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Abstract

Sequencing-based gene expression methods like RNA-sequencing (RNA-seq) have become increasingly common, but it is
often claimed that results obtained in different studies are not comparable owing to the influence of laboratory batch ef-
fects, differences in RNA extraction and sequencing library preparation methods and bioinformatics processing pipelines.
It would be unfortunate if different experiments were in fact incomparable, as there is great promise in data fusion and
meta-analysis applied to sequencing data sets. We therefore compared reported gene expression measurements for osten-
sibly similar samples (specifically, human brain, heart and kidney samples) in several different RNA-seq studies to assess
their overall consistency and to examine the factors contributing most to systematic differences. The same comparisons
were also performed after preprocessing all data in a consistent way, eliminating potential bias from bioinformatics pipe-
lines. We conclude that published human tissue RNA-seq expression measurements appear relatively consistent in the
sense that samples cluster by tissue rather than laboratory of origin given simple preprocessing transformations. The art-
icle is supplemented by a detailed walkthrough with embedded R code and figures.
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Background

Standard RNA-seq experiments begin with RNA extraction,
followed by library preparation, amplification and sequencing
[1]. Subsequently follows the computational analysis where se-
quence reads are assembled or mapped to a reference genome
and/or transcriptome, quantified and further analyzed to iden-
tify biologically interesting expression patterns (Figure 1a).

In recent years, the availability of RNA-seq data sets has dra-
matically increased, and today several resources are available
on the Web where users can download either raw sequence

data or precomputed gene expression values, or in some cases
query specific genes of interest in tissue-specific contexts.
The continuously increasing amount of public expression data
promises new opportunities to combine information from dif-
ferent studies, whether in the form of meta-analysis studies
(such as genome-wide association studies) [2] or by treating
published sample expression profiles as additional samples in
one’s own study to add power. For instance, a case-control gene
expression study of a disease may benefit immensely from add-
ing previously published data due to the high cost and difficulty
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of obtaining fresh and relevant samples. Another frequent scen-
ario is that investigators wish to compare their newly produced
RNA-seq data with published data as a form of ‘sanity check’—
are they similar to the appropriate previously published expres-
sion profiles and sufficiently distinct from published profiles
that should not be similar?

However, publicly available RNA-seq data sets from different lab-
oratories and studies are sometimes claimed to be incomparable
owing to the combined influence of reagent batch effects, differences
in RNA extraction protocols, library preparation methods and com-
putational processing (see [3] for a good overview of batch effects in
high-throughput biological data), and there are critical issues regard-
ing reproducibility and consistency that need to be considered to
make proper use of RNA-seq data. Here, we provide a practical guide
for using publicly available RNA-seq data by reviewing the consist-
ency of published expression values measured in Fragments Per
Kilobase per Million mapped fragments (FPKM) or Reads Per Kilobase
per Million mapped reads (RPKM) from four different studies and
evaluating the impact of reprocessing raw data from five studies. In
this study, we will focus only on reference-based analysis, leaving
aside assembly-based approaches.

The complexity of the RNA-seq pipeline creates many possibil-
ities for bias, and issues regarding the reproducibility of RNA-seq
data across laboratories have previously been addressed. For ex-
ample, one study reported that RNA-seq data are highly consistent
as long as the same laboratory protocols and versions of sample
preparation and sequencing kits are used [4], and another study re-
ported high intra-platform concordance when testing different
protocols across different sequencing platforms for the same sam-
ples [5]. However, given that a universal standardization of proto-
cols and equipment across laboratories is not practically possible,
comprehensive studies of reproducibility focused on the computa-
tional side of the RNA-seq pipeline are needed, to support develop-
ment of strategies for making RNA-seq data from different studies
comparable. A recent study [6] compared different mapping and
quantifications pipelines applied to the same (experimental and
simulated) data, concluding that the quantification method intro-
duces more variation than the alignment methods.

These studies are useful in that they quantify the variability
arising from the sequencing process itself [4], from library prep-
aration type and choice of sequencing platform [3] and from
computational processing [6]. To our knowledge, however, no
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Figure 1. Analyses of the 11 data sets with published precomputed FPKM/RPKM values (n¼13,078) for brain, heart and kidney samples from four different studies. (A)

Schematic representation of the standard RNA-seq pipeline. (B) Heat map with Spearman correlations between samples. (C) PCA, PC1 and PC2. Tissue types are indi-

cated with white (heart), black (brain) and grey (kidney). Studies are indicated with different symbols; circle (HPA), square (AltIso), diamond (GTex) and arrow head up

(Atlas). (D) ANOVA dependence of the laboratory factors layout, read length, preparation, number of raw reads and tissue. A colour version of this figure is available at

BIB online: http://bib.oxfordjournals.org.
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one has yet compared the reproducibility of gene expression
profiles from a more practical point of view, where library prep-
aration, sequencing method and computational processing
steps are allowed to vary. We therefore set out to do this.

This study focuses on the issue of comparing data sets gener-
ated by different laboratories on the same tissue types in samples
isolated from different individuals. This is a more practically rele-
vant type of comparison than the ones involving the same samples
processed by different labs. Our goals are to examine whether pub-
lished human tissue expression profiles (from brain, heart and kid-
ney) from different sources are consistent, whether any particular
preprocessing transformations are necessary and whether one
needs to reprocess all samples in a consistent way from raw se-
quence FASTQ files instead of working from published FPKM/RPKM
values. We also attempt to quantify which factors contribute the
most to variability between samples, using principal component
analysis (PCA) and analysis of variance (ANOVA). The main condi-
tion we use to discuss ‘consistency’ is to see whether the tissue
samples (brain, heart and kidney) from several different studies,
when subjected to PCA, cluster primarily by tissue rather than by
study, or according to some other principle.

Our results indicate that RNA-seq expression profiles in the
human tissues studied here appear relatively consistent in
the sense that they can readily be made to cluster according to
tissue with only light preprocessing.

The best results are obtained by log transformation and ap-
plication of a batch effect correction method (in this case,
ComBat [7]). There appears to be no major benefit of reprocess-
ing the FASTQ files and using Cufflinks [8] to calculate FPKMs
rather than just using the reported FPKM or RPKM values from
public sources; however, note that this observation may only
be valid when samples originate from different tissue types or
other biological states, such as in this case.

Comparing published gene expression
levels across studies
Analysis of untransformed published FPKM/RPKM
values

To investigate the consistency of publicly available expres-
sion profiles, we first downloaded published precomputed

expression levels from four projects involving RNA-seq of
human tissue samples: GTEx, Human Protein Atlas, RNA seq
Atlas and a study by Wang et al., which we call AltIso as an
abbreviation of the title of the corresponding paper [9–12] (see
Table 1 for information). Depending on study, FPKM or RPKM
(the single-end sequencing equivalent of FPKM) values from
RNA sequencing of brain (hypothalamus in the case of RNA
seq Atlas—we report it as ‘brain’ for simplicity), heart and kid-
ney human tissue samples were analyzed. From the published
data sets, genes that were expressed in all samples (FPKM/
RPKM>¼ 0.01) were selected and matched according to
ENSEMBL gene IDs, resulting in 13 323 genes for further
analysis.

Ideally, when visualized using a correlation heat map,
principal component plot or another similar technique, the
samples should cluster by tissue type rather than study of
origin. When plotting the published expression profiles (11
in total) in a correlation heat map, the samples cluster ac-
cording to their tissue of origin, except for the heart and
kidney samples from RNA-seq Atlas (Figure 1b). To avoid
the potential problem of irrelevant or noisy genes having
an undue influence on correlations, we also plotted the ex-
pression profiles in a principal component space. When
plotting the first and second components, no ideal separ-
ation of tissue types is seen, but the heart samples appear
separated from the other tissues in the first component
(Figure 1c).

These initial comparisons between the four studies thus in-
dicate that unprocessed published F/RPKM values cannot be
considered as reliable reference data, in the sense that it would
not be possible to identify the tissue type of an unknown sam-
ple based on these values in a correlation heat map or PCA plot.
However, the genes contributing the most to the separation in
the first three principal components still indicate some degree
of tissue specificity. Among the genes with highest loadings in
PC1, we find MYL2 (ENSG00000111245), TNNT2 (ENSG00000118
194), MB (ENSG00000198125), DES (ENSG00000175084), ACTC1
(ENSG00000159251) and MYH7 (ENSG00000092054), which are all
highly upregulated in heart tissue according to the published
FPKM/RPKM values. Even though no separation between brain
and kidney is visible in the PCA plot, kidney genes [SPP1
(ENSG00000118785), FTL (ENSG00000087086) and ALDOB (ENSG

Table 1. Characteristics of the public RNA-seq data sets used in this study.

Study Tissues FPKM/RPKM FASTQ Read
type

Total number
of raw reads (millions)

RNA extraction
method

Reference
(PMID)

AltIso Brain � � 1 � 28 17.2 PolyA enrichment 18978772
Heart 20.2

Evolution of gene expression Brain � 1 � 76 24.5 PolyA enrichment 22012392
Heart 30.9
Kidney 22.5

GTex Brain � 1 � 76 164 PolyA enrichment 23715323
Heart 158
Kidney 131

Human Protein Atlas Brain � � 2 � 100 28.5 PolyA enrichment 21139605
Heart 17.7
Kidney 16.5

Illumina BodyMap 2.0 Brain � 2 � 75 73.5 PolyA enrichment 22496456
Heart 82.9
Kidney 80.4

RNA-seq Atas Hypothalamus � � 1 � 35, 31.9 rRNA depletion 22345621
Heart 1 � 50 26.9
Kidney 27.2
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00000136872)] and brain genes [GFAP (ENSG00000131095), CLU
(ENSG00000120885) and PLP1 (ENSG00000123560)] are also found
among the most contributing genes.

If, instead of looking at gene loadings, we look at correlations
between principal component scores and study-dependent ex-
perimental factors, we find that the largest variance component
(PC1, which explains 58% of the variance) mainly reflects tissue
and the second one [PC2, explained variance (henceforth abbre-
viated e.v.) 13%] mainly correlates with library preparation
method and study (Supplementary Figure S1a).

A potential reason for the difficulties in clustering the raw
data from different studies is that the F/RPKM distributions
could have different distributions. As shown in Supplementary
Figure S2a–c, the distributions (log-transformed F/RPKMs are
shown for clarity) are different when taken ‘as is’, but one might
expect the differences to level after selecting only those 13 323
genes for which an expression value was reported in all four
studies. However, the distributions of the expression levels
of these common genes (Supplementary Figure S2d–f) still look
different between the studies, similar to the original raw data.
This picture is consistent across tissues.

Different RNA extraction methods are naturally expected to
result in differences in the distribution of RNA molecules.
Among the studies in this comparison, RNA Atlas is the only
one that used ribosomal RNA depletion (all the others used
poly-A enrichment), which leads to a different proportion of
mRNA molecules versus noncoding RNA molecules in the sam-
ple (the rRNA depleted samples are expected to contain consid-
erably more noncoding RNAs). It appears that the original RNA-
Seq Atlas paper calculated RPKM values by dividing counts by
the total number of mapped reads (including both non-protein
coding and coding genes), which would lead to protein coding
genes getting systematically lower RPKM estimates than a poly-
A-enriched sample owing to the presence of noncoding RNAs
‘competing’ for the sequencing reads. The published data for
RNA-Seq Atlas samples consistently show lower RPKM values
than other samples (Supplementary Figure S2a–f, S3).

The fact that distributions greatly differ suggests that a
quantile normalization, which attempts to adjust distributions
to become more similar, might be able to recover a good clus-
tering by tissue. However, this was not the case for the raw
published data (Supplementary Figure S4a–b.)

Contributions of experimental factors to variability

To quantify how different experimental approaches between
the four studies contribute to the overall differences in expres-
sion profiles, we used the metadata accompanying the data sets
and performed ANOVA analysis after fitting a set of linear mod-
els to the data. The factors ‘Layout’ (single or paired end), ‘Read
length’ (where in a paired-end case such as 2� 100, the read
length was defined as 200), ‘Preparation’ (RNA extraction
method), ‘Total number of raw reads’, ‘Study’ and ‘Tissue’ were
included (Table 1). None of the samples included were
sequenced using a strand-specific protocol. The estimates of
factor contribution to expression variation depend on the order
in which factors are specified in the ANOVA linear model.
Because we know that the order matters, we set an order that
first includes the preparation variability we can account for
(layout, read length, RNA extraction method and number of raw
reads) and then includes the part of the variability we cannot
account for (the study and tissue types). Thus, the contribution
of each factor in Figure 1d should be interpreted as the contribu-
tion of that factor after all the factors to the left of it in the plot

have been accounted for. The contribution of each of the six
factors was plotted, excluding the residuals, which include
gene-to-gene variation and variance unexplained by the linear
models. As shown in Figure 1d, the read length is the factor
contributing the most to the variance for the unprocessed
published data sets, closely followed by preparation method,
layout and only then the tissue type. This indicates that labora-
tory factors disturb the separation of samples based on tissue
type.

Effects of log transformation

Logarithmic transformation is known to transform RNA-seq
data into a more normally distributed shape with less depend-
ence between the mean and the variance, as well as dampening
the effects of extreme outliers [13]. When comparing the 100
most abundant genes (highest FPKM/RPKM), only 9, 22 and 18 of
the genes for brain, heart and kidney, respectively, are shared
between all studies. This indicates that there is a relatively big
group of highly expressed genes that are responsible for the
separation of samples of same tissue type, adding complexity to
the analysis. As an attempt to stabilize variance and remove
bias owing to abundantly transcribed genes, the impact of log
transformation of the FPKM/RPKM values was investigated.
The published FPKM/RPKM values were log transformed (after
addition of a pseudo count of 1) and when plotted in a correl-
ation heat map, the result looks similar as for the non-
log-transformed values, except that all three samples from
RNA-seq Atlas now cluster together instead of with the correct
tissue types (Figure 2a). The effect of the log transformation was
also visualized with PCA plots. As shown in Figure 2b and c, the
brain samples are separated from the rest of samples when
plotting the first (e.v. 31%) versus the second component (e.v.
27%), whereas plotting the second versus the third (e.v. 19%)
principal component generates an almost complete separation
based on tissue type. To reveal the genes responsible for the
separation of tissues, genes with highest absolute loadings
were selected. Among the genes contributing most to PC1, the
majority shows no consistent tissue specificity according to
their published FPKM/RPKM values but a few genes indicate
some degree of tissue specificity, like ANKRD1 (ENSG00000
148677), CD36 (ENSG00000135218) and TNNT2 (ENSG00000
118194) that are upregulated in heart tissue, and FTL
(ENSG00000087086) that is upregulated in kidney according to
all four studies. Looking at the genes responsible for the separ-
ation in the second component, we find several genes with
FPKM/RPKM values indicating either brain or heart specificity,
for example, CKM (ENSG00000104879), MYL2 (ENSG00000
111245), TNN1 (ENSG00000114854), ACTC1 (ENSG00000159251)
and MYL3 (ENSG00000160808) (highly expressed in heart tissue)
and PLP1 (ENSG00000123560), GFAP (ENSG00000131095), SNAP25
(ENSG00000132639) and MOBP (ENSG00000168314) (highly ex-
pressed in brain tissue). These results indicate that there is
considerable study-specific bias in the data, responsible for the
largest variance component (PC1), that is not removed by log
transformation, and that the favorable effect of log transform-
ation, enabling recovery of biological signals that separates the
three tissue types from each other, appears in the second and
third principal components. Computing correlations of experi-
mental factors to PCs also indicates that the largest variance
component is associated with study-specific factors (but not tis-
sue), and that the second largest one mainly reflects tissue
(Supplementary Figure S1d). To further confirm that PCs 2 and
3 describe general tissue specificity, we performed a type
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of cross-validation by first applying PCA to log2-transformed
values from all data sets except one (AltIso) and then project-
ing the AltIso expression profiles onto the obtained compo-
nents PC2 and PC3. As shown in Figure 2d, the AltIso samples
are projected close to the expected clusters, indicating that the
tissue-specific information in PC 2 and 3 generalizes to previ-
ously unseen samples. To investigate how different experi-
mental approaches contribute to the overall differences
between the expression profiles, we again performed ANOVA
analysis on the log-transformed values, according to the same
procedure as described for the unprocessed values. As shown
in Figure 2e, the factors read length and layout are still the
most influential factors responsible for the variance between
the samples. The influence of the library preparation method
appears to have decreased in a relative sense. A possible ex-
planation for this is that there were, as mentioned above, sys-
tematic differences between F/RPKM magnitudes between the
rRNA-depleted samples (from RNA-Seq Atlas) and poly-A-en-
riched samples (all other samples; see Supplementary Figure
S2A–F, Supplementary Figure S3.) When the F/RPKM values are
log transformed, the magnitude differences will be decreased
and the importance of the preparation factor for modeling
each gene expression estimate will appear smaller relative to
other factors.

We also attempted a quantile normalization followed by
PCA on the log-transformed values, but were unable to improve
on the clustering seen before normalization (Supplementary
Figure S4C–D.)

Correcting systematic study-specific effects

As mentioned before, the three samples derived from the RNA-
seq Atlas project are often distinct from the rest of the samples
and tend to cluster together rather than with the corresponding
tissue type, presumably because the RNA in these samples was
purified using rRNA depletion instead of with poly(A) selection
of mRNA that was used for all the other samples. The separ-
ation of the RNA-seq Atlas samples from the rest exemplifies
how different procedures in sample preparation and following
sequencing steps can affect the data. In the PCA analysis of
log-transformed FPKM values, although the samples cluster
better according to tissue type than the unprocessed values,
they still appear to be ordered in a consistent pattern according
to which study they derive from, indicating again that there
are systematic technical effects from all four studies that need
to be considered. For instance, the RNA-Seq Atlas samples
from each tissue are further away from the tissue-cluster

Figure 2. Analysis of log-transformed published precomputed FPKM/RPKM values (n¼13,078) for brain, heart and kidney samples from four different studies. In the

principal component plots, tissue types are indicated with white (heart), black (brain) and grey (kidney). Studies are indicated with different symbols; circle (HPA),

square (AltIso), diamond (GTex) and triangle (Atlas). (A) Heat map with Spearman correlations between samples. (B) PCA, PC1 and PC2. (C) PCA, PC2 and PC3. (D) Cross-

validation by PCA excluding the AltIso data with the AltIso data sets projected on top, PC2 and PC3. (E) ANOVA dependence of the laboratory factors layout, read length,

preparation, number of raw reads and tissue. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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centers than the other samples (Figure 2c); they also have a
higher score for principal component 1, which is strongly corre-
lated to library preparation method and read length (see
Supplementary Figure S1D).

To adjust for biases introduced in these data sets owing
to differences in the library preparation and sequencing for
the different studies, we used the ComBat function included
in the sva R package for removal of batch effects, only using
information on what study the samples derive from [7].

As shown in Figure 3a, after running ComBat, the samples
cluster perfectly according to tissue type when plotted in a cor-
relation heat map, indicating that study-specific effects have
now been mitigated. When again performing PCA analyses after
the ComBat run, the samples are clearly separated based on tis-
sue type, and according to the previously described ANOVA
analysis, tissue type is now responsible for most of the variance
between samples apart from residuals that are not included in
the plot (Figure 3b and c).

We conclude from the above analyses that published
precomputed expression levels for human tissue RNA-seq data
from different sources are poorly comparable at a global level
and that log transformation and modeling of known batch
effects are essential to make the data comparable as consistent
reference data. Next, we examined whether the results could
be improved by reprocessing the data from raw FASTQ se-
quence files.

Effects of reprocessing raw sequence data

To remove potential bias from the fact that different bioinfor-
matics pipelines were used to calculate published FPKM/RPKM
values, we repeated the same analyses as above using FPKM
values obtained from reprocessing raw data (FASTQ files) in a
consistent way. We used human tissue RNA-seq data from five
studies that had published FASTQ files: BodyMap, Evolution of
Gene Expression, Human Protein Atlas, RNA-seq Atlas and
AltIso [10–12, 14, 15]. (See Table 1 for information). FASTQ files
for human brain (hypothalamus in the case of RNA-seq Atlas),
heart and kidney samples from each of the five sources were
downloaded and mapped to the human genome (GRCh37) using
TopHat [16], and FPKM values were calculated using Cufflinks
[8]. For the list of FPKM values generated with Cufflinks, all non-
protein coding genes and all genes with FPKM �0.01 in all
samples together were first filtered out, resulting in expression
levels for 19 475 genes. When first plotting the FPKM values gen-
erated with Cufflinks in a correlation heat map, a similar result
as for the corresponding published values is obtained with all
samples clustering together according to tissue type, again with
exception for the heart and kidney samples from RNA-seq Atlas
(Figure 4a). As shown in Figure 4b, plotting the first versus the
second principal component also generates a result correspond-
ing to that obtained for the published FPKM/RPKM values with
the heart samples separated from brain and kidney samples,

Figure 3. Analysis of precomputed FPKM/RPKM (n¼13,078) values for brain, heart and kidney samples from four different studies after removal of batch effects using

ComBat. In the principal component plot, tissue types are indicated with white (heart), black (brain) and grey (kidney). Studies are indicated with different symbols;

circle (HPA), square (AltIso), diamond (GTex) and triangle (Atlas). (A) Heat map with Spearman correlations between samples. (B) PCA, PC1 and PC2. (C) ANOVA depend-

ence of the laboratory factors layout, read length, preparation, number of raw reads and tissue. A colour version of this figure is available at BIB online: http://

bib.oxfordjournals.org.
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Figure 4. Analysis of Cufflinks FPKM values (n¼ 18,175) after reprocessing from FASTQ files. In the principal component plots, tissue types are indicated with white

(heart), black (brain) and grey (kidney). Studies are indicated by different symbols; circle (HPA), square (AltIso), diamond (EoGe), arrow head up (Atlas) and arrow head

down (BodyMap). (A) Heat map with Spearman correlations between samples. (B) PCA, PC1 and PC2. (C) ANOVA dependence of the laboratory factors layout, read

length, preparation, number of raw reads, study and tissue. (D) Heat map with Spearman correlations between samples after log transformation. (E) PCA with log-

transformed data, PC1 and PC2. (F) PCA with log-transformed data, PC2 and PC3. (G) Cross-validation by PCA excluding the AltIso data with the AltIso data sets pro-

jected on top, PC2 and PC3. (H) Heat map with Spearman correlations between samples after removal of batch effects using ComBat. (I) PCA after ComBat, PC1 and PC2.

(J) ANOVA dependence of the laboratory factors layout, read length, preparation, number of raw reads, study and tissue, after ComBat. (K) ANOVA dependence of the

laboratory factors layout, read length, preparation, number of raw reads, quantification method, study and tissue, after joining precomputed and recomputed F/RPKM

values together. (L) ANOVA dependence of the laboratory factors layout, read length, preparation, number of raw reads, quantification method, study and tissue, after

joining precomputed and recomputed F/RPKM values together and removal of batch effects using ComBat. A colour version of this figure is available at BIB online:

http://bib.oxfordjournals.org
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but this time a tendency toward a separation of all three tissue
types is visible in the second component. PC1 (e.v. 87%) correl-
ates most strongly with preparation method, whereas PC2
(e.v. 8%) correlates with tissue (Supplementary Figure S1b).

The genes with highest loadings in the first three principal
components were various mitochondrially encoded genes
with relatively high FPKM values (up to hundreds of thousands
in FPKM) in all samples, together with a few tissue-specific
genes, for example, APOE (ENSG00000130203), ALDOB
(ENSG00000136872) and YBX3 (ENSG00000060138) that are
highly upregulated in kidney (YBX3 is highly expressed in kid-
ney according to all studies except RNA-seq Atlas where it
shows high expression in heart). For details, see accompanying
walkthrough. To avoid this type of noise from highly expressed
mitochondrially encoded genes, a masking option for mito-
chondrial genes can be used when running Cufflinks. ANOVA
analysis was again performed, and as shown in Figure 4c, the
contribution from the factor tissue is higher as compared with
the results obtained for the published precomputed data sets
even though the preparation (RNA extraction method) is clearly
the most important factor for the differences between the ex-
pression profiles. According to these results, reprocessing of
raw data has the advantage of dampening the effects of the
laboratory factors Layout and Read length and increasing the
contribution of tissue type on the variance, although not
enough to yield a clustering by tissue type in PCA. One way to
understand this is that in contrast to the published data, the
layout and read length are handled in a consistent way by the
bioinformatics pipeline in the reprocessed data, which results
in a smaller contribution to variation from these factors.

The impact of log transformation was also investigated
for the reprocessed FPKM values, resulting in a similar result
as the published values. As shown in Figure 4d, the tissues
cluster together except for the samples from RNA-seq Atlas.
For the log-transformed reprocessed values, PCA analysis
also generates similar results as the published data, but the
separation of tissues seen in the second and third principal
components is not as successful this time, potentially a con-
sequence of the fact that the reprocessed data sets include
>6000 more genes compared with the published data, intro-
ducing more variation (Figure 4e and f). When we performed
cross-validation in the same way as for the published FPKM/
RPKM values, the AltIso samples do not cluster to the ex-
pected samples (Figure 4g). In other words, the PCA grouping
is not stable to addition of new samples. Perhaps surpris-
ingly, log transformation thus appears less effective in re-
covering tissue signal in PCs 2 (e.v. 26%) and 3 (e.v. 22%) in
reprocessed data than in published data (also cf.
Supplementary Figure S1e.) Logarithmic transformation again
serves to improve the clustering of tissue types to some ex-
tent, but there is still systematic variation in the raw data
that remains problematic even after removal of potential bias
from differences between bioinformatics pipelines. To over-
come the problem with laboratory batch effects in the raw
data, we used the ComBat function for removal of known
batch effects. As shown in Figure 4h, clustering after running
ComBat on log-transformed values is again remarkably suc-
cessful with all samples clustering completely according to
the right tissue of origin. As shown in Figure 4i, a complete
tissue separation now appears already when plotting the first
versus the second principal components, and according to
ANOVA, tissue type is now the factor responsible for the
most variance between samples (Figure 4j).

In summary, we conclude that the reprocessing of raw
data does not per se improve the overall consistency of RNA-seq
expression profiles, although it does avoid the loss of genes
associated with combining gene identifiers from different
annotation systems.

A joint analysis to quantify pipeline effects on variation

A different way to address the question how much the choice
of the bioinformatics pipeline (or quantification method,
including mapping software and F/RPKM calculation method)
influences the results is to perform ANOVA and PCA correl-
ation analyses as described above but adding the quantifica-
tion as an additional factor. We cannot do such an analysis for
the published data alone, because each study used a different
bioinformatics pipeline, and thus the effects of the pipeline
would be impossible to distinguish from other factors that var-
ied between the studies. We therefore combined both the pub-
lished and reprocessed data and performed ANOVA with the
new factor ‘quantification’ that represents the mapping and
quantification steps. All reprocessed samples were quantified
with the Tophat/Cufflinks pipeline, as were the HPA samples
in the published data. The ANOVA on untransformed F/RPKM
values (Figure 4k) indicates that the quantification method is
important compared with most other factors, explaining a
large fraction of the variance after the sequencing and library
preparation protocols have been accounted for. Notably, after
log transformation and batch effect correction (Figure 4l), the
quantification method even explains slightly more of the vari-
ation than the tissue, whereas all other factors are essentially
uninformative.

This result is in apparent conflict with the finding above,
namely, that reprocessing data from FASTQ in a consistent way
does not improve the clustering of the samples by tissue (which
it would be expected to do if different quantification methods
introduced systematic bias.) We speculate that the differences
in quantification methods contribute to gene-to-gene variation
and unspecific noise, but not to systematic variation that would
affect samples from separate tissues in different ways. An ana-
lysis of the correlations of the first two principal components to
the experimental factors (Supplementary Figure S1c, f) indicates
that the main directions of variation in the data are not strongly
correlated to the quantification method.

Conclusion

We here present a thorough comparison of public human tissue
RNA-seq data sets including both precomputed values and con-
sistently reprocessed data sets for ostensibly similar samples
(specifically, human brain, heart and kidney samples). With the
findings of this study, we conclude that publicly reported
precomputed values for gene expression (FPKM/RPKM) are not
comparable at a global level in their untransformed state.
However, after log transformation and removal of batch effects,
the data show global consistency. Logarithmic transformation
alleviates problems in clustering of the three tissue types, but
is still not sufficient to enable the most of the variance to be
explained by tissue type. The largest variance is explained by
known or unknown study-specific effects that will disturb clus-
tering unless they are identified using statistical modeling, and
removed before analysis. Today, numerous methods are avail-
able for bias detection and removal and in this study, ComBat
was successfully used for that purpose, although one of several
alternative methods could have been used [17]. Reprocessing

948 | Danielsson et al.

s
ile
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv017/-/DC1
to
-
 for
 for
-
over 
to
Indeed
, 
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv017/-/DC1
-
",0,0,2
",0,0,2
Note that 
-
to
s
Indeed, 
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv017/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv017/-/DC1
-
-
prior to


of raw data does not contribute to any obvious improvement in
consistency of the three tissue types. Apart from the advantage
of increasing coverage by avoiding the loss of genes in combin-
ing different types of identifiers, and of apparently decreasing
the impact from layout and number of raw reads on variance,
there is no improvement gained in clustering by reprocessing
from the FASTQ format.

There are many potential alternatives to the various RNA-
seq data processing steps, but we have confined this study to
a relatively standard workflow for the sake of clarity. Potential
improvements include alternative methods for variance stabil-
ization transformations (in contrast to the log transformation
used in this case) and other normalization methods, for ex-
ample, GC content correction methods and scaling methods
like Trimmed mean of M values. The choice of PCA as the
visualization method was made based on its popularity, but
it is possible that other methods such as multidimensional
scaling, nonnegative matrix factorization or t-distributed sto-
chastic neighborhood embedding could have yielded better re-
sults. Additionally, it would be interesting to use a different
set of tissues that are more similar in their expression profiles
compared with the three tissue types used in this study.
Nevertheless, we expect that the findings of this study will
play an important role in the continuous efforts to secure the
usefulness of public RNA-seq data and fulfill the requirement
of reliability in comparisons between data sets generated in
different laboratories.

Supplementary data

Supplementary data are available online at http://bib.
oxfordjournals.org/. In addition, a walkthrough of the analy-
ses in the article (as well as many variations not reported in
the article in the interest of clarity) with embedded code
and figures is available at https://github.com/hussius/
publicRNA seqdata.

Key Points

• Publicly available data sets with precomputed RNA
expression levels are not comparable in their untrans-
formed state in the sense that samples from the same
tissues obtained in different experiments do not clus-
ter by tissue.

• Logarithmic transformation improves clustering of
samples in principal components 2 and 3, while prin-
cipal component 1 still seems to be dominated by
study-specific factors.

• RNA extraction method, read length and sequencing
layout (single-end versus paired-end) contribute
strongly to variation between samples.

• Removal of known batch effects is essential for
clustering based on tissue type.

• Reprocessing raw data avoids loss of expression
information because of gene identifier matching issues
but does not serve to improve clustering.
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