investigated the bootstrap results

(Figure 4c–4f in main text) when we changed the gene module

size. We investigated ranges 50–100, 50–200, 50–300, 50–400,

50–500, 50–600 (Figures S4–S9). In line with result demonstrated

in Figure 4c–4f, the bootstrapped P-values of the perturbation

index (top left plot in each figure) are always smaller (better) than

the modified perturbation index definition (as control, bottom left

of each plot).This plot shows bootstrap results for evaluating if the

average Perturbation index (PI) of successful drugs against lung

cancer (NSCLC) is significantly different from the candidate

compounds (see Methods). The meaning of each subplot is exactly

the same with Figure 4c–4f. Blue line shows background

distribution and the red line shows the average PI of successful

drugs. Top-left: the bootstrap result by using defined PI. We also

considered modified PI definitions and investigated their effect/

contribution on the performance of PI. These modifications

include: top-right: result from pseudo PI definition by using

checkpoint modules information to replace gatekeeper modules

information, bottom-left: result from pseudo PI definition by using

gatekeeper modules hits; bottom-right: result from pseudo PI

definition by using checkpoint modules hits.

Found at: doi:10.1371/journal.pone.0013937.s006 (0.75 MB TIF)

Figure S5 The effect of gene module size on bootstrap results

(gene module size from 50–200 genes/modules, 44 gatekeeper

modules). See Figure S4 for details.

Found at: doi:10.1371/journal.pone.0013937.s007 (0.72 MB TIF)

Figure S6 The effect of gene module size on bootstrap results

(gene module size from 50–300 genes/modules, 57 gatekeeper

modules). See Figure S4 for details.

Found at: doi:10.1371/journal.pone.0013937.s008 (0.71 MB TIF)

Figure S7 The effect of gene module size on bootstrap results

(gene module size from 50–400 genes/modules, 60 gatekeeper

modules). See Figure S4 for details.

Found at: doi:10.1371/journal.pone.0013937.s009 (0.71 MB TIF)

Figure S8 The effect of gene module size on bootstrap results

(gene module size from 50–500 genes/modules, 64 gatekeeper

modules). See Figure S4 for details.

Found at: doi:10.1371/journal.pone.0013937.s010 (0.71 MB TIF)

Figure S9 The effect of gene module size on bootstrap results

(gene module size from 50–600 genes/modules, 72 gatekeeper

modules). See Figure S4 for details.

Found at: doi:10.1371/journal.pone.0013937.s011 (0.71 MB TIF)
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