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Abstract: The potential neurotoxic effects of anticancer drugs, like doxorubicin (DOX) and mitoxantrone
(MTX; also used in multiple sclerosis), are presently important reasons for concern, following
epidemiological data indicating that cancer survivors submitted to chemotherapy may suffer
cognitive deficits. We evaluated the in vitro neurotoxicity of two commonly used chemotherapeutic
drugs, DOX and MTX, and study their underlying mechanisms in the SH-SY5Y human neuronal
cell model. Undifferentiated human SH-SY5Y cells were exposed to DOX or MTX (0.13, 0.2
and 0.5 µM) for 48 h and two cytotoxicity assays were performed, the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium (MTT) reduction and the neutral red (NR) incorporation assays. Phase
contrast microphotographs, Hoechst, and acridine orange/ethidium bromide stains were performed.
Mitochondrial membrane potential was also assessed. Moreover, putative protective drugs, namely
the antioxidants N-acetyl-L-cysteine (NAC; 1 mM) and 100 µM tiron, the inhibitor of caspase-3/7,
Ac-DEVD-CHO (100 µM), and a protein synthesis inhibitor, cycloheximide (CHX; 10 nM), were tested
to prevent DOX- or MTX-induced toxicity. The MTT reduction assay was also done in differentiated
SH-SY5Y cells following exposure to 0.2 µM DOX or MTX. MTX was more toxic than DOX in both
cytotoxicity assays and according to the morphological analyses. MTX also evoked a higher number
of apoptotic nuclei than DOX. Both drugs, at the 0.13 µM concentration, caused mitochondrial
membrane potential depolarization after a 48-h exposure. Regarding the putative neuroprotectors,
1 mM NAC was not able to prevent the cytotoxicity caused by either drug. Notwithstanding,
100 µM tiron was capable of partially reverting MTX-induced cytotoxicity in the NR uptake assay.
One hundred µM Ac-DEVD-CHO and 10 nM cycloheximide (CHX) also partially prevented the
toxicity induced by DOX in the NR uptake assay. MTX was more toxic than DOX in differentiated
SH-SY5Y cells, while MTX had similar toxicity in differentiated and undifferentiated SH-SY5Y cells.
In fact, MTX was the most neurotoxic drug tested and the mechanisms involved seem dissimilar
among drugs. Thus, its toxicity mechanisms need to be further investigated as to determine the
putative neurotoxicity for multiple sclerosis and cancer patients.
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1. Introduction

Deaths after neoplasms have been increasing globally, rising from 7.58 million deaths in 2006 to
8.93 million deaths in 2016 [1]. Although new treatments have emerged recently, chemotherapy is still
the most common treatment for most cancers [2,3]. Mitoxantrone (MTX) is an anticancer drug used in
the treatment of metastatic breast cancer, non-Hodgkin’s lymphoma, and acute myeloid leukaemia
in adults; while in combination regimens, it is indicated in the remission-induction treatment of
blast crisis in chronic myeloid leukaemia, and in combination with corticosteroids for palliation
(e.g., pain relief) related to advanced castrate-resistant prostate cancer [4]. Moreover, the U.S. Food
and Drug Administration (FDA) approved its use in secondary progressive multiple sclerosis (SPMS),
in progressive relapsing multiple sclerosis (MS), and for patients with worsening relapsing-remitting
(RR) MS [5]. Various MTX dosage schedules can be used in cancer patients, although in adults with
solid tumors, 12−14 mg/m2 every 3–4 weeks is usual [6]. MTX is given intravenously at a dose
of 12 mg/m2 every 3 months to MS patients. Although a maximum cumulative lifetime dose of
140 mg/m2 should not be surpassed, recommendations exist of lower cumulative doses being given
to MS patients as they seem more susceptible to cardiotoxicity [7]. Doxorubicin (DOX) is used in the
treatment of the following cancers: metastatic breast cancer, advanced cancer of the ovary, Kaposi’s
sarcoma and multiple myeloma [8]. DOX and MTX are both topoisomerase II inhibitors and exert
their antineoplastic action by intercalating into DNA and producing both DNA strand-breaks and
interstrand cross-links; they also interfere with RNA synthesis [4,8]. New drugs are emerging for
cancer treatments, but chemotherapy is still the most common and well-characterized option in several
cancers [3,9].

Although life expectancy is largely increasing due to the chemotherapeutic regiments available,
serious side effects emerge after chemotherapy. Mielossupression and cardiotoxicity of MTX (and also
of its analog, DOX) are common concerns among cancer treated patients [2,10–12]. However, data
have shown that brain tissue is also susceptible to the toxicity of chemotherapeutic agents, despite
presumption of blood-brain barrier (BBB) protection [13]. “Chemobrain” is the term used to describe
the cognitive decline associated with chemotherapy. Persistent changes in cognitive function, including
memory loss, distractibility, and difficulty in performing multiple tasks, have been observed in breast
cancer survivors after treatment with chemotherapeutic agents, including DOX [14]. Women with
breast cancer and treated with four cycles of DOX and cyclophosphamide had significant decreases in
visuospatial skill and total cognitive scores, following chemotherapy [15]. In a broader study by the
same authors, cognitive impairment was found in 23% of women prior to chemotherapy. Thereafter,
they received the combination of DOX and cyclophosphamide or followed by a taxane. Significant
decreases in the cognitive domains of visuospatial skill, attention, delayed memory, and motor function
were observed after receiving chemotherapy, but improvements followed 6 months after the completion
of chemotherapy [16]. The authors stated that having a breast cancer diagnosis can result in cognitive
impairment and that chemotherapy may have a negative acute impact on cognitive function [16].
However, other data support long-term neurotoxic effects of chemotherapy. Long-term survivors of
breast cancer or lymphoma, who had been treated with systemic chemotherapy (DOX being present in
several of the systemic regimens taken), scored significantly lower on several neuropsychological tests
compared to those treated with local therapy only, particularly in the domains of verbal memory, and
psychomotor functioning; also they were in the lower quartile on the Neuropsychological Performance
Index, and self-reported greater problems with working memory on the Squire Memory Self-Rating
Questionnaire [17]. Some in vitro data demonstrate that both apoptosis and oxidative stress can be
involved in DOX-induced neurotoxicity [18,19]. Moreover, treatment with DOX increases circulating
level of tumor necrosis factor-alpha and leads to decline in mitochondrial respiration and mitochondrial
protein nitration, being nitric oxide an important mediator of those effects in mice [20]. Regarding
MTX, little data is available about its putative neurotoxicity, although some questions were placed in
the past whether increased incidence of central nervous system (CNS) hemorrhages in patients with
secondary acute promyelocytic leukemia were a consequence of MTX treatment [21]. As far as local
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neurological side effects are concerned, the administration of MTX caused very short-lived partial
Jacksonian motor seizures; momentary light headache lasting 1–2 h and slight drowsiness lasting no
more than 6 h in patients with recurrent glioblastomas enrolled for second tumor debulking with local
positioning of a reservoir containing MTX [22]. In two patients, a hemorrhage occurred in the absence
of any clinical deficits and vanished in both cases within a month [22]. Most importantly, the new use
of MTX on MS may pose as an added risk for MTX-induced neurotoxicity, as dysregulation of the BBB
is an early cerebrovascular abnormality seen in the MS patient brain [23], circumventing the important
function of BBB as the retaining wall preventing drug passage into the CNS. In a work by Fulda et al.
DOX and MTX were compared in neuroblastoma SK-N-SH cells and DOX was more toxic than MTX,
according to monolayer proliferation assay [24]; however more studies are required. Therefore, our
work aimed to determine the neurotoxicity profile of MTX and compare it with a known neurotoxic
chemotherapeutic drug, DOX. SH-SY5Y cells are a frequent neuronal model used in neurotoxicity
studies and are a subline of the parental line SK-N-SH. Those human cells were used herein as an in
vitro neuronal model and several determinations were performed. Moreover, pharmacological active
drugs were used as putative protectors, according to the data previously published on the putative
DOX neurotoxic mechanisms [18,19,25–27].

2. Results

2.1. The Cytotoxicity of Mitoxantrone Was Significantly Higher Than That of Doxorubicin

At 24 h, in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction
assay, all concentrations of either DOX or MTX caused significant cytotoxicity when compared to
control (Figure 1A), MTX being more cytotoxic than DOX [31.5 ± 10.5% (MTX) versus 46.9 ± 15.4%
(DOX) for the lowest concentration; 32.6 ± 12.2% (MTX) versus 51.2 ± 14.3% (DOX) for the 0.2 µM
intermediate concentration; and 41.4 ± 10.5% (MTX) versus 58.5 ± 10.8% (DOX) for the highest
concentration (0.5 µM)]. Of note that, in the MTT assay, we could not find a concentration-dependent
toxicity for MTX at both time-points tested. Moreover, DOX 0.5 µM was less toxic than the lowest DOX
concentration (0.13 µM) tested at 24 h.
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Figure 1. MTT reduction assay after exposure to 0.5, 0.2 and 0.13 µM DOX (light grey) or 0.5, 0.2
and 0.13 µM MTX (dark grey) after 24 h (A) or 48 h (B) in undifferentiated SH-SY5Y cells. Sterile
PBS was used as control. Results are presented as mean ± SD of 23–35 wells, of 5–6 independent
experiments. Statistical analyses were performed using two-way ANOVA followed by the Bonferroni
post-hoc test(**** p < 0.0001 versus control; ## p < 0.01 versus the same drug at 0.13 µM; &&&& p < 0.0001
MTX versus the same DOX concentration).

At the 48 h time-point, MTX caused the highest toxicity at concentrations of 0.13 µM and 0.2 µM,
when compared to DOX in the same concentrations (Figure 1B). At 24 h, significant differences were
observed between the two molecules, in the neutral red (NR) uptake assay, MTX being more cytotoxic
than DOX (Figure 2A). At 48 h, significant differences between DOX and MTX were only found at
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0.5 µM (DOX: 47.2 ± 13.3%; MTX: 35.6 ± 10.1%) (Figure 2B). Additionally, in the NR uptake assay and
following a 24-h exposure, the lower concentration (0.13 µM) of both DOX and MTX was more toxic
than the highest concentration tested (0.5 µM) (Figure 2A). Meanwhile, this difference was not verified
at 48 h (Figure 2B).
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Figure 2. NR uptake assay after exposure to 0.5, 0.2 and 0.13 µM DOX (light grey) or 0.5, 0.2 and
0.13 µM MTX (dark grey) after 24 h (A) or 48 h (B) in undifferentiated SH-SY5Y cells. Sterile PBS was
used as control. Results are presented as mean ± SD of 24–37 wells, of 5–7 independent experiments.
Statistical analyses were performed using two-way ANOVA followed by the Bonferroni post-hoc test
(**** p < 0.0001 versus control; # p<0.05 versus the same drug at 0.13 µM; ## p < 0.01 versus the same
drug at 0.13 µM; ### p < 0.001 versus the same drug at 0.13 µM; && p < 0.01 MTX versus 0.5 µM DOX;
&&& p < 0.001 MTX versus 0.13 µM DOX; &&&& p < 0.0001 MTX versus 0.2 µM DOX; $ p < 0.05 versus
same molecule at concentration 0.2 µM).

2.2. Mitoxantrone Led to Cellular Damage in SH-SY5Y Cells, with Signs of Apoptosis Most Evident at the
Lowest Concentration after a 48-h Exposure

A decrease in cell density was observed in all MTX-treated cells with a typical loss of shape
and loss of neurites, at 48 h (Figure 3). The neurotoxic phenomenon was more expressive than the
one observed in cells incubated with MTX for 24 h (data not shown). Cell number was substantially
decreased after MTX treatment, as seen in the Hoechst staining (Table 1). Additionally, the lower
concentration of MTX (0.13 µM) had a higher number of cells with apoptotic nuclear morphology,
namely nuclear fragmentation, as well as chromatin condensation than the other MTX concentrations
tested (Figure 3 and Table 1).

Table 1. Number of cells and condensed nuclei after the Hoescht staining at 48 h.

Parameters

MTX Control 0.13 µM 0.2 µM 0.5 µM

Condensed nuclei 4 ± 4 205 ± 111 130 ± 29 117 ± 29
Number of cells 439 ± 102 357 ± 95 259 ± 19 212 ± 15
Ratio of condensed nuclei/number of cells 0.89 ± 0.76 57.04 ± 24.98 * 50.09 ± 9.30 54.87 ± 9.54

DOX Control 0.13 µM 0.2 µM 0.5 µM

Condensed nuclei 2 ± 1 43 ± 8 26 ± 12 84 ± 14
Number of cells 436 ± 98 263 ± 29 186 ± 59 170 ± 18
Ratio of condensed nuclei/number of cells 0.39 ± 0.27 16.20 ± 2.05 13.53 ± 2.57 49.00 ± 4.00 **

Results are presented as mean ± SD of two independent experiments and two different fields each. Each field was
counted manually and the microphotographs were taken with the magnification of 200×. Statistical analyses were
performed on the ratio of condensed nuclei/number of cells using the Kruskal-Wallis test, followed by the Dunn’s
post-hoc test. (* p < 0.05; ** p < 0.01 versus control).
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Figure 3. Phase-contrast microphotographs (left column) of undifferentiated SH-SY5Y cells exposed
to PBS (control) or 0.13 µM MTX, 0.2 µM MTX and 0.5 µM MTX. Right side, fluorescence microscopy
(Hoechst 33258 staining) of undifferentiated SH-SY5Y cells incubated with PBS (control) or 0.13 µM,
0.2 µM and 0.5 µM MTX. The microphotographs were taken after a 48-h exposure to the various
conditions. Images are representative of two independent experiments with at least two wells (scale
bar represents 100 µm).

The toxicity observed at 48 h (Figure 4) was higher after DOX exposure than at 24 h at the
same concentrations (data not shown). At 48 h, DOX caused a substantial decrease in cell density
when compared to control and many cells treated with DOX had rounded appearance without
neuritis (Figure 4). In the fluorescence microscopy photographs, nuclear fragmentation and chromatin
condensation were observed after a 48-h exposure to DOX, with a higher number of apoptotic cells at
the highest concentration tested (0.5 µM) (Figure 4 and Table 1).
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Figure 4. Phase-contrast microphotographs (left column) of undifferentiated SH-SY5Y cells incubated
with PBS (control) or 0.13 µM, 0.2 µM and 0.5 µM DOX. Right side, fluorescence microscopy (Hoechst
33258 staining) of undifferentiated SH-SY5Y cells incubated with PBS (control) or 0.13 µM, 0.2 µM
and 0.5 µM DOX. The microphotographs were taken after a 48-h exposure to the various conditions.
Images are representative of two independent experiments with at least two wells (scale bar represents
100 µm).

2.3. Mitoxantrone and Doxorubicin Caused Apoptosis in Undifferentiated SH-SY5Y Cells

In Figures 5 and 6, cells with well-colored green and large nuclei (white arrow) were seen in the
control living cells. In SH-SY5Y cells exposed to MTX for 48 h, cells with condensed green nucleus
(pink arrows), indicative of early apoptotic cells, were observed with very few adherent cells in the field
(Figure 5). After exposure to 0.5 µM MTX, the lack of neurites was evident, when compared to the two
lower concentrations (Figure 5). In Figure 6, cells incubated with DOX for 48 h are shown, and several
red dots of nuclear condensation within the cells or condensed nuclei, both signs of apoptosis (pink
arrows) were noteworthy in all concentrations. At 48 h, a higher number of cells per field was observed
in DOX-exposed cells when compared with MTX-incubated SH-SY5Y cells, in the same concentrations.
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Figure 5. Representative fluorescence microscopic photos following acridine orange/ethidium bromide
staining in undifferentiated SH-SY5Y cells after a 48-h incubation with MTX (0.13 µM; 0.2 µM; 0.5 µM)
and control cells. White arrow: viable cells; pink arrows: cells with signs of apoptosis. Images are
representative of two independent experiments with at least two wells. Scale bar represents 100 µm.
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Figure 6. Representative fluorescence microscopic photos following acridine orange/ethidium bromide
staining in undifferentiated SH-SY5Y cells after a 48-h incubation with DOX (0.13 µM; 0.2 µM; 0.5 µM)
and control cells. White arrow: viable cells; pink arrows: cells with signs of apoptosis. Images are
representative of two independent experiments with at least two wells. Scale bar represents 100 µm.
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2.4. Both Doxorubicin and Mitoxantrone Caused a Decrease in the Mitochondria Potential of Neuronal
Cells at 0.13 µM

The transmembrane mitochondrial potential of undifferentiated SH-SY5Y cells following a 48-h
exposure can be seen in Figure 7. Control cells were bright green. The lower concentration of MTX
(0.13 µM) led to a total depolarization of the mitochondria, when compared to the control cells.
Meanwhile, 0.13 µM DOX also caused evident depolarization of cells after a 48-h exposure.
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Figure 7. Microphotographs showing the mitochondrial transmembrane potential of undifferentiated
SH-SY5Y control cells, and cells incubated with 0.13 µM MTX or 0.13 µM DOX for 48 h. Images are
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2.5. Tiron, an Antioxidant, was the Only Drug That Partially Prevented the Cytotoxicity of Mitoxantrone in
the Neutral Red Uptake Assay

Tiron was able to partially prevent the MTX-induced cytotoxicity in undifferentiated SH-SY5Y
cells in the NR uptake assay, but not in the MTT reduction assay at 48 h (data not shown). In the MTT
reduction assay, the values obtained after exposure to 0.2 µM MTX, either alone or in combination with
100 µM tiron, were always lower than control and not different between themselves (data not shown).
Moreover, 100 µM tiron alone did not cause any cellular cytotoxicity. The MTX 0.2 µM exposed cells
(29.0 ± 7.6%) had lower levels of NR uptake than the control cells (100.0 ± 8.4%), which revealed its
neurotoxic nature (Figure 8A). However, when compared with MTX + tiron (41.1 ± 11.3%), 100 µM
tiron revealed to be protective (Figure 8A). Moreover, there was no significant difference between the
100 µM tiron condition (96.2 ± 11.6%) and control cells (100.0 ± 8.4%) (Figure 8A). N-acetyl-L-cysteine
(NAC, 1 mM), also an antioxidant, was not able to avoid the cytotoxicity induced by 0.2 µM MTX at
48 h in undifferentiated SH-SY5Y cells, neither in the MTT reduction assay nor in the NR uptake assay
(data not shown). Also, neither 10 nM CHX nor 100 µM Ac-DEVD-CHO, an inhibitor of caspase-3/7,
were able to prevent the cytotoxicity observed after exposure to 0.2 µM MTX, in the MTT reduction
assay or in the NR uptake assay (data not shown).

2.6. Cycloheximide, a Protein Synthesis Inhibitor, and Ac-DEVD-CHO, an Inhibitor of Caspase-3, Partially
Counteracted the Doxorubicin-Induced Toxicity

CHX was able to partially prevent DOX-induced cytotoxicity in undifferentiated SH-SY5Y cells
in the NR uptake assay (Figure 8B), but not in the MTT assay at 48 h (data not shown). In the NR
uptake assay, the values after exposure to 0.2 µM DOX (32.9 ± 8.4%) were lower than the control
(100.0 ± 8.2%, Figure 8B). The DOX + CHX (40.2 ± 9.5%) condition had also lower values than those
of control, but significantly higher than that obtained after exposure to 0.2 µM DOX alone, revealing
the neuroprotective action of CHX. In the NR uptake assay, 10 nM CHX exposed cells (93.8 ± 8.1%)
did not differ to the respective control (Figure 8B: 100.0 ± 8.2%).

The caspase-3 inhibitor was able to provide partial neuroprotection against 0.2 µM DOX toxicity
in undifferentiated SH-SY5Y cells in the NR uptake assay (Figure 8C). DOX + Ac-DEVD-CHO had
significantly higher NR uptake values (40.1 ± 5.0%) than those of 0.2 µM DOX alone (32.3 ± 7.2%),
demonstrating that the inhibitor had a partial neuroprotective action against the anticancer drug
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toxicity. Of note, 100 µM Ac-DEVD-CHO (89.3 ± 10.8%) caused some toxicity per se when compared
to control cells (100.0 ± 6.7%). In the MTT reduction assay, 0.2 µM DOX and DOX + Ac-DEVD-CHO
conditions had similar values (data not shown).
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Figure 8. (A) NR uptake assay in undifferentiated SH-SY5Y cells proving the protective effect of
tiron against MTX neurotoxicity. Four conditions were tested: control (with PBS); 100 µM tiron;
0.2 µM MTX; 0.2 µM MTX + 100 µM tiron. Results are presented as mean ± SD of 17–24 wells of 3–4
independent experiments. Statistical analyses were performed using the one-way ANOVA, followed
by the Tukey’s post hoc test (**** p < 0.0001 versus control; ## p < 0.01 versus 0.2 µM MTX). (B) NR
uptake assay in undifferentiated SH-SY5Y cells showing the protective effect of cycloheximide (CHX)
against DOX neurotoxicity. Four conditions were tested: control (with PBS); 10 nM CHX; 0.2 µM DOX;
0.2 µM DOX + 10 nM CHX. Results are presented as mean ± SD of 14–18 wells of 3 independent
experiments. Statistical analyses were performed using the Kruskal–Wallis test, followed by the
Dunn’s post hoc test (**** p < 0.0001 versus control; ## p < 0.01 versus 0.2 µM DOX). (C) NR uptake
assay in undifferentiated SH-SY5Y cells proving the protective effect of Ac-DEVD-CHO against DOX
neurotoxicity. Four conditions were tested: control (with PBS); 100 µM Ac-DEVD-CHO; 0.2 µM DOX;
0.2 µM DOX + 100 µM Ac-DEVD-CHO. Results are presented as mean ± SD of 15–18 wells of 3
independent experiments. Statistical analyses were performed using the one-way ANOVA, followed
by the Tukey’s post hoc test (** p < 0.01, **** p < 0.0001 versus control; # p < 0.05 versus 0.2 µM DOX).

One mM NAC was not able to counteract the cytotoxicity induced by 0.2 µM DOX at 48 h in
undifferentiated SH-SY5Y cells, neither in the MTT reduction assay nor in the NR uptake assay (data
not shown). Moreover, tiron was not protective against DOX-induced neurotoxicity, in both cytotoxicity
assays performed, as the 0.2 µM DOX and DOX + tiron conditions did not show significant differences
among themselves (data not shown).

2.7. Doxorubicin Caused Greater Cytotoxicity in Undifferentiated SH-SY5Y Cells than in Differentiated Cells
According to the MTT Reduction Assay

Following a 48-h exposure, differentiated SH-SY5Y cells exposed to 0.2 µM MTX presented
slightly higher values in the MTT reduction test than undifferentiated cells, but with no statistical
significance (differentiated cells: 29.0 ± 7.1%; undifferentiated cells: 22.6 ± 11.5%) (Figure 9A). At 48 h,
the differentiated cells exposed to 0.2 µM DOX presented substantially higher MTT reduction values
(66.2 ± 6.0%) than in undifferentiated cells at the same conditions (34.8 ± 6.8%) (Figure 9B).

2.8. Mitoxantrone is More Neurotoxic than Doxorubicin in Differentiated SH-SY5Y Cells in the MTT
Reduction Assay

Both DOX and MTX caused neurotoxicity in differentiated SH-SY5Y cells after a 48-h exposure
(Figure 9C). In the MTT reduction assay, 0.2 µM MTX (29.0 ± 7.1%) was more cytotoxic than 0.2 µM
DOX (66.2 ± 6.0%) in differentiated SH-SY5Y cells (Figure 9C).
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Figure 9. MTT reduction assay after exposure to 0.2 µM MTX (A) or 0.2 µM DOX (B) in differentiated or
undifferentiated SH-SY5Y cells. Four conditions were tested: 0.2 µM MTX in differentiated cells, 0.2 µM
MTX in undifferentiated cells, 0.2 µM DOX in differentiated cells and 0.2 µM DOX in undifferentiated
cells. Values are expressed as percentage of control and are presented as mean ± SD. The results
were obtained from 12–24 wells, from 2–4 independent experiments. Data were statistically analyzed
using the unpaired t-test (**** p < 0.0001 versus differentiated cells treated with drug 0.2 µM). (C) MTT
reduction assay after exposure to MTX or DOX in differentiated SH-SY5Y cells. Two conditions were
tested: 0.2 µM DOX and 0.2 µM MTX. Values are expressed as percentage of control and are presented
as mean ± SD. The results were obtained from 12 wells and 2 independent experiments. Data were
statistically analyzed using the unpaired t-test (**** p < 0.0001 versus 0.2 µM DOX).

3. Discussion

This study revealed the following major findings: (1) MTX and DOX caused a time-dependent
cytotoxicity in the NR uptake and in the MTT reduction assays, in undifferentiated SH-SY5Y cells;
(2) MTX was shown to cause greater cytotoxicity at 24 h than DOX in undifferentiated SH-SY5Y
cells; (3) MTX caused greater morphological damage, with lower cell density and neurites loss, when
compared to DOX; (4) both drugs caused signs of apoptosis, in particular MTX, as both revealed by
Hoechst and the ethidium bromide and acridine orange stains; (5) the lower concentration of DOX
and MTX (0.13 µM) caused significant mitochondrial depolarization in undifferentiated SH-SY5Y
cells; (6) tiron, an antioxidant, partially avoided the neurotoxicity exerted by MTX on undifferentiated
SH-SY5Y cells in the NR uptake assay; (7) CHX and the caspase inhibitor, Ac-DEVD-CHO, were
partially neuroprotective against the cytotoxicity caused by DOX on undifferentiated SH-SY5Y cells
in the NR uptake assay; (8) in the MTT reduction assay, the cytotoxicity caused by MTX was similar,
regardless of SH-SY5Y cells differentiation status, whereas DOX was more toxic in undifferentiated
SH-SY5Y cells; and (9) in differentiated SH-SY5Y cells, MTX was shown to be more neurotoxic than
DOX, according to the MTT reduction assay.

Drugs used in chemotherapy, such as DOX and MTX, may be responsible for neuronal damage
with consequent neurotoxicity [22,28]. Persistent changes in cognitive function, including memory
loss, distractibility, and difficulty in performing multiple tasks, have been observed in breast cancer
survivors after chemotherapy, namely with DOX [15–17]. One could argue that BBB works as a
protective barrier avoiding the entrance of several compounds and it is generally accepted that efflux
transporters, namely P-glycoprotein and breast cancer resistance protein (BCRP) present in BBB, would
extensively prevent the entrance of DOX and MTX to the CNS [29,30]. However, pharmacokinetic
data obtained post mortem of treated patients show that both drugs are present in the brain [31,32].
Moreover, although MTX and DOX are given in very different doses to cancer patients, those doses are
considered equivalent in the clinical practice [33]. In plasma of cancer-treated patients, DOX ranged
between 0.04 to 1.16 µM and MTX levels were between 0.04 to 0.3 µM [34–39], while it is expected
that the brain may be exposed to lower concentrations of those found in the plasma. We observed
that both MTX and DOX, at clinically relevant concentrations, caused a high degree of cytotoxicity in
undifferentiated SH-SY5Y cells in both the MTT reduction and NR uptake assays, MTX being more
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cytotoxic. The greater toxicity of MTX herein may be due to its superior lipophilicity [40], making
this drug more easily permeable and accumulated inside the cells. A study published in 2005 also
reported that MTX is also more cytotoxic than DOX in two immortalized cell lines (NIH 3T3 and
B14), using the MTT reduction assay [41]. However, other authors reported that, in cardiac (H9c2)
and breast cancer (MTLn3) cells, DOX was slightly more cytotoxic than MTX, according to the trypan
blue exclusion technique [42]. Nevertheless, the trypan blue exclusion technique may present some
subjectivity regarding the cell-counting operator and it does not allow counting the cells that completely
disintegrated. Still, the toxicity of these two drugs seems to be dependent on the cellular model. Lopes
et al. found in primary rat cortical neurons that DOX (0.1 and 0.5 µM) caused a substantial degree of
toxicity (higher than toxic dose 50) when tested for 48 h according to the MTT reduction assay [19].
Meanwhile, in the same study, 10 µM DOX was less toxic than the lower concentrations tested (0.1 or
0.5 µM). That is in agreement with our results in undifferentiated SH-SY5Y cells, where 0.13 µM of
DOX was more toxic than 0.5 µM both in the MTT and NR assays at 24 h. We used two cytotoxicity
assays, the NR uptake and the MTT reduction assays, and several morphological evaluations or stains.
Most authors agree that using several cytotoxicity tests, with different inherent mechanisms can help
elucidate the underlying cytotoxicity of the drugs tested [19,43,44]. Nonetheless, herein there were no
major differences between the two cytotoxicity tests performed in each drug; however, MTX is more
toxic in both time points and concentrations and morphological evaluation corroborates the highest
MTX cytotoxicity.

DOX and MTX kill cancer cells by intercalating their DNA and inhibiting topoisomerase II [4].
However, in non-target sites, such as the brain, these drugs also cause damage [14,15]. As neurons are
post-mitotic cells, their injury can cause irreversible loss [14]. Regarding the mechanisms involved
in the putative neurotoxicity of DOX or MTX, data are still scarce. In this work, undifferentiated
SH-SY5Y cells were sensitive to DOX and MTX in a time-dependent manner and signs of apoptosis
were confirmed by two stains. In Hoechst staining, MTX and DOX in all the conditions tested, caused
signs of apoptosis, although more evident in 0.5 µM DOX and in 0.13 µM MTX, at 48 h. The acridine
orange/ethidium bromide staining confirmed that both drugs caused apoptosis in the concentrations
tested at 48 h. In primary cortical neurons, DOX caused signs of apoptosis, albeit dependent on DOX
concentration. In those cells, only the lowest concentrations tested (0.1 and 0.5 µM) showed activation
of caspase 3 and DNA fragmentation [19]. Loss of cell adhesion, loss of nuclear envelope, nuclear
fragmentation and decrease in cell size are typical signs of apoptosis [45] and we observed those effects
in the DOX and MTX-exposed undifferentiated SH-SY5Y cells. In mice, the oxidative damage caused
by DOX was capable of enhancing the expression of pro-apoptotic factors, such as BAD protein, and
decreasing the expression of Bcl-2 anti-apoptotic protein families, which would consequently lead to
mitochondrial membrane loss of potential, promote the release of cytochrome c and apoptosis [46].
In the present study, the effects on mitochondrial membrane potential were evaluated at the lowest
concentration (0.13 µM) and evident mitochondrial depolarization was observed, which agrees with
the ability of both drugs to trigger mitochondrial damage. Rats treated with seven weekly injections
of vehicle (subcutaneous, saline solution) or DOX (subcutaneous, 2 mg·kg−1), and then sacrificed
one week after the last administration had brain mitochondrial fractions isolated, and the authors
found that DOX treatment induced an increase in thiobarbituric acid-reactive substances and vitamin
E levels and a decrease in reduced glutathione content and aconitase activity, while potentiated the
mitochondrial permeability transition pore opening induced by calcium [47]. Also, DOX-induced
caspase-8 and -3 activity increases and decrease in mitochondrial potential in several types of primary
neuronal cells, although DOX impact was dependent on the cells’ development stage [26]. Those works
demonstrated that DOX causes mitochondrial affection and oxidative stress. Lopes and colleagues
also focused on neuronal oxidative stress caused by DOX, in primary cortical neurons, and found that
it decreased glutathione and increased reactive species and quinoprotein levels [18]. The decrease
of antioxidant defenses, such as glutathione, and increase of oxidative stress seem to contribute to
neuronal damage [13], like it happens in the heart after DOX exposure [10]. Taking into account the
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ability of DOX to promote oxidative stress, we sought to prevent the neurotoxicity of DOX and MTX
in undifferentiated SH-SY5Y cells using two antioxidants. NAC works as precursor in the synthesis of
glutathione and acts as an antioxidant [48,49]; however, in this work it failed to provide any protection
against 0.2 µM MTX or DOX toxicity. Rat cortical astrocytes were previously used to test the protective
effect of NAC against DOX-induced toxicity [50]. NAC, when pre-incubated at a concentration of 5 mM,
was able to reduce lipid peroxidation induced by DOX (10 mg/mL), and also partially counteracted
DOX-induced cytotoxicity, when evaluated by the MTT reduction assay. The concentrations used, as
well as the cellular model, may explain the differences observed in our work, where NAC showed no
protective effect against DOX. Indeed, in rat cortical neurons, DOX only decreased glutathione cellular
levels when cells were exposed to 0.5 µM for 24 h, not significantly altering this parameter at 0.1, 5 and
20 µM concentrations, possibly due to the overproduction of peroxynitrite seen in that concentration
(0.5 µM) and not significantly seen in the others [18]. The putative protective action of KU-55933, an
inhibitor of kinase ataxia-telangiectasia mutated (ATM), a protein engaged in DNA damage repair,
was studied in SH-SY5Y cells exposed to DOX. KU-55933 inhibited the cell death induced by H2O2

[0.5 mM and 1 mM in undifferentiated and retinoic acid (RA)-differentiated SH-SY5Y cells, respectively]
or DOX (0.25 and 1 µM in undifferentiated- and RA-differentiated SH-SY5Y cells, respectively) in
undifferentiated and RA-differentiated SHSY5Y cells, with a more pronounced effect in the latter cell
phenotype. Furthermore, this ATM inhibitor attenuated the DOX- but not H2O2-induced caspase-3
activity increase in both SH-SY5Y cells, showing that oxidative stress is not the unique mechanism
of DOX-induced neurotoxicity [51]. Another antioxidant, tiron 100 µM, a superoxide anion radical
scavenger, was tested here. Tiron was unable to prevent the toxicity of DOX, but it partially avoided
the toxicity induced by MTX. Interestingly, oxidative stress appears to be involved in the cytotoxicity
mechanism of MTX in our neuronal model; however, MTX, in other cellular models, namely H9c2 and
MTLn3, did not led to reactive oxygen species increase, unlike DOX [42]. However, late formation of
reactive species is observed after MTX incubation following mitochondrial affectation [52]. Our results
advocate for MTX-induced toxicity to mitochondria in this model. Superoxide anion radical is mainly
produced in mitochondria and MTX interferes in both the ATP levels and in ATP synthase expression
and activity, leading to late reactive species formation [52,53]. Regarding DOX, other reactive oxygen
or nitrogen species (not the superoxide anion radical), may be involved in the putative oxidative stress
promoted by DOX. Truthfully, the activation of nitric oxide synthase has been reported in cortical
neurons incubated with DOX, thus contributing to the formation of nitric oxide and subsequently
reactive nitrogen species [18].

Herein, DOX and MTX caused apoptotic nuclei in undifferentiated SH-SY5Y cells. These results
are in accordance to previous studies showing that MTX causes an increase in apoptotic cells at
concentrations as low as 0.3 ng/mL in postmitotic sympathetic neurons after a 24-h exposure [54] and
that DOX causes necrosis and apoptosis in rat cortical neurons at concentrations in the µM range [19].
We demonstrated that 10 nM CHX, a protein synthesis inhibitor, partially avoided the toxicity caused
by 0.2 µM DOX, in line to a previous finding showing that CHX was able to totally revert the cell
death caused by 0.5 µM DOX in cortical rat neurons [19]. Based on these data, even in different cellular
models, it is possible to conclude that DOX-induced cytotoxicity is dependent on de novo protein
synthesis. On the other hand, CHX was not able to lessen MTX-induced cytotoxicity in our neuronal
model, indicating different toxicity mechanisms for DOX and MTX.

Programmed cell death may be dependent or independent of caspases. A caspase-3 inhibitor,
Ac-DEVD-CHO, partially reverted the neurotoxicity of 0.2 µM DOX in undifferentiated SH-SY5Y cells.
In rat cortical neurons, exposure for 24 h to 0.1 and 0.5 µM DOX was found to increase caspase-3
activity [19], and the caspase-3 inhibitor, Z-DEVD-fmk, inhibited this effect, although it did not prevent
cell death [19]. In the case of MTX, the caspase-3 inhibitor had no protective effect on undifferentiated
SH-5YSY cells, although MTX was shown to activate caspase-3 in H9c2 cells [52]. However, since MTX
is more lipophilic than DOX [41] and led to a higher number of apoptotic nuclei in undifferentiated
SH-SY5Y cells in our work, the concentration of the caspase inhibitor may have been insufficient
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to prevent the toxicity of MTX or a non-caspase mediated apoptosis may also have been triggered.
Actually, in two immortalized cell lines (NIH 3T3 and B14 cells) both DOX and MTX activated
caspase-3 and the inhibitor Ac-DEVD-CHO did not show any significant effect on drug cytotoxicity
either [41]. Moreover, DOX has been shown to activate the apoptosis inducing factor (AIF), which
leads to caspase-3 independent apoptosis [25].

To assess whether there would be significant differences in the cytotoxicity promoted by DOX and
MTX in undifferentiated versus differentiated SH-SY5Y cells, the cytotoxicity of both 0.2 µM DOX and
0.2 µM MTX was assessed at 48 h using the MTT reduction test. The MTT reduction test has been the
most described cytotoxicity assay in the literature and in our results with undifferentiated SH-SY5Y
cells, it was the most sensitive assay towards both DOX and MTX neurotoxicity. In our work, DOX was
more neurotoxic in undifferentiated SH-SY5Y cells than in differentiated cells, revealing that the cellular
modifications following differentiation may be protective to differentiated SH-SY5Y cells. These results
are in line with those published earlier by Jantas and coworkers, who reported that undifferentiated
SH-SY5Y cells were more sensitive to DOX (concentration range 0.1 to 5 µM) cytotoxicity in the
lactate dehydrogenase release assay, and that DOX increased caspase 3 activity in undifferentiated,
but not in RA-differentiated SH-SY5Y cells (cells differentiated for 7 days with 10 µM RA) [27].
Accordingly, we saw that the caspase-3 inhibitor, Ac-DEVD-CHO, could attenuate DOX toxicity in
undifferentiated SH-SY5Y cells. The same group published another report revealing that DOX-evoked
cell death in the MTT test (cells exposed 24 h to 0.25 or 1 µM) was attenuated by specific activators of
group III metabotropic glutamate receptors in undifferentiated, but not in RA-differentiated SH-SY5Y
cells [25]. In fact, cells subjected to the differentiation protocol undergo several biochemical changes.
In particular, our group has shown that SH-SY5Y cells gain dopaminergic characteristics and suffer
a strong slowdown in cell division capacity [48,55]. At the biochemical level, an increase in the
density of dopamine receptors D2 and D3 on the cell surface of differentiated cells, an increase in
tyrosine hydroxylase expression and in the dopamine transporter, rendering them dopaminergic
neuronal characteristics [48,55]. RA differentiated SH-SY5Y cells were shown to be more resistant to
apoptosis via increasing the expression of Bcl-2 anti-apoptotic protein family (cells differentiated for
4 days with 10 µM RA) [56]. In another neuroblastoma cell line, SK-N-SH, cells differentiated with
RA (3 µM) or 4b-phorbol 12-myristate 13-acetate (PMA, 20 nM), a compound chemically related to
12-O-tetradecanoylphorbol 13-acetate (TPA), were more resistant to apoptosis than undifferentiated
cells. PMA treated cells had an increased expression of Bcl-2 and RA treatment increased Bcl-xL, and
these increases of anti-apoptotic proteins show how differentiation can render cells more resistant to
apoptotic stimuli [57], namely those possibly caused by DOX herein. Additionally, RA differentiation
induces a dramatic increase in the energy metabolism of SH-SY5Y cells, and shifts the dependence
on energy production from glycolysis to oxidative phosphorylation [58,59] advocating that DOX
causes energetic stress, and differentiated SH-SY5Y are more resilient cells possibly because they
rely more on mitochondrial energy production. Actually, in murine cardiac HL-1 cells, ATP levels
and glycolytic fluxes were significantly reduced after DOX treatment [60]. When comparing to MTX
cytotoxicity in both undifferentiated and differentiated cells, no significant differences were seen but
a tendency occurred towards a higher toxicity in undifferentiated cells. Neurons are very sensitive
to mitochondrial toxins [61] and MTX is a mitochondrial toxin [43,52,53], even in mainly glycolytic
cells [52]. This extensive neurotoxicity combined with its higher lipophilicity, make MTX a more
dangerous drug to the brain than DOX. These data combined with its new use in MS, broadens MTX
neurotoxic potential since BBB in MS patients is largely affected [23]. Thus, potential deleterious effects
of MTX in the brain should not be overlooked or regarded as a natural path in the disabling and
incurable MS and MTX neurotoxic effects should be further studied.
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4. Materials and Methods

4.1. Materials

MTX, DOX, trypsin-EDTA solution, trypan blue solution 0.4% (w/v) and Dulbecco’s modified
Eagle medium (DMEM) high glucose, sodium bicarbonate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT), neutral red (NR) solution, Hoechst 33258 solution, 3,3′-
dihexyloxacarbocyanine iodide (DiO6), dimethyl sulfoxide (DMSO), RA, TPA, NAC, tiron, CHX,
Ac-DEVD-CHO, an inhibitor of caspase-3/7, and paraformaldehyde were obtained from Sigma-Aldrich
(Taufkirchen, Germany). Human neuroblastoma SH-SY5Y cells were obtained from the European
Collection of Cell Cultures (Sigma-Aldrich, Taufkirchen, Germany). All sterile plastic material was
obtained from Corning Costar (Corning, NY, USA). Penicillin/streptomycin (10.000 units/mL/
10.000 µg/mL) and the phosphate buffer solution (PBS) without calcium and magnesium were
obtained from Biochrom (Berlin, Germany). Fetal bovine serum (FBS), PBS with calcium and
magnesium and Hank’s balanced salt solution (HBSS) were obtained from Gibco (Paisley, UK).

4.2. Cell Culture

Human SH-SY5Y neuroblastoma cells are a commonly used neuronal model for the study
of neurotoxicity, as they maintain several neuron markers [55]. SH-SY5Y cells were grown in
complete DMEM that consisted of DMEM supplemented with 10% (v/v) FBS and 1% (v/v) of
penicillin/streptomycin. Cells were cultured and maintained at 37 ◦C in a 5% CO2 incubator (Heraeus,
Hanau, Germany) throughout all procedures. Stock cultures of SH-SY5Y cells were maintained
in 25 cm3 flasks and grown until confluence (80–90% confluence). Cells were washed with PBS,
trypsinized (trypsin/EDTA) and counted following trypan blue staining using a Fuchs-Rosenthal
counting chamber. The cell suspension was then seeded in multi-well plates at a density of
50,000 cells/cm2. All experiments were done using cells from passage 25 to 40.

4.3. Undifferentiated SH-SY5Y Cells

After seeding the cells in plates, they were maintained for 24 h to allow them to attach, and then
exposed to DOX or MTX (0.13; 0.2; 0.5 µM) for 24 or 48 h. NR uptake and MTT reduction assays,
phase contrast microscopy, Hoechst stain, ethidium bromide and acridine orange stain, mitochondrial
membrane potential evaluation were subsequently done.

For testing putative protectors against the toxicity of MTX or DOX, undifferentiated SH-SY5Y
cells were pre-incubated with 1 mM NAC, 100 µM tiron, 10 nM CHX, or 100 µM of the caspase 3/7
inhibitor Ac-DEVD-CHO [43,49], for 30 min before exposure to 0.2 µM DOX or 0.2 µM MTX for 48 h.
NR uptake and MTT reduction assays were performed after that exposure period.

4.4. Differentiated SH-SY5Y Cells

SH-SY5Y cells can be differentiated and a dopaminergic state is obtained after differentiation,
while undifferentiated SH-SY5Y cell respond as catecholaminergic neurons [55]. For differentiating
cells into a dopaminergic phenotype, cells (density 25,000 cells/cm2) were seeded in complete DMEM
medium containing 10 nM RA for three days. At the third day, cells were then exposed to 80 nM TPA
on complete DMEM medium and kept for another three days [48,49]. After the 6-day differentiation
protocol, the cells were exposed to 0.2 µM DOX or MTX for 48 h, and the MTT reduction test
was performed.

4.5. Cytotoxicity Evaluation

To compare DOX and MTX cytotoxicity and to determine if putative protectors could prevent
against DOX or MTX-induced toxicity, two assays were used: the NR lysosomal uptake and the MTT
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reduction assays. Both methods were performed 24 or 48 h after the cells’ exposure to cytostatic drugs
in 48-well plates.

4.6. MTT Reduction Assay

The MTT colorimetric assay is based on the mitochondrial reduction of the tetrazolium salt and
formazan formation. At the selected time-point, the cellular medium was changed and 200 µL of
complete medium and 20 µL of MTT (5 mg/mL) were added to each well. A 3-h incubation period at
37 ◦C was then necessary to allow the reduction of MTT in both differentiated and undifferentiated
SH-SY5Y cells. The medium was then removed and 200 µL of DMSO were added. The plate was
shacked for 15 min until total dissolution of the formazans. Spectrophotometric measurement of
the formazans formed was then done at 550 nm in a multi-well plate reader (Biotech Synergy HT,
Winooski, VT, USA). The percentage of MTT reduction of control cells was set to 100% and the values
of each treatment are expressed as percentage of control cells.

4.7. Neutral Red Lysosomal Uptake Assay

The NR uptake assay is based on the ability of viable cells to uptake the supravitally dye that
penetrates cell membranes and concentrates in lysosomes. After a 48-h exposure time, the medium
was removed and warm NR (33 µg/mL) enriched medium was placed in each well (250 µL/well).
Plates were kept at 37 ◦C for 3 h, protected from light. The medium was then removed and the wells
were washed with 250 µL of warm HBSS solution with calcium and magnesium. Thereafter, the
HBSS solution was rejected and 200 µL of the lysis solution (50% ethanol/1% acetic acid) were added.
The plate was shaken for 15 min, protected from light, until a homogeneous solution was obtained.
The absorbance was read at two wavelengths, 540 and 690 nm (reference), on a multi-well plate reader
(Biotech Synergy HT, Winooski, VT, USA) and results are presented as percentage of control cells,
whose mean values were set to 100%.

4.8. Microscopic Evaluation of the Cells

4.8.1. Phase Contrast Microscopy

In undifferentiated SH-SY5Y cells, phase-contrast microscopy morphological evaluation was
performed in 12-well plates to determine the toxic effects of both cytostatic drugs after a 24- or 48-h
exposure. An Nikon Eclipse TS100 inverted microscope equipped with a DS-Fi1 camera (Tokyo, Japan)
was used.

4.8.2. Hoechst Staining

To evaluate the effects of MTX and DOX on the nuclear morphology of undifferentiated SH-SY5Y
cells, the Hoechst staining was performed following a 24-h or a 48-h exposure to the drugs, as
previously described [43]. Briefly, cells were fixed in 4% paraformaldehyde (10 min, 4 ◦C) and washed
three times with PBS with calcium and magnesium. Cells were stained with the nuclear dye Hoechst
33258 (final concentration of 5 µg/mL) for 10 min at 37 ◦C (protected from light), and then washed three
times, at room temperature, with PBS containing calcium and magnesium. Cells were examined in a
Nikon Eclipse TS100 microscope equipped with a Nikon DS-Fi1 camera, using a standard fluorescein
filter (λexcitation = 346 nm and λemission = 460 nm) and then counted manually for total cells and
condensed nucleuses.

4.8.3. Ethidium Bromide and Acridine Orange Staining

The fluorescent DNA-intercalating dyes ethidium bromide and acridine orange are used to
discriminate between necrotic and apoptotic cell death. Ethidium bromide intercalates with nucleic
acids if the outer cellular membrane is ruptured. Acridine orange diffuses through intact membranes
of live cells and largely accumulates in acidic vesicles. After a 48-h incubation with MTX or DOX, the
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medium was removed and the protocol was done as previously described [49]. Cells were examined in
a Nikon Eclipse TS100 microscope equipped with a Nikon DS-Fi1 camera, using a standard fluorescein
filter (λexcitation = 485 nm and λemission = 525 nm).

4.8.4. Evaluation of the Mitochondrial Membrane Potential

The evaluation of the mitochondrial membrane potential was also done as previously
described [43]. Briefly, cells were incubated for 48 h with 0.13 µM MTX or 0.13 µM DOX and
subsequently incubated for 30 min at 37 ◦C with DiO6 (35 nM/well). Each condition had a well
without any DiO6 to evaluate whether any component of the medium or drugs tested emitted any
residual fluorescence that could interfere with the readings. After the 30 min incubation time, cells
were washed twice with warm PBS with calcium and magnesium and photographs were taken in
a fluorescence microscope (Nikon Eclipse TS100 equipped with a Nikon DS-Fi1 camera), using a
standard fluorescein filter (λexcitation = 485 nm and λemission = 520 nm).

5. Statistical Analysis

The results are expressed as mean ± standard deviation. When the two molecules and several
concentrations were compared at different concentrations, statistical analysis was performed using
the two-way ANOVA test, followed by the Bonferroni post-hoc test, once a significant p value was
reached. When dealing with three or more conditions, the D’Agostino & Pearson normality test was
used to evaluate data distribution. A parametric analysis of variance (ANOVA) was performed when
data distribution was normal, followed by the Tukey’s post hoc test. When data did not follow a
normal distribution, statistical analysis was performed using the Kruskal-Wallis test, followed by the
Dunn’s post-hoc test, once a significant p value was reached. Statistical significance was set at p < 0.05.
All statistical analyses were performed using GraphPad Prism 7 software (GraphPad Software, La Jolla,
CA, USA). All details of the statistical analyses can be found in the figure legends.
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Abbreviations

BBB Blood-brain barrier
CHX Cycloheximide
CNS Central nervous system
DMEM Dulbecco’s modified Eagle medium
DOX Doxorubicin
EMA European Medicines Agency
HBSS Hanks’ balanced salt solution
MS Multiple sclerosis
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
MTX Mitoxantrone
NAC N-Acetyl-L-cysteine
NR Neutral Red
PBS Phosphate buffered saline
RA Retinoic acid
TPA 12-O-tetradecanoylphorbol 13-acetate
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