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Abstract

In mammals, myocardial cell death due to infarction results in scar formation and little regenerative response. In contrast,
zebrafish have a high capacity to regenerate the heart after surgical resection of myocardial tissue. However, whether
zebrafish can also regenerate lesions caused by cell death has not been tested. Here, we present a simple method for
induction of necrotic lesions in the adult zebrafish heart based on cryoinjury. Despite widespread tissue death and loss of
cardiomyocytes caused by these lesions, zebrafish display a robust regenerative response, which results in substantial
clearing of the necrotic tissue and little scar formation. The cellular mechanisms underlying regeneration appear to be
similar to those activated in response to ventricular resection. In particular, the epicardium activates a developmental gene
program, proliferates and covers the lesion. Concomitantly, mature uninjured cardiomyocytes become proliferative and
invade the lesion. Our injury model will be a useful tool to study the molecular mechanisms of natural heart regeneration in
response to necrotic cell death.
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Introduction

All organisms have evolved means of dealing with tissue damage

due to injury or disease. In most species, healing of epidermal

wounds is an efficient process of repair, whereas the ability to

recover from damage to other organs or structures varies widely.

Mammals (including humans) can repair injury of skeletal muscle

and peripheral nerves, and regenerate liver and pancreas, but have

limited regenerative abilities with respect to other organs. In

contrast, lower vertebrates, such as salamanders and fish, can

completely regenerate lost limbs/fins and repair damage to lens,

retina, kidney, and central nervous system [1,2,3]. Intriguingly,

these organisms can also regenerate the heart [4,5]. This stands in

marked contrast to the mammalian heart, where tissue damage

after ischemic cell death caused by myocardial infarction is

irreversible because the mammalian heart is not capable of

sufficient tissue regeneration [6,7,8]. Instead, the injured myocar-

dium is replaced by a scar. This lack of tissue repair results in

permanently reduced cardiac function after injury and will

eventually lead to heart failure. To compensate for reduced

cardiac function, the myocardium can undergo some hypertrophy,

but does not produce new cardiomyocytes (CMs).

Intriguingly however, the adult mammalian heart contains

resident progenitor cells that have the potential to differentiate into

CMs (for review see [8]). These cells might play a role in

homeostatic replacement of dying CMs, but they appear not to be

activated for replacement of injured cells. Furthermore, attempts

to achieve tissue replacement by transplantation of progenitor cells

of various kinds into infarcted hearts have also generally failed (for

review see [6,7,8]). The observed small improvement of heart

function in such experiments is likely due to secretion of factors

from the transplanted cells that positively influence vascularization

and heart remodelling. Damaged myocardium is also not replaced

from surviving CMs, since mature adult mammalian CMs are

largely postmitotic and do not proliferate in response to injury.

Interestingly, however, recent studies have shown that prolifera-

tion of mammalian cardiomyocytes can be re-activated by

experimental modulation of signaling pathways [9]. These findings

indicate that mammalian CMs are not principally unable to

proliferate, and that it might be possible to activate intrinsic

regenerative potential in the injured heart using the correct

molecular signals.

In contrast to mammals, zebrafish, Danio rerio, efficiently repair

damaged myocardium by production of new CMs in the absence

of scar formation [4,10]. Zebrafish are an excellent model to study

the mechanisms of natural heart regeneration due to a wealth of

accumulated knowledge about heart development and the

availability of many molecular, genetic and genomic tools

[11,12,13]. Furthermore, due to their short generation time, small

size and cheap husbandry, a high number of individual fish can be

studied and transgenic and mutant lines can be produced quickly

and at relatively low cost. The zebrafish heart is also easily

accessible for surgical or other experimental manipulations, the

animals are highly tolerant to experimental cardiac injury and
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display robust and efficient heart regeneration after ventricular

resection [10].

After surgical removal of up to 20% of the zebrafish ventricle

the wound is sealed with a blood clot within minutes [4,14]. A few

days after amputation (dpa), profound transcriptional responses

occur in the entire epicardium, including upregulation of genes

normally expressed during development, which is followed by

proliferation and thickening of the epicardial cell layer [15].

Subsequently, increased expression of developmental markers can

be detected at the amputation plane, presumably in CMs [15].

CMs close to the amputation plane change their ultrastructure,

sarcomeres disassemble and large dysmorphic mitochondria

appear while total mitochondrial density is reduced [16,17].

Therefore CMs have been proposed to de-differentiate in response

to injury. In transgenic fish expressing the red fluorescent protein

DsRed under control of the CM specific promoter cardiac myosin

light chain (cmlc2, myl7), a population of CMs expressing low levels of

DsRed starts to be detectable at around 7 dpa in the wound area

[15,16]. These presumably represent CMs that have only recently

started to redifferentiate and reactivated the transgene and thus

have not yet accumulated high levels of DsRed. At the same time,

proliferation of both old and newly formed CMs can be detected

[15]. Thus, zebrafish heart regeneration involves replacement of

the resected myocardium with newly forming cardiomyocytes.

Recent genetic lineage tracing data using the Cre-Lox system

has indicated that the entire regenerated myocardium is derived

from existing, differentiated CMs [16,17]. In particular, a

subepicardial population of CMs that upregulate a gata4 promoter

fragment after ventricular resection appears to produce the bulk of

the regenerated myocardial tissue [16]. Thus, a model emerges in

which CMs in the subepicardial space dedifferentiate in response

to injury, re-enter the cell cycle and proliferate to replace the

missing tissue. At 60 dpa, most of the wound has been resolved,

the missing myocardium has been replaced and no scar tissue has

formed [4,14]. Thus, zebrafish completely regenerate surgically

removed myocardium.

Although the regenerative capacity of the zebrafish heart is

impressive, it has remained untested whether it is associated with

the type of injury that has so far been used, tissue removal.

Clinically relevant models of heart injuries in mammals involve

tissue death, typically due to ischemia [18]. It is conceivable that

necrotic tissue represents an obstacle to regeneration that also the

zebrafish cannot overcome. To address this, we have established a

cryoinjury model of the adult zebrafish heart. We find that

zebrafish robustly regenerate ventricular necrotic lesions and that

the regenerative response involves early activation of the

epicardium and induction of cardiomyocyte proliferation. Thus,

our results show that the regenerative abilities of the zebrafish

heart are not restricted to damage by tissue removal and that

similar cellular mechanisms underlie regeneration after resection

and cryoinjury. Our injury model will be of great use for studies of

the molecular mechanisms of heart repair.

Results and Discussion

Zebrafish regenerate cryoinjury-induced lesions
To establish a heart cryoinjury model, we exposed the apex of

the ventricle by surgically opening the body wall and pericardial

sac and froze the ventricle by application of dry ice. Fish mortality

was ,1%, which is lower than the mortality after ventricular

resection in our hands. Furthermore, cryoinjured fish showed little

impairment in swimming and feeding behaviour, indicating that

the cryoinjury was well tolerated. Histological analysis of injured

hearts stained with Acid Fuchsin Orange G (AFOG), which labels

myocardium orange, collagen blue and fibrin red showed reduced

tissue organization, loss of myocardium and massive accumulation

of fibrin-rich wound tissue (red) four days post injury (dpi, Fig. 1B,

insert 2) compared to control untreated hearts (Fig. 1A).

Importantly, cryoinjured fish were able to regenerate the

damage. Histological analysis showed that by 14 dpi the size of

the lesion had decreased and, importantly, there was no sign of

collagen-rich scar tissue formation (Fig. 1C). Rather the lesion

continued to appear enriched with fibrin (Fig. 1C, insert 2). By 60

dpi, the lesions had further dramatically decreased in size (Fig. 1D).

We estimated the extent of recovery by measuring the size of

the lesioned area in the histological section displaying the

biggest wound in each cryoinjured heart. Using this method, we

found that at 4 dpi, the largest parts of the lesions reproducibly

affected 25% of the ventricle (Fig. S1A). Thus, zebrafish tolerate

large heart lesions, similar to cryoinjured mice [19]. At 14 dpi,

the upper injury limit had dropped to 10%, and at 60 dpi to 2%

(Fig. S1A).

To quantify the lesions and the regeneration process more

precisely, we repeated the whole experiment, performed serial

sections of entire hearts at 3 dpi, 41 dpi and 60 dpi, and measured

the lesioned area and the whole ventricle area on all sections. The

largest parts of the lesions affected 26% of the ventricle area (data

not shown), which is very similar to the upper lesion limit seen in

the first experiment, indicating that our cryoinjury procedure

results in highly reproducible damage. Calculation of the lesioned

area of entire hearts revealed that on average 15% of the ventricle

were affected at 3 dpi (Fig. 1E). The lesion had dramatically

reduced in size to 3% of the ventricle at 41 dpi and to 0.5% at 60

dpi (Fig. 1E). Thus, the lesion size dropped 30-fold within 60 days.

The average size of the ventricle stayed the same in both sets of

experiments, indicating that damaged tissue had been replaced

(Fig. 1F and Fig. S1B).

At 60 dpi, the small remaining lesioned tissue was interspersed

with myocardial cells (arrowheads in Fig 1D, insert 2), indicating

that newly formed cardiomyocytes had penetrated the lesion.

While 3 out of 12 analyzed fish showed complete regeneration

without any sign of collagen deposition at 60 dpi, small patches of

collagen could be detected in 75% of the analyzed hearts,

indicating that some scar tissue had formed (Fig. 1D, insert 2). This

is in agreement with the regenerative success after ventricular

resection, where small collagen deposits also have been reported at

60 days post resection [4]. The speed of regeneration after

resection and cryoinjury appears to be similar as well, since after

resection of 20% of the ventricle, 14% of the ventricle are still

missing at 30 days post resection as reported by Poss et al. [4],

while we find that the upper lesion size after cryoinjury of 26% of

the ventricle was reduced to 12% at 41 days post injury. However,

the blood clot/wound tissue formed after ventricular resection

appears to be removed faster than the necrotic lesions caused by

cryoinjury, since we found that at 30 days post resection of 20% of

the ventricle, the upper size limit of the remaining detectable

wound tissue was 2% (data not shown), and 12% after cryoinjury

at 41 dpi. We conclude that zebrafish can regenerate cryoinjury-

induced myocardial lesions with little scar formation.

Cryoinjury causes necrotic cell death
Acridine orange staining of live cryoinjured hearts at 1 dpi

showed intense staining at the injured ventricular apex, indicative

of cell death (Fig. S2). To characterize the cellular damage caused

by cryoinjury in more detail, we analyzed semi-thin plastic sections

stained with toluidine blue. In uninjured hearts, the exterior of the

ventricle was composed of a compact layer of cardiomyocytes

(brackets in Fig. 2B and 2E), which was clearly demarcated from

Zebrafish Regenerate Necrotic Heart Lesions
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internal cardiomyocytes that were organized into trabeculae

(Fig. 2A–C). Cardiomyocytes showed characteristic striations or

a granular structure depending on their orientation relative to the

plane of section (Fig. 2C, D) and they contained nuclei with a

prominent nucleolus (data not shown). The epicardial epithelium

surrounding the myocardium was evident as a single cell layer

(arrow in Fig. 2E). The intra-trabecular space was filled with

erythrocytes (e in Fig. 2C). One day after cryoinjury, the external

myocardial layer was reduced in width and devoid of cells

displaying cardiomyocyte morphology (Fig. 2F, bracket in Fig. 2G).

Likewise, most myocardial cells in the affected trabecular area had

lost their typical striated morphology (Fig. 2H, I) and characteristic

nuclei, and displayed vacuolar structures indicative of cell death

(asterisks in Fig. 2I) [20]. Furthermore, erythrocytes were strongly

enriched in the lesioned area (e in Fig. 2G, I). The wounded area

was found to be infiltrated with leukocytes, most of which

displayed the characteristic nuclear morphology of neutrophil

granulocytes (arrowheads in Fig. 2J, L). This indicates an

induction of an inflammatory response to clear cellular debris

from the affected area. During the following days the wound area

was further remodeled. At 3 dpi the morphology of the ventricular

surface had changed to a thickened layer with a loose appearance

due to prominent intracellular space and the absence of tightly

packed cardiomyocytes (Fig. 2M, N). The inner part of the lesion

was predominated by erythrocytes (Fig 2O and e in Fig. 2P). No

cardiomyocytes were found in the lesioned area, rather cell debris

(Fig. 2Q) that was often closely associated with granulocytes

(arrowhead in Fig. 2Q).

Electron microscopy of peripheral ventricular cell layers in

uninjured hearts revealed subepicardial cardiomyocytes with

prominent myofilaments and groups of electron dense mitochon-

dria and a single layer of epicardial cells (Fig. 3A). In contrast, in

the lesioned area of cryoinjured hearts at 7 dpi, cellular debris

(Fig. 3B) and large tissue gaps (asterisk in Fig. 3B) could be

detected. Furthermore, the lesion contained remnants of cardio-

myocytes displaying highly disorganized myofilaments and

damaged mitochondria (Fig. 3B, C). Electron micrographs also

confirmed the presence of heterophil/neutrophil (arrows in

Fig. 3D) and eosinophil granulocytes (Fig. 3E) in the lesion.

Overall, our histological and ultrastructural analyses indicate

that cryoinjury resulted in necrotic cell death and loss of

cardiomyocytes in the lesioned area, which was accompanied by

infiltration of erythrocytes and leukocytes.

All three heart layers are susceptible to cryoinjury
Loss of cardiomyocytes in the cryoinjured area was further

evident by loss of transcripts for the cardiomyocyte specific gene

cardiac myosin light chain 2 (cmlc2, myl7) (Fig. 4A). At 3 dpi, the

Figure 1. The zebrafish heart regenerates after cryoinjury induced tissue damage. (A–D) Sections of uninjured control hearts (A) and
hearts at 4 (B), 14 (C) and 60 (D) days after cryolesion (dpi = days post injury) stained with Acid Fuchsin Orange G, which labels cardiomyocytes in
orange, fibrin in red and collagen in blue. Magnification #1 of uninjured heart shows healthy myocardium. Magnifications #1 of injured hearts show
cardiomyocytes at the lesion edges and parts of wound tissue. Close up views of the lesioned area are shown in magnifications #2. Note that the
lesioned area, showing fibrin accumulation at 4 dpi and 14 dpi and minor deposits of collagen at 60 dpi is decreasing in size. Cardiomyocytes are
missing at 4 and 14 dpi and at 60 dpi remaining collagen rich tissue is interspersed with cardiomyocytes (arrowheads). Wound edges are indicated by
a black dashed line. Scale bars: 100 mm in overviews, 25 mm in close ups. (E) Quantification of the lesioned area normalized to the size of the ventricle.
Measurements were performed on all serial sections for each heart. Error bars = s.e.m., significance tested by Student’s t-test (41 dpi and 60 dpi) and
Mann-Whitney rank sum test (others). n = 5 hearts 3 dpi (73 sections), 6 hearts 41dpi (89 sections), 7 hearts 60 dpi (118 sections). (F) Quantification of
the ventricular area of the hearts analysed in E. Measurements were done on all sections for each heart. Significance tested by Student’s t-test (41 dpi
and 60 dpi) and Mann-Whitney rank sum test (others).
doi:10.1371/journal.pone.0018503.g001
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lesioned area was completely devoid of cmlc2 positive cells (Fig. 4A).

Expression had not recovered at 7 dpi. However, while the cmlc2-

negative region was clearly demarcated from the cmlc2-expressing

myocardium at 3 dpi, at 7 dpi scattered cmlc2-positive cells

appeared at the injury border zone and protrusions of cmlc2-

positive areas were found to extend into the lesion (arrow in

Fig. 4A). These data indicate that by 7 dpi cardiomyocytes had

started to invade the lesioned area. Damage to cmlc2-expressing

CMs was already evident at 1 dpi as seen by loss of GFP

fluorescence in cmlc2:GFP transgenic fish (Fig. 4B). We thus asked

whether the endocardium is similarily affected. Indeed we found

that GFP expression in fli1:eGFP transgenic fish [15,21], which

specifically labels the vascular endothelium and endocardium, was

lost in the lesioned area at 1 dpi (Fig. 4C).

We asked whether apoptosis contributes to cell death after

cryoinjury as well. While we could only very rarely detect

apoptotic cells in uninjured hearts, a sizable number of cells was

TUNEL-positive in the lesioned area at 1 dpi (Fig. 4D). Thus, both

necrosis and apoptosis lead to myocardial tissue loss after

cryoinjury. Interestingly, some of the TUNEL-positive cells were

located on the outer surface of the heart (yellow dashed lines),

suggesting their epicardial identity (boxed area, Fig. 4D).

Figure 2. Cryoinjury causes cardiomyocyte death, inflammatory response and massive changes in tissue morphology. Semi-thin
histological sections of an uninjured heart (A–E) and cryolesioned hearts at 1 dpi (F–L) and 3 dpi (M–Q) stained with Tuloidin blue are shown. Wound
edges are indicated with red dashed lines (F, M). Note striated cardiomyocytes in the compact external (B) and in the trabeculated internal (C, D)
myocardium in the uninjured heart and the single layer of epicardial epithelium covering the myocardium (red arrow in E). (F–L) At 1 dpi, the
thickness of the external myocardial layer is reduced (compare brackets in B and G) in the lesioned area, and most cardiomyocytes have lost striations
suggesting myofibril disassembly (G, H, I). Also note appearance of large vacuolar structures (asterisk in I) indicative of cell death. Leukocytes, largely
heterophil granulocytes, delineate the wound edges (J, K, L; see red arrowheads). (M–Q) At 3 dpi the external ventricular layer displays a loosened
morphology but is devoid of cardiomyocytes (N). At 3 dpi the lesioned area is largely filled with erythrocytes (‘‘e’’ in O, P). Cellular debris in the wound
area is often associated with granulocytes (red arrowhead in Q). For each time point n = 3 hearts. Scale bars in A, F and M are 100 mm. Scale bars in B,
G and N are 25 mm. Scale bars in D, I, L and P are 5 mm.
doi:10.1371/journal.pone.0018503.g002
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In summary, these data suggest that epicardium, myocardium

and endocardium are susceptible to apoptotic and necrotic cell

death in response to cryoinjury.

Organ-wide response of the epicardium to cryoinjury
One early response to zebrafish ventricular resection is an

activation of the epicardium, which occurs in the entire heart and

results in upregulation of a developmental gene program and

induced cell proliferation [15]. We thus asked whether the

epicardium responds similarly to ventricular cryoinjury. The

tbx18 transcription factor is expressed in the epicardium during

zebrafish embryonic development [22], but is not detectable in the

uninjured adult epicardium (Fig. 5A). In contrast, cryoinjury

activated tbx18 transcription in the entire epicardium by 3 dpi

(arrowheads in Fig. 5A). The wilms tumor 1 (wt1) gene is another

marker for the developing vertebrate epicardium [23]; in

zebrafish, both wt1 paralogs (wt1a and wt1b) have been reported

to be expressed in the adult heart [24,25]. We thus asked whether

a zebrafish transgenic line expressing GFP under control of wt1b

regulatory sequences [24] reports activation of the epicardium

after injury. We first tested whether the transgene is activated in

response to ventricular resection (‘‘amputation’’). While no GFP

activity could be detected in uninjured hearts, strong GFP

expression was evident in the outermost cell layers of the heart

at 3 days post amputation (dpa) and still detected at 7 dpa (white

arrows in Fig. 5B). Likewise, GFP activity was found in cryoinjured

hearts at these stages (white arrows in Fig. 5B). After both types of

injuries organ-wide upregulation of wt1b:GFP was seen that

included the entire surface of the ventricle, and also the atrium and

the bulbus arteriosus (yellow arrows in Fig. 5B). Similar to

uninjured controls, sham amputated hearts, in which the

pericardial sac had been opened but the ventricle left untouched,

displayed no GFP activity, showing that wt1b upregulation was

injury specific and not a general stress response (Fig. 5C). To

confirm that GFP expression in this transgenic line is confined to

epicardial cells, we co-labelled sections of amputated hearts for

tbx18 RNA and GFP protein at 3 dpa. We found that expression

overlapped (Fig. 5D), indicating that the wt1b:GFP transgenic line

is a useful tool to label injury-activated epicardial cells in the adult

zebrafish heart.

In amputated hearts of wt1b:GFP transgenic fish, a thickening of

the GFP+ cell layer was evident at the wound edges, and the blood

clot sealing the wound was partially overlain by GFP+ cells at

3 dpa (arrow in Fig. 5E), suggesting that epicardial cells had

moved into and covered part of the wound. Many GFP+ cells were

proliferating as indicated by co-labelling with PCNA (Fig. 5E). At

7 dpa, GFP positive cells that partly co-labelled with PCNA were

found covering the entire wound area, suggesting that by that

stage the epicardial outer surface of the heart had been restored

(Fig. 5E). Interestingly, in cryoinjured wt1b:GFP transgenic hearts,

Figure 3. Ultrastructural analysis of cryolesioned myocardium reveals cardiomyocyte cell death and an inflammatory response.
Electron micrographs of uninjured (A) and cryolesioned (7 dpi, B–E) zebrafish heart tissue. A normal organization of ventricular periphery with
epicardal epithelium (epi) and subepicardial cardiomyocytes displaying well-organized striated myofilaments (myo) with Z lines and groups of
electron dense mitochondria (m). A capillary (cap) is visible as well. (B) At 7 dpi, the lesioned area displays cellular debris and large tissue gaps (*)
around a small capillary. In the lower right corner: cardiomyocyte with damaged mitochondria (m) and disorganised myofilaments (myo). (C)
Magnification of the boxed area in B. A cryoinjured cardiomyocyte with disorganised mitochondria (m), myofilaments, and a loosened/ill defined
intercalated disc (arrows) is shown. (D, E) Granulocytes in the wound area. (D) Heterophil granulocytes (arrows), the upper one with a peripheral,
nonsegmented nucleus, the lower one with characteristic, cigar-shaped cytoplasmic granules. (E) Eosinophil granulocyte. Scale bars: 5 mm in A, B, and
D, 1 mm in C, and 2 mm in E.
doi:10.1371/journal.pone.0018503.g003
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Figure 4. Cryolesion results in loss of cardiomyocyte and endocardium-specific marker gene expression and in induction of
apoptosis. (A) In situ hybridization shows loss of cmlc2 (myl7) expression in the lesioned area at 3 and 7 dpi. The lesioned area is indicated by red
arrowheads. Note the protrusions of cmlc2 positive areas (black arrow) extending into the lesion at 7 dpi. Scale bars are 100 mm. n = 3 hearts (9
sections each) for each uninjured, 3 dpi and 7 dpi. (B) Loss of cmlc2 expression is already evident in cryoinjured hearts at 1 dpi of cmlc2:GFP
transgenic fish stained for GFP by immunofluorescence. Nuclei are stained with Dapi. Scale bar in overview is 100 mm, 25 mm in close-up. (C)
Endocardial GFP expression is lost in cryolesions of fli1:eGFP transgenic fish at 1 dpi. (D) TUNEL assay on hearts at 1 dpi detects an increased number

Zebrafish Regenerate Necrotic Heart Lesions
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GFP positive cells were detected at the outer surface of the entire

injured area already by 3 days post injury (arrow in Fig. 5F),

suggesting that epicardial cells migrated and covered the

cryoinjury-induced lesion more quickly than after ventricular

resection. Proliferation was also induced in epicardial cells after

cryoinjury, as evident by a large number of wt1b:GFP positive cells

of apoptotic cells (white arrowheads) compared to uninjured hearts. Wound area is indicated by white dashed line and the periphery of the heart is
marked by yellow dashed lines. Nuclei are stained with Dapi. Scale bar in overview is 100 mm. Scale bar in close up is 10 mm. n = 3 hearts each
uninjured and 1 dpi.
doi:10.1371/journal.pone.0018503.g004

Figure 5. Organ-wide activation of embryonic gene expression and cell proliferation in the epicardium in response to cryoinjury
and ventricular resection. (A) In situ hybridization for tbx18 shows an organ-wide expression (arrowheads) in the epicardium 3 days after
cryoinjury compared to undetectable expression in uninjured hearts. Wound edges are indicated by black dashed lines. Scale bars are 100 mm. n = 3
heart control and 3 dpi. (B) Organ-wide GFP induction in the transgenic wt1b:GFP line shows activated epicardium after ventricular resection and after
cryoinjury at 3 and 7 days after treatment. Induction of the transgene is visible in the thickened epicardium near the wound (white arrows) and in the
epicardium lining the bulbus arteriosus and atrium as well (yellow arrows). Uninjured hearts show no GFP expression. Nuclei were stained with Dapi.
Wound edges are indicated by white dashed lines. Scale bars are 100 mm. n = 5 hearts at all time points. (C) Organ-wide GFP induction in the
transgenic wt1b:GFP line is only observed after ventricular resection but not in uninjured or sham amputated control hearts. Nuclei were stained with
Dapi. Scale bars are 100 mm. (D) GFP expression in injured wt1b:GFP transgenic hearts is specific to the epicardium. Coexpression of tbx18 transcript
detected via in situ hybridization and GFP detected via antibody staining at 3 days post amputation is shown. Scale bar is 100 mm. n = 3 hearts.
Dashed line indicates wound edge. (E–F) Activation of epicardial proliferation in response to ventricular resection (E) and cryoinjury (F). Uninjured and
amputated hearts at 3 dpa and 7 dpa (E) or cryoinjured hearts at 3 dpi and 7 dpi (F) of wt1b:GFP fish were stained for GFP and PCNA expression.
Nuclei are stained with Dapi. Proliferating epicardial cells are indicated with white arrowheads. Note partial coverage of the wound with GFP-positive
epicardium in E (arrow) and full coverage in F (arrow). Scale bars are 100 mm in the overview and 25 mm in the close ups. Wound plane is indicated by
white dashed lines. n = 3 hearts (9 sections) for all conditions.
doi:10.1371/journal.pone.0018503.g005
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that expressed PCNA (Fig. 5F). GFP activity was sustained at 7

dpi, and epicardial cells likewise remained proliferative (Fig. 5F).

Together, these data suggest that cryoinjury results in an organ-

wide activation of a developmental gene program and induction of

cell proliferation in the epicardium. Thus, cryoinjury elicits a

similar response as ventricular resection. The timing and

amplitude of epicardial gene expression and proliferation

activation appear to be comparable between both injury models,

yet epicardial cells seem to be able to cover the lesion more quickly

after cryoinjury.

Induction of cardiomyocyte proliferation
In response to ventricular resection, zebrafish cardiomyocytes

have been shown to become proliferative and recent lineage

tracing data indicate that the majority of the regenerating

myocardium is derived from mature cardiomyocytes [15,16,17].

To test whether cryoinjury likewise results in cardiomyocyte

proliferation, we stained cmlc2:GFP transgenic hearts for PCNA.

Less than 2% of the cardiomyocytes were PCNA positive in

uninjured adult hearts (Fig. 6A, B). At 1 and 3 dpi, the lesioned

area was devoid of GFP due to the aforementioned loss of CMs

(Fig. S3 and Fig. 6A). At 1 dpi, no increase in the number of

PCNA positive cardiomyocytes could be detected in the

noninjured areas of the ventricle (Fig. S3). In contrast, at 3 dpi,

a large number of cells in the injured heart were positive for

PCNA, including cmlc2:GFP positive cardiomyocytes found close

to the lesion in the uninjured myocardium (white arrowheads in

Fig. 6A). Cardiomyocyte proliferation had increased 6 fold at 3 dpi

relative to injured hearts, with 12% of all ventricular CMs

expressing PCNA (Fig. 6B). Thus, cryoinjury induced an early

proliferative response of differentiated cardiomyocytes in the non-

lesioned myocardium. In addition, nuclei of GFP-negative cells

found in close association with cardiomyocytes in the uninjured

areas were also expressing PCNA, indicating that endocardial cells

likewise became proliferative (yellow arrowheads in Fig. 6A). To

confirm this, we stained cryoinjured hearts of fli1:eGFP transgenic

Figure 6. Activation of cardiomyocyte proliferation in response to cryoinjury. (A) Mature cardiomyocytes located close to the lesion in the
uninjured myocardium proliferate at 3 and 7 dpi. Uninjured and cryolesioned hearts (3 dpi and 7 dpi) of cmlc2:GFP transgenic fish were stained for
GFP and PCNA. Nuclei are stained with Dapi. Proliferating cardiomyocytes are indicated by white arrowheads. Proliferating endocardial cells are
indicated by yellow arrowheads (3 dpi). Note individual GFP+ cardiomyocytes inside the lesioned area at 7 dpi (red arrowheads). Scale bars are
100 mm in the overview and 25 mm in the close ups. n = 3 hearts (9 sections) at all conditions. (B) Quantification of the percentage of PCNA+
cardiomyocytes in uninjured versus cryolesioned hearts at 3 dpi. CMs were quantified in the entire ventricle. Error bars = s.e.m. n = 3 hearts (7
sections for 3 dpi, 5260 CMs counted; 9 sections for uninjured control, 7475 CMs counted), Student’s t-test was employed for statistical analysis, with
p,0.05. (C) Endocardial cells located adjacent to the lesion proliferate at 3 dpi. Cryolesioned hearts (3 dpi) of fli1:eGFP transgenic fish were stained for
GFP and PCNA. Nuclei are stained with Dapi. Proliferative endocardial cells are indicated by yellow arrowheads. Wound edge is indicated by a white
dashed line. Scale bars are 25 mm.
doi:10.1371/journal.pone.0018503.g006
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fish for PCNA. Indeed we detected proliferating endocardial cells

lining the trabeculated uninjured myocardium close to the lesioned

area in cryoinjured hearts at 3 dpi (Fig. 6C). Thus, all three layers

of the heart start to proliferate in response to cryoinjury.

At 7 dpi, individual GFP-positive cardiomyocytes and exten-

sions of GFP+ myocardium were found in the lesioned area (red

arrowheads in Fig. 6A), supporting the above mentioned

conclusion that cardiomyocytes had started to invade the injured

tissue by 7 dpi. Moreover, a significant number of cardiomyocytes

was positive for PCNA at this stage (Fig. 6A). Thus, cryoinjury of

the zebrafish heart resulted in induction of myocardial prolifer-

ation and invasion of the lesion with proliferative cardiomyocytes.

Conclusions
We describe a simple method for induction of necrotic lesions in

the adult zebrafish heart based on cryoinjury. Despite widespread

tissue death and loss of cardiomyocytes, epicardial and endocardial

cells caused by these lesions, zebrafish display a robust regener-

ative response, which results in substantial clearing of the necrotic

tissue and little scar formation. The cellular mechanisms

underlying this regenerative response appear to be similar to the

ones utilized during regeneration of ventricular resections. Early

after injury, the entire epicardium activates a developmental gene

program and becomes proliferative. We have found that

epicardium activation in response to ventricular resection and

cryoinjury is robustly reported by a wt1b:GFP transgenic zebrafish

line, which thus represents a useful tool for future studies of heart

regeneration. After both types of injury, the activated epicardial

cells cover the lesioned area, presumably by migration. We found

that the latter process is completed earlier in cryoinjured hearts

than after ventricular resection. Whether this is due to an intrinsic

differential response of epicardial cells induced by the type of

injury or based on the properties of the lesioned area, eg. a

consequence of the properties of the cellular and acellular

substrates that the epicardial cells have to migrate on, remains

to be tested. We did not detect significant differences in the timing

or amplitude of gene expression induction or upregulation of

proliferation in epicardial cells in response to the two types of

injury, indicating that intrinsic differences in the epicardial

response are less likely to be causative for the observed difference

in wound coverage. However, after ventricular resection, the

wound tissue adheres more strongly to the pericardial sac than

after cryoinjury. It is possible that wound coverage by the

epicardium is impaired by this adherence.

Regeneration of myocardium removed by ventricular resection

appears to occur via proliferation of differentiated cardiomyocytes

[15,16]. We likewise find that mature cardiomyocytes, expressing

cardiac myosin light chain (cmlc2, myl7) proliferate in response to

cryoinjury and that proliferating cardiomyocytes invade the

lesioned area. These data strongly indicate that necrotic lesions

are repaired by proliferation of existing mature cardiomyocytes.

Overall, our work shows that zebrafish cannot only restore

surgically removed heart tissue, but also regenerate necrotic

lesions. Since the latter type of injury is closer to the cardiac tissue

damage seen in human patients, our results underscore the

relevance of research into the cellular and molecular mechanisms

of natural heart regeneration in the zebrafish for efforts to devise

regenerative therapies in humans. While we find that both

ventricular resection and cryoinjury induced lesions are repaired

using similar cellular mechanisms, we noticed a few temporal

differences. Combined with the fact that we find setting of

cryoinjuries to be less demanding of the experimenter and better

tolerated by the fish than ventricular resection, we expect that this

injury model will be highly valuable for future research into the

molecular mechanisms of zebrafish heart regeneration.

Methods

All animal experiments have been performed in accordance

with the guidelines of the state of Saxony and have been approved

by the Regierungspräsidium Dresden (permit number 24-9168.11-

1/2008-1).

Transgenic fish lines
To visualize cardiomyocytes, we used transgenic zebrafish

expressing GFP under control of the cmlc2 (myl7) promoter

(cmlc2:GFP, [26]), to label activated epicardial cells we used

wt1b:EGFPli1 transgenic fish [24] and to detect endocardial cells

we used fli1:eGFPy1 transgenic fish [21].

Ventricular resection
During ventricular resections ,20% of ventricular tissue was

removed from the apex using iridectomy scissors as described

previously [4].

Cryoinjury
Fish were anesthetized with 0.02% Tricaine (MS-222) and

transferred to a moist sponge for surgery. After visually locating

the posterior medial margin of the heart straight iridectomy

scissors were used to puncture the skin and the silvery pericardial

sac. Subsequently, an incision was made through both the skin and

pericardium starting from the junction of the pericardium and

peritoneum and reaching anteriorly for about 2/3 of the length of

the heart. The incision was spread open laterally using fine forceps

to expose the ventricle. Small pieces of dry ice were formed into a

conical shape with a length of ,20 mm, one end with a diameter

of ,2 mm and the other end with a pointed tip. The pointed tip of

the dry ice cone was applied to the posterior apex of the ventricle

for 10 seconds to cause the cryoinjury. After surgery the fish were

returned to holding tanks. To revitalize the fish a pipette was used

to vigorously squirt water over the gills until the fish started to

breathe regularly. Sham treated control fish in which the

pericardial sac was opened but the heart left untouched showed

no signs of necrosis, induction of wt1b:GFP expression or

upregulation of cardiomyocyte proliferation. Thus, hearts of

untreated fish served as uninjured control samples in most

experiments.

Histological methods and electron microscopy
Acid fuchsin-orange G (AFOG) staining was performed on

cryosections as described [4]. Measurements of wound area and

ventricle area on cryosections were performed with the Fiji

distribution of the ImageJ (NIH) software.

For semi-thin sections and electron microscopy, zebrafish hearts

were fixed in modified Karnovsky’s fixative (2% glutaraldehyde

+2% paraformaldehyde in 50 mM HEPES, [27,28]) at 4uC
overnight, and washed 2x in 100 mM HEPES and 2x in PBS. For

light microscopy the samples were embedded in the methacrylate

Technovit 7100 (Heraeus-Kulzer). They were transferred to a

microwave-assisted tissue processor (Leica-EM AMW) and

processed according to the following protocol: PBS (2x 3 min at

35uC, 15 W), 1% OsO4 in PBS (30 min at 50uC, 25 W, pulse:

10 s MW on, 50 s MW off), PBS (4 min at 37uC, 15 W), 2x water

(4 min at 37uC, 17 W), 30%, 50%, 70%, 95% and 2x 100%

ethanol (5 min each at 37uC, 15 W/11 W), Technovit 7100:eth-

anol (1:1) (15 min at 37uC, 11 W), Technovit 7100:ethanol (2:1,

3:1) (20 min each at 37uC, 11 W), pure resin (20 min at 37uC,
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11 W). After the AMW run, samples were transferred to fresh

Technovit resin overnight, and finally embedded. 2 mm sections

were mounted on glass slides and stained with 1% toluidin blue

0.5% borax. For electron microscopy, the specimens were

postfixed with 1% OsO4/water for 2 h on ice, washed with PBS

and water, and en bloc contrasted with 1% uranyl acetate in water.

The samples were then washed several times in water, dehydrated

in a graded series of ethanol, infiltrated in epon 812 (epon/ethanol

mixtures: 1:3, 1:1, 2:1, 3:1 1.5 h each, pure epon overnight, pure

epon 3 h), and embedded in flat embedding molds. Ultrathin

sections were collected on formvar-coated slot grids, stained with

lead citrate and uranyl acetate according to Venable and

Coggeshall [29], and analyzed on a FEI Morgagni 268 at 80 kV.

In situ hybridization
ISH on cryosections of hearts fixed in 4% paraformaldehyde

was performed using digoxygenin-labeled RNA probes of tbx18

and cmlc2 (myl7) as described [4]. For costaining with anti GFP

antibody, sections were initially stained for tbx18 expression using

in situ hybridization. This was followed by several washes in PBT

(1xPBS, 0.2% Tween-20) and blocking in NCS-PBT (10%

newborn calf serum, 1% DMSO, PBT). Incubation of anti-GFP

antibody (1:1500; Abcam #ab13970) was performed over night at

4uC. After several washes in PBT secondary anti-Chicken Alexa

488 (1:1000) was applied for 45 min. Following several washes in

PBT, sections were mounted in 70% glycerol in PBS and analyzed

with an Olympus upright microscope.

Immunofluorescence
Hearts were extracted, fixed in 4% PFA (in Phosphate buffer)

and cryosectioned into 14 mm thin sections. PEMTx buffer

(80 mM Na-PIPES, 5 mM EGTA, 1 mM MgCl2, pH 7.4; 0.2%

Triton-100) was used for immunohistochemistry. Primary anti-

bodies were anti-PCNA (1:5000; Dako #M0879) and anti-GFP

(1:1500; abcam #ab13970). Secondary antibodies conjugated to

Alexa 488 or 633 (Invitrogen) were used at a dilution of 1:1000.

Nuclei are shown by DAPI (49,6-diamidino-2-phenylindole)

staining. Confocal images were acquired using a Leica Sp5

confocal microscope.

Detection of necrosis and apoptosis
For acridine orange staining, zebrafish hearts were incubated in

acridine orange diluted in PBS (2 mg/ml, Invitrogen) for 1 h,

washed twice in PBS for 10 min, and imaged with a MZ16 FA

fluorescence stereomicroscope (Leica).

TUNEL staining was performed on 14 mm cryosections using

the ApopTag Red in situ Apoptosis Detection Kit (Chemicon)

according to the manufacturer’s instructions.

Supporting Information

Figure S1 Quantification of the largest extent of cryole-
sions and the size of the ventricle. (A) Quantification of the

upper limit of the lesioned area size normalized to the size of the

ventricle in experimental set 1. Measurements were performed on

the section displaying the biggest wound for each heart. Error bars

= s.e.m., significance tested by Student’s t-test. n = 5 hearts 4 dpi,

5 hearts 14 dpi, 4 hearts 60 dpi. (B) Quantification of the

ventricular area at 4, 14 and 60 dpi of the sections analysed in A.

One-way Anova test was used to show that ventricular areas are

not significantly different.

(TIF)

Figure S2 Acridin orange staining indicates cell death
(red signal, arrow) in cryoinjured heart at 1 dpi
compared to uninjured control.

(TIF)

Figure S3 Mature cardiomyocytes located close to the
lesion in the uninjured myocardium are not prolifera-
tive at 1 dpi. Cryolesioned hearts (1 dpi) of cmlc2:GFP transgenic

fish were stained for GFP and PCNA. Nuclei are stained with

Dapi. Scale bars are 100 mm in the overview and 25 mm in the

close ups.

(TIF)
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