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Abstract
Identification of drug–target interactions (DTIs) has great practical importance in the
drug discovery process for known diseases. However, only a small proportion of DTIs in
these databases has been verified experimentally, and the computational methods for
predicting the interactions remain challenging. As a result, some effective computational
models have become increasingly popular for predicting DTIs. In this work, the authors
predict potential DTIs from the local structure of drug–target associations' network,
which is different from the traditional global network similarity methods based on
structure and ligand. A novel method called PPDTS is proposed to predict DTIs. First,
according to the DTIs’ network local structure, the known DTIs are converted into a
binary network. Second, the Resource Allocation algorithm is used to obtain a drug–drug
similarity network and a target–target similarity network. Third, a Collaborative Filtering
algorithm is used with the known drug–target topology information to obtain similarity
scores. Fourth, the linear combination of drug–target similarity model and the target–drug
similarity model are innovatively proposed to obtain the final prediction results. Finally,
the experimental performance of PPDTS has proved to be higher than that of the
previously mentioned four popular network‐based similarity methods, which is validated
in different experimental datasets. Some of the predicted results can be supported in
UniProt and DrugBank databases.
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1 | INTRODUCTION

The identification of drug–target interactions (DTIs) plays a key
role in the early stage of drug discovery. Identifying drug–target
associations can provide important information for drug
discovery and drug repositioning [1–3]. However, biological
experiments are affected by a large amount of experimental data,

high‐accuracy requirements as well as excessive experimental
expenses, so it is difficult to quickly identify a lot of potential
DTIs. Nowadays, the potential drug–target interactions can be
predicted based on computer algorithms, thereby greatly
improving the efficiency of drug exploitation [4–6].

In the early stage, some researchers identified drug–target
association from literature through text mining technique
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[7, 8], and explored drug–target association from common
biological elements of drug and target [9, 10]. Some methods
based on text mining collect the known drug–target association
from literature, but they cannot predict the new associations.
In fact, a large number of drugs and targets have no common
elements [11], which also reduces the ability of text mining
methods to recognise DTIs.

Recently, many machine‐learning methods have been
introduced into the drug–target association prediction, because
they have the capability of handling complicated data. For
example, Yamanishi et al. [12] integrated chemical information
and genomic characteristics with pharmacological data into a
focussed framework to predict potential DTIs on a large scale.
Wang et al. [13] inputs the sequence information of the target
into the stacked autoencoder and then inputs the characteristic
and the fingerprint information into the rotating forest clas-
sifier to predict the potential DTIs. Palma et al. [14] proposed a
method named semEP, assuming that similar drugs are more
likely to interact with common targets, combined semantic
similarity and edge division methods with the machine learning
framework of link prediction to identify new drug–target.
Based on the relationship between biomolecules, Lee et al. [15]
constructed a directed network of protein interactions and
gene data, consequently inferred the shortest path between
targets and genes. Li et al. [16] integrated heterogeneous data
networks, and then used DeepWalk to obtain node topology
information, and hence inferred potential gene–disease in-
teractions. Chen et al. [17] creatively used unsupervised pre‐
training and supervised fine‐tuning to predict associations of
miRNA‐disease. Based on the known small molecule‐miRNA
association and miRNA‐disease association, Qu et al. [18]
constructed a three‐layer heterogeneous network of small
molecule similarity, miRNA similarity and disease similarity to
predict unknown interactions. Zhao et al. [19] integrated the
similarity matrix for matrix decomposition and calculated the
Kronecker product of the newly integrated similarity matrix
to obtain the prediction scores. Wang et al. [20] constructs
multi‐layer heterogeneous networks based on known small
molecule‐miRNA interactions, and then infers the potential
representation of all layers by using the intra layer topology and
known cross layer association for small molecule‐miRNA in-
teractions prediction. Zhang et al. [21] proposed a method
based on linear domain similarity network to predict miRNA‐
disease associations. The author first transformed the known
miRNA‐disease associations into binary networks, and then
scored the potential correlations based on label propagation
algorithm. Luo et al. [22] integrated a variety of drug–target
related data to build heterogeneous networks, and then pre-
dicted potential drug–target interactions by vector projection
method. Wang et al. [23] constructed a drug–protein interac-
tion network and combined link prediction and binary network
to predict drug–protein interaction.

Although machine learning methods had been proposed to
drug–target association prediction, the predictive performance
of many methods needs to be improved. First, a large number
of methods use the characteristics of drugs and targets with the
known drug–target correlations to predict DTIs. However, not

all drugs and targets have complete characteristics. If the in-
formation is incomplete, the prediction method cannot be
effectively predicted. Second, some researchers found that the
traditional similarity‐based methods are effective for specific
protein classes but not for other classes. Third, the traditional
machine learning model will lose part of the information when
building features to make them readable, and it is difficult to
recover the lost information, which is rarely concerned [24].

Since it is more likely that neighbouring nodes in the
network have the same characteristic information, these nodes
in a certain area (a row or a column on binary network) may
have more characteristics in common [25]. When the drug
molecular structural information is incomplete, the calculation
method based on the similarity of binary network is more
efficient than that of the heterogeneous network of the mo-
lecular structural characteristics. Therefore, we focus on the
local structural similarity of nodes in DTIs networks.

In this study, we propose a novel method called PPDTS,
which transforms the known DTI into the bipartite network,
and use the local structural information to predict potential
DTIs. First, PPDTS builds a binary network based on the
known DTIs. Second, the drug–drug similarity graph and
target–target similarity graph can be obtained on the basis of
the Resource Allocation algorithm [26] and the nodes’ topol-
ogy in the binary network. Third, the Collaborative Filtering
method is applied to the drug–drug similarity map and the
target–target similarity map to predict potential drug–target
associations. Finally, PPDTS linearly combines the drug–
target similarity network with the target–drug similarity
network to produce the prediction result. In our experiments,
we use fivefold cross validation in two different datasets and
compared the performance of PPDTS with the experimental
baseline methods (ProCF, RWR, DTINet and LP), which is
significantly proved to be better than the other methods, and
successfully predicted 37 potential DTIs. Some of the predic-
tion drug–target interactions have been verified in UniProt and
DrugBank.

2 | MATERIALS AND METHODS

2.1 | Materials

The PPDTS mainly uses the following databases for experi-
ments. DrugBank is a comprehensive online database with
experimental support [27], covering information related to
drugs (chemistry, pharmacology and pharmacy) and drug–
targets (sequence information, structural information and
pathways). MATADOR [28] is a free online resource database
containing protein‐drug interactions. The MATADOR data-
base has collected 801 compounds and 2901 target proteins, of
which 15,843 compounds are connected to the targets, of
which 8936 direct interactions account for 56.40%.

First, we download the drug–target interaction information
from the DrugBank database. The dataset is called the golden
dataset in drug–target prediction, and it is noticed that Wen
et al. [29] also uses the same dataset. The original dataset has
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6262 drug–target interactions; we deleted duplicate drug–target
items, and in order to obtain more neighbour node informa-
tion in the process of similarity calculation, we removed single
drug–target interaction; finally, we got 786 drugs and 527
targets, which include a total of 4547 drug–target interactions.
Second, we downloaded 8936 drug–target datasets with direct
interactions from the latest MATADOR database. After the
dataset was preprocessed in the same way, 8008 drug–target
interactions were obtained including 575 drugs and 981 tar-
gets. In the experiment, two datasets are used to evaluate the
performance of PPDTS, respectively.

Both of the datasets have 4547 and 8008 drug–target as-
sociations as positive samples. At the same time, because the
number of non‐interactions is in bigger quantities than that of
direct interactions, in order to avoid a high false positive rate,
we randomly selected equal amounts (4547 and 8008) as
negative samples from the remaining non‐interacting drug–
target. We also analysed the ratio of drugs and targets in the
negative samples, which is shown in Figure S1. The results
showed that more than 82% of drugs and targets are selected,
and the negative samples generally cover the main types of
drugs and targets in the experimental data. Table 1 shows the
information of two datasets in the experiment. Dataset 1 is
used for experiments and verification, and Dataset 2 is used as
an independent test set. The Datasets are available in https://
github.com/HNUBioinformatics/PPDTS.git.

2.2 | Predicting potential drug–target
interactions based on network similarity
(PPDTS)

The specific implementation process of PPDTS is shown in
Figure 1, which can be subdivided into the following steps. First,
PPDTS converts the known DTIs into a binary network and
takes the drugs setD and the targets set Tas the starting node set.
The drug–drug similarity and the target–target similarity are
calculated by using the forward and reverse secondary propa-
gation of the Resource Allocation algorithm. Second, based on
similar neighbour nodes ofD and T, drug–target similarity score
network and target–drug similarity score network are computed
by the Collaborative Filtering algorithm. Finally, the two similar
networks are linearly integrated to infer the final prediction re-
sults; then the scores of the predicting results are ranked from
high to low, and the predicting results of the higher score are
more likely to be the potential DTIs. Here, we only consider the
interaction with the highest score (d[i, :] or t[:, j]) calculated by
PPDTS as the final experimental prediction result.

The drug–target dataset is described as a binary network
V = (D, T, E ). D = {d1, d2, d3…dm} is a collection of drug
nodes, m represents the total number of drugs in the dataset.
T = {t1, t2, t3…tn} is the set of target nodes, n represents the
total number of targets in the dataset. E = {ei1,…,eij…emn} is
the set of edges between interconnected nodes in the network,
where D and T, respectively, represent two independent sets. If
there is a known interaction between the drug di and the target
tj , then set eij = 1, otherwise set eij = 0 [30].

In the actual drug–target interactions’ network, a drug can
bind on multiple targets, and the same target can be bound by
multiple drugs. When the degree of nodes in the DTI network
is larger, Zhou [26] shows that the accuracy of similarity
calculation methods such as Adamic‐Adar index [31], cosine
similarity [32] and Jaccard similarity [33] coefficient are lower.
In addition, it takes a long time and a large amount of memory
to calculate the similarity based on the global nodes of the
network. Therefore, this study aimed at the local structure of
the network, and makes full use of the connection between
adjacent nodes to calculate the similarity of network nodes.

Resource allocation algorithm (RA) is used to calculate the
similarity between drug and target, and we focus on the sim-
ilarity of local structure in the network. Potential drug–target
interactions are not directly connected in known DTI net-
works. According to the principle of the Resource Allocation
algorithm [26], the drug (or target) node can send some re-
sources to the target (or drug) node, and their public neigh-
bours act as transmitters. We assume that the initial size of the
transmitter is a resource unit, and the initial resources are
allocated to all adjacent transmitters on average according to
the topological relationship in the DTI network. The calcula-
tion process of drug–drug similarity and target–target similarity
is divided into two steps. First, D and T are regarded as the
starting node set in turn, and each transmitter is assigned an
initial resource unit of size 1, that is, tj = 1, di = 1, transmitters
evenly allot the initial resources to neighbour nodes. The
calculating process of the first transmission from the target ti
to the drug dj is defined below:

Stidj ¼
Xn

1

1
ki

ð1Þ

ki represents the number of interconnections between ti
and the drug node set D, and n are the number of connections
between dj and the target node set T. Stidj are the first trans-
mission scores of the target ti to the drug dj.

In the second transmission, the similarity between targets
can be defined as STTmn:

STTmn ¼
X

j∈ðΓm⋂ΓnÞ

�
Stmdj þ Sdjtn

�
ð2Þ

The Γm represents the number of neighbour nodes of
node m and Γn represents the number of neighbour nodes of
node n, and the value of STTmn is 0 to 1.

Similarly, Sditj is calculated by Formula (1), and SDDmn
is calculated by Formula (2). Figure 2 shows a detailed
flowchart for calculating the similarity of the target–target
network.

TABLE 1 PPDTS experimental datasets

Datasets Drugs Targets Associations

Dataset1 786 527 4547

Dataset2 575 981 8008
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The drug–target prediction score is calculated by using the
Collaborative Filtering algorithm:

Scoredmtn ¼
Px
k¼1;k≠n STTðtn; tkÞ ⋅ γkm
Px
k¼1;k≠n STT jðtn; tkÞj

⋅ Emn ð3Þ

Scoredmtn is the similarity score of drug dm and target tn
from the similarity between drugs. STT(tn, tk) is the similarity
between target tn and target tk. x is the neighbour set of target
tn, and γkm is the interaction matrix of drug dm evaluated by its
nearest neighbour k of target tn. E is the drug–target interac-
tion matrix, and the elements of Emn is 1 if drugm is known to
interact with target n, and the elements of Emn is 0 otherwise.

In order to better explore the potential interaction in
known DTI networks, we combine the Collaborative Filtering
algorithm with E. E is not included in the original Collaborative
Filtering algorithm. The subsequent experimental results show
that the model is effective for predicting DTIs.

Likewise, the target–drug prediction score Scoretmdn can be
obtained in the same way.

Finally, the linear combination of Scoredmtn and Scoretmdn
can get the final prediction result:

PPDTS ¼ αScoredmtn þ
�
1 − α

�
Scoretndm ð4Þ

The α is the weight value between the Scoredmtn model and
the Scoretndm model ð0 ≤ α ≤ 1Þ.

3 | RESULTS AND DISCUSSION

3.1 | Baseline methods

In order to evaluate the prediction performance of PPDTS,
this study compares Collaborative Filtering (ProCF) and
Random Walk with Restart (RWR) to predict DTIs. The
Collaborative Filtering (CF) method was initially used in
recommendation systems to provide users with personalised
recommendations [34]. Subsequently, especially in the case of a
large amount of sparse data, ProCF was developed and ach-
ieved better results [35, 36]. The ProCF method is mainly
based on inferring similar information from similar neighbour
nodes. By calculating the similarity between different targets,
the predicted score is calculated [37]. Compared with the
calculating similarity by relying on neighbouring nodes, RWR
can capture the global structural information of the network
more comprehensively [38, 39]. Starting from a certain node in
the target set, RWR selects adjacent nodes with probability c
(0 < c < 1) at random, or return to the previous node with
probability (1−c). The probability value obtained after multiple
iterations can be regarded as the score of predicted similarity
between different targets [40].

Our method is compared with the new machine learning
method DTINet [22] and the typical network local structure
similarity algorithm LP (Label Propagation). DTINet inte-
grated a variety of drug–target related data to build

F I GURE 1 The flowchart of the PPDTS pipeline. RAtd represents that the target–target similarity network is calculated using the Resource Allocation
algorithm; RAdt represents that the drug–drug similarity network is calculated using the Resource Allocation algorithm; CFtd represents that the Collaborative
Filtering algorithm is used to calculate the target–drug score network; CFdt represents that the Collaborative Filtering algorithm is used to calculate the drug–
target score network; α is the combination weight of drug–target and target–drug models ð0 ≤ α ≤ 1Þ. Black solid lines represent the known DTIs, and the green
solid lines represent the potential DTIs predicted by PPDTS. The different shades of grey indicate binding weights of drug‐target in step (4), while the darker colors
represent the greater probability of binding
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heterogeneous networks, and then predicted potential drug–
target interactions by the vector projection method. LP is
widely used in semi‐supervised learning of graph networks
[41]. LP is mainly divided into two steps: First, LP constructs
the target label matrix, and propagates it to the adjacent nodes
according to the probability value τ. Second, LP updates the
target similarity matrix to make it convergent, so as to obtain
the target–target similarity score matrix [42, 43].

In order to systematically evaluate the performance of the
method, fivefold cross validation is used to evaluate the
generalisation ability of PPDTS. The experimental dataset is
divided into five parts, and one sample set is randomly selected
for testing, and the remaining four samples datasets are used
for training. This process is performed five times in total, and
the average of five times is taken as the final result. In addition,
six indicators are used to evaluate PPDTS performance: area
under the precision‐recall (AUPR), area under ROC curve
(AUC), ability to identify positive samples (RECALL), ability to
identify negative samples (PRECISION), average Recall and
Precision (F1_SCORE) and prediction accuracy (ACC). In the
end, PPDTS obtains drug–target prediction scores. For drugs
(or targets), the highest score in the corresponding target
(or drug) is recorded as the final prediction results.

3.2 | Experimental model parameters

We set the restart probability of RWR (Random Walk With
Restart) to c = {0.1, 0.2, 0.3, …, 0.9}. When c takes different
values, the AUC and AUPR of RWR are shown in the dotted
lines in Figure 3. To judge from Figure 3, when c = 0.1, the
highest performance of RWR is AUPR = 0.335 and
AUC = 0.903. In the same way, the propagation probability of
the LP algorithm (Label Propagation) is set to τ = {0.1, 0.2,
0.3, …, 0.9}. When τ represents different values, the changes
AUC and AUPR of LP are shown the solid lines in Figure 3.
The best performance of LP method are AUPR = 0.334 and
AUC = 0.905 with τ = 0.1.

The weights α of the drug–target network and the target–
drug network of the PPDTS algorithm is assigned as = { 0, 0.1,
0.2, 0.3, …, 0.9, 1}. The weight α is to find the influence of
drug–target similarity model and the combination degree of
target–drug similarity model on DTIs prediction. When α is
fluctuating among different values, the changes of AUC and
AUPR are shown in Figure S2. The AUC values of PPDTS
with different binding weights α are more than 0.91, and the
highest value of AUPR is 0.494, which is significantly higher
than other methods.

3.3 | Comparison of experimental evaluation
indicators

PPDTS is compared with baseline methods, and the com-
parison of experimental results is shown in Table 2. The AUC
and AUPR of PPDTS are 0.922 and 0.494, which are
significantly higher than those of baseline methods (ProCF,
DTINet, RWR, LP), and the AUC plots are shown in
Figure S3. In addition, we also compare F1_score, Recall and
Precision evaluation index. It is worth noting that the AUC of
RWR, LP and DTINet is significantly lower than that of
ProCF, which may be the result of less known drug–target
associations, or RWR, LP and DTINet cannot make full
use of the adjacent nodes to predict associations of drug–
target.

We also analyse the robustness of PPDTS, we randomly
removed 10%, 20%, 30%, 40% and 50% of the known drug–
target interactions. After fivefold cross validation, the final
experimental results are shown in Table 3, and we find that the
performance of PPDTS and comparison methods decreases
with the reduction of known drug–target interactions, but
AUC and AUPR of PPDTS are better than those of compar-
ison methods. The possible reason is that PPDTS is different
from traditional methods based on the network similarity.
In the experiment, PPDTS only uses the known drug–target
interaction and uses a binary network to model the inter
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domain information fusion. Compared with baseline methods,
it shows better experimental performance.

3.4 | Independent test set

To further test the performance of PPDTS, we also studied the
ability of PPDTS to predict the association between drugs and
targets on different datasets. We use Dataset2 as an indepen-
dent test set. Dataset2 is 8008 drug–target interactions collected
from MATADOR database, which contains 575 drugs and 981
targets. The details of Dataset2 are in Section 2.1.

Through fivefold cross validation, the performance eval-
uation parameters of PPDTS and the baseline methods are
reported in Table S1. It can be seen from the evaluation results
that AUC of PPDTS is 0.975, which is significantly higher than

the results deduced from other methods. The details of AUC
are shown in Figure 4. In addition, PPDTS is also superior to
other methods in AUPR, F1_SOCRE, RECALL, and PRE-
CISION. All the results show that PPDTS has good perfor-
mance on the independent test set, which is consistent with the
performance of Dataset1.

3.5 | Validation of predicted results

In order to further prove the actual prediction ability of
PPDTS, 100 kinds of DTIs were, respectively, selected as test
samples from the prediction results of PPDTS and four
baseline methods (LP, RWR, DTINet, ProCF), and there are 5
selections in total. After verifying the selected data, the final
results are shown in Figure 5, some of which are supported by

F I GURE 3 The RWR random walk probability
c (0 < c < 1) and the LP propagation probability τ
(0 < τ < 1) are tested with different values, and the
two evaluation indicators AUC and AUPR are
shown in the figure. The dotted line shows the
results of RWR, and the solid line shows the results
of LP, and the orange line represents the AUC value
with the change of with the abscissa (c or τ), and the
blue line represents the AUPR value with the change
of with the abscissa (c or τ)

TABLE 2 The experimental results of
PPDTS and baseline methods are compared as
shown in the table

Methods AUPR AUC F1_SCORE RECALL PRECISION ACC

ProCF 0.319 0.918 0.370 0.376 0.366 0.997

RWR(0.1) 0.335 0.903 0.376 0.371 0.390 0.997

DTINet 0.272 0.908 0.331 0.282 0.401 0.997

LP(0.1) 0.334 0.905 0.364 0.361 0.374 0.997

PPDTS 0.494 0.922 0.509 0.435 0.618 0.998

Note: The evaluation metrics is the area under ROC (receiver operating characteristic curve) curve (AUC), the area under the
precision‐recall curve (AUPR), how much of positive samples are predicted to be correct (RECALL), how many of the
predicted positive sample are actually positive (PRECISION), the harmonic mean of Recall and Precision (F1_SCORE) and
accuracy of prediction (ACC), respectively.

TABLE 3 PPDTS and baseline methods
robustness test under different proportion
data

AUC AUPR

Methods 50% 60% 70% 80% 90% 50% 60% 70% 80% 90%

ProCF 0.812 0.839 0.864 0.890 0.905 0.059 0.085 0.116 0.170 0.233

RWR(0.1) 0.815 0.830 0.847 0.869 0.890 0.125 0.131 0.140 0.207 0.283

DTINet 0.825 0.845 0.863 0.882 0.898 0.069 0.094 0.120 0.165 0.214

LP(0.1) 0.817 0.831 0.849 0.871 0.891 0.062 0.085 0.126 0.159 0.245

PPDTS 0.812 0.840 0.865 0.892 0.907 0.077 0.116 0.149 0.215 0.308

Note: The evaluation metrics is the area under ROC (receiver operating characteristic curve) curve (AUC), the area under the
precision‐recall curve (AUPR), respectively.
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database literature. Among the five selections, there are four
selections of the predictions' results showing that PPDTS was
more efficient than baseline methods. This also shows that our
proposed PPDTS has an important auxiliary role in drug dis-
covery. The experimental data and results are available from
https://github.com/HNUBioinformatics/PPDTS.git.

In order to clarify the reliability of the experimental results,
we further verify the prediction results of PPDTS. To dataset1,
PPDTS has predicted 786 potential DTIs for each drug, we
take the maximum score of targets as the prediction result for
each drug in the prediction score matrix. The results are
retrieved in DrugBank and UniProt databases, and 37 drug–
target interactions are successfully confirmed. There are
seven kinds of DTIs that have been proven obvious pharma-
cological effects in literature, as shown in Figure 6. For
example, 49 drugs are known to be associated with the target
P07550 (Beta‐2 adrenergic receptor). According to the

topology information of neighbour nodes of P07550, the
prediction result after PPDTS calculation is DB01118
(Amiodarone), and the prediction result is verified by the
literature [44]. The Q14500 (ATP‐sensitive inward rectifier
potassium channel‐12) has two known neighbour nodes
DB01392 (Yohimbine) and DB00204 (Dofetilide). The pre-
diction result after PPDTS calculation is DB04855 (Drone-
darone), which is verified by the literature [45].

In addition, we found that among the seven kinds of drug–
target interaction mechanisms in Figure 6, four drugs
(DB00201, DB00929, DB01021 and DB01118) produce effi-
cacy by affecting the activity of receptors, and three drugs
(DB00907, DB01043 and DB04855) produce efficacy by
affecting the activity of sodium and potassium channels, which
are consistent with the actual mechanism of efficacy [46]. For
example, DB00201 (Caffeine)‐P29275 (Adenosine receptor
A2b) interaction, whose general function is to affect the G

F I GURE 4 AUC curve of PPDTS and baseline
methods on independent test set

F I GURE 5 The comparison results of random
sampling between PPDTS and baseline methods.
Each bar represents the number of verified DTIs
with the real DTIs, plotted by the sampling
frequency on the horizontal axis and the number of
verified DTIs on the vertical. At the fifth time
random sampling, the number of predicted DTIs
for LP and RWR was 0
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protein‐coupled adenosine receptor activity, can be manifested
as using caffeine to treat retinopathy of prematurity [47].
DB00929 (Misoprostol)‐P34995 (Prostaglandin E2 receptor
EP1 subtype) interaction, which is helpful to intervene the
activity of prostaglandin e receptor, can be manifested as the
use of prostaglandin to promote cervical maturation and
induce labour [48]. Details of the seven drug–target interaction
mechanisms, supporting literature and prediction scores are
shown in Table S3. We also validated the remaining 30 DTIs in
DrugBank and UniProt databases, among which 29 DTIs are
approved to launch studies, but some pharmacological effects
are still unclear. In addition, DB01199 (Tubocurarine) and
P06276 (Cholinesterase) proved to have no pharmacological
effects [49]. There is more information about the 37 DTIs and
the Supplement information in the link https://github.com/
HNUBioinformatics/PPDTS.git. Therefore, the above results
show that PPDTS has a practical reference value for predicting
potential drug–target interactions.

4 | CONCLUSION

In this work, we propose a new method called PPDTS. The
main contribution of PPDTS is to effectively identify potential
drug–target interactions by the innovative integrated Resource

Allocation algorithm and Collaborative Filtering algorithm, and
the linear combination of drug–target similarity network and
target–drug similarity network. After fivefold cross validation,
the AUC and AUPR evaluation parameters of PPDTS are
proved to be significantly higher than those of other methods,
and some potential DTIs are successfully predicted.

PPDTS is an effective prediction method, which can effi-
ciently predict the potential targets of different types of drugs.
Since not all the drug–target data are available, PPDTS only
used drugs and targets’ associations to predict DTIs. In addi-
tion, PPDTS starts from the local structure of the network,
combining the drug–target similarity network with the target–
drug similarity network to predict the potential DTIs. The
experimental results have been verified in DrugBank and
UniProt databases. However, PPDTS still has some limitations.
When it comes to isolated drug–target associations in the
network, PPDTS cannot predict such DTIs due to the lack of
interactive information. In the future, we will further integrate
some other biological data including drugs’ side‐effect network
and target sequence information together [50], so as to make
up for the deficiency of PPDTS.
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