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Electrophysiological responses of 
relatedness to consecutive word 
stimuli in relation to an actively 
recollected target word
Karen Dijkstra   , Jason Farquhar    & Peter Desain

In this paper, we investigate the robustness of electrophysiological responses of relatedness to multiple 
consecutive word stimuli (probes), in relation to an actively recollected target word. Such relatedness 
information could be used by a Brain Computer Interface to infer the active semantic concept on a 
user’s mind, by integrating the knowledge of the relationship between the multiple probe words and 
the ‘unknown’ target. Such a BCI can take advantage of the N400: an event related potential that is 
sensitive to semantic content of a stimulus in relation to an established semantic context. However, 
it is unknown whether the N400 is suited for the multiple probing paradigm we propose, as other 
intervening words might distract from the established context (i.e., the target word). We perform an 
experiment in which we present up to ten words after an initial target word, and find no attenuation of 
the strength of the N400 in grand average ERPs and no decrease in classification accuracy for probes 
occurring later in the sequences. These results are groundwork for developing a BCI that infers the 
concept on a user’s mind through repeated probing, however, low single trial decoding accuracy, and 
high subject variability may limit practical applicability.

Brain Computer Interfaces (BCIs) use brain activity as a direct input for a computer. Many BCI applications are 
designed to offer alternative means of communication to people that are no longer able to use conventional input 
devices (e.g., keyboards). Existing communication BCIs come in a number of paradigms, achieving communica-
tion in different ways. Some offer binary choices selections, that, for instance, allow for “Yes”/“No” answers to ques-
tions (e.g.,1–3). Others allow users to spell messages, by selecting characters one by one4–7. Each approach has their 
strengths and weaknesses, allowing the choice of BCI to vary depending on the needs and preferences of a user.

Here, we are working towards a BCI that allows for the selection of words as a unit. In an approach similar to 
the game ‘20 questions’, in which someone tries to guess the person or object that someone is thinking of by ask-
ing only yes-no questions, we envision a BCI that infers the concept on a user’s mind by, in essence, asking them 
if a presented word is related to the to-be-inferred concept. More specifically, the proposed BCI presents a word, 
uses the electrophysiological responses of semantic relatedness to infer this word’s relation to the target concept, 
and updates its belief state based on this evidence. We refer to these words, designed to elicit information about 
the unknown target, as ‘probe’ words. The BCI continues by presenting a new probe word, measuring another 
brain response, and so on, until it has sufficient confidence that the target concept has been identified. This can 
be employed as a word selection application, for purposes of communication (e.g., in sentence generation, or 
perhaps topic selection) as an alternative for existing BCI communication approaches, or for tip-of-the-tongue 
scenarios, in which the word for a to-be-communicated concept cannot be retrieved, which can be a problem for 
patients with anomic aphasia8, for instance. In the latter case, these patients could benefit from an application that 
can help them find their word when issues arise, though currently, even state-of-the-art BCIs are hard to incorpo-
rate into daily life, making this an unrealistic application in the short term.

Such an approach toward word selection has been outlined in the past9. In that study by Geuze et al. (2014), users 
encoded a probe’s relatedness status using deliberate responses: Users were presented with a stream of probes and 
asked to press a button when a presented word was related; a task designed to simultaneously induce a movement 
related de-synchronization (ERD) and elicit a P300 for related probes (due to their explicit task-related nature).
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While using such deliberate signals is one way to approach such a BCI, there already exists a brain response 
that is inherently sensitive to the semantic content of a stimulus: the N400. It is an Event Related Potential (ERP) 
characterised as a wave that is more negative when a presented stimulus is unrelated, compared to a related stimu-
lus, in relation to a previously established context10. Over the years it has proven a robust effect that can be elicited 
in a sentence context, in which the response to a word is measured based on its relation to earlier parts of the 
sentence, or in a word-pair context, in which a prime is presented followed by a related or unrelated probe. It is 
not only elicited with text on a screen, but also occurs when stimuli are pictures11 or when presented auditorily, as 
speech12,13, though the N400’s scalp distribution can vary. There are also non-semantic factors that affect the N400 
amplitude, for instance, the lexical properties of the presented stimulus word (e.g., the word’s frequency)14,15, or 
the repetition of a stimulus within in a short timeframe16. These are of less inherent interest for a BCI application, 
but may need to be accounted for as potential confounds.

Importantly, it is not necessary that subjects are explicitly tasked to evaluate the semantic content of a stimulus 
to elicit an N400, though it appears to require that a stimulus’ meaning is processed (i.e., in a task where only 
the length of the word is relevant, no semantic priming effects from previous stimuli occur;17,18). Using such an 
“automatic” brain response might be more pleasant for the user, as they have to provide less effort in deliberately 
evoking the right response. However, if we want to use the N400 for this BCI paradigm, we first have to establish 
whether this signal lends itself to such an approach.

Van Vliet et al.19, recognised the potential of the N400 for BCI purposes, and demonstrated that a prime word 
need not be presented, but can simply be recalled, to elicit an N400 to subsequent’probe’ stimuli. To use for BCI 
purposes, the N400 should be detectable from a brain response to a single stimulus presentation, and not merely 
be observable in averages across or within participants. More recent work has shown that indeed the N400 can be 
detected from single word pair presentations (i.e., a target word and a single probe), with classification rates across 
individuals ranging from 54% to 67%20.

Secondly, to infer the concept on a user’s mind, a system would have to present a number of probe words 
consecutively, for the same concept, in order to collect sufficient evidence. Such a sequence of probe words could 
conceivably influence the context on a users mind, and it is therefore possible that results from a prime-single 
probe paradigm do not generalise to a setup with multiple (i.e., many) probes. In other words, we want to know 
whether single trial classification of relatedness based on the N400 is still possible when multiple consecutive 
probes are presented following an initial target word.

It is good to note that, given the described automatic nature of the N400, we might expect that in the Geuze et al.  
(2014) study9, that focused on deliberate responses, to also elicit an N400 response. However, this N400 would 
predict a difference in the same direction as their expected P300: a more positive response for related probes after 
300 ms, so it is hard to estimate the potential contribution of the N400 to their ERP findings. Notably, their grand 
average ERPs do not show the downward deflection (with a minimum near 400 ms) that is characteristic for the 
N400.

To establish what the effects of multiple consecutive probes are on the decoding of semantic relatedness, we 
designed an experiment in which we present a target word for participants to actively keep in mind, followed by 
up to ten probe words that are either related or unrelated to this target. Subjects are tasked to mentally evaluate 
the relatedness of probes, but without putting emphasis on related over unrelated probes. While presenting ten 
probes is not necessarily sufficient for decoding purposes, we will use this data to determine if there is any indica-
tion of attenuation (i.e., a reduction of the magnitude) of the N400, when comparing first probes and probes late 
in the sequence. Specifically, we will compare grand average ERPs in response to probes appearing immediately 
after the target, with those in response to probes at the end of the sequence, combining data across participants to 
increase the sensitivity for detecting a difference.

In addition to this, there is some evidence that tasks designed to elicit N400s can also induce changes in oscil-
latory brain responses21. To evaluate this we will analyse the data in the frequency domain to determine if there 
are any spectral differences that could be used as additional features for decoding semantic relatedness.

Results
Behavioural results.  In each trial, participants were presented with a target word to keep in mind, followed 
by up to ten probe words. At the end of each trial, participants indicated with a button-press whether the most 
recently presented probe had been related or unrelated to the initial target word (left vs. right button-press respec-
tively). We compared the answers of each participant to the label of that probe and calculated the percentage of 
agreeing answers across all trials. Agreement between the response and label ranged from 70% to 95% across 
participants (mean 87%). A mismatch between the response and label can reflect a user error, or a disagreement 
on the relatedness status of the probe, as relatedness judgements can vary between individuals. Average reaction 
times per participant ranged from 368 ms to 1420 ms (mean 632 ms), with a strong correlation between reaction 
time and age (r = 0.80, n = 20, p = 0.00003, ages 18–61, mean = 29, sd = 12). On average, reaction times to related 
probes were somewhat faster than to unrelated probes (578 ms and 650 ms respectively; agreeing responses only).

Initial ERP analysis.  To determine if there were any differences in brain responses to related compared 
to unrelated probes, we computed a grand average ERP, averaging across all related and unrelated probes pre-
sented in the experiment. This analysis produced an unexpected result: the grand average showed a difference in 
response between related and unrelated probes prior to stimulus onset, with the ERP for unrelated probes being 
more negative before, at, and some period after time 0. A difference in ERPs occurring prior to presentation of the 
stimulus of interest cannot reflect a brain response to that stimulus, suggesting that there is some structural factor 
(e.g., a previous stimulus) affecting the responses, that did not average out in the ERP. We hypothesise that this is 
a consequence of our design: while two related stimuli were never presented sequentially, unrelated stimuli could 
appear after either a related or an unrelated probe. If we split the data into these three categories and compute 
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grand averages we obtain the results in Fig. 1a (for electrode Cz; baselined to the predecessor stimulus). Here we 
see that the pre-stimulus difference occurs only for unrelated probes occurring after a related probe.

More specifically, there appears to be a late response that differs in amplitude between related and unrelated 
probes, which is still present when the next stimulus is presented. This is followed by a stimulus response (around 
200 ms) after which the related → unrelated category behaves similarly to the unrelated → unrelated, until at least 
1 s after stimulus presentation.

With responses to probes preceded by an unrelated probe appearing unconfounded (i.e., behaving more or 
less identically at stimulus onset), from here on we consider only these probe’s data, excluding the related → unre-
lated data (unless noted otherwise), to ensure that effects are not an artifact of our experimental design.

ERP analyses.  The resulting grand average ERP can be found in Fig. 1b. Here we observe a difference 
between the two conditions from around 400 ms to 800 ms, where the response to unrelated probes is more 
negative than to related probes, as would be expected for an N400. This difference corresponds to the significant 
cluster found in a cluster permutation test22 (p = 0.001, two-tailed test, α = 0.05, n = 20, cluster marked in grey), 
confirming that there is a significant difference in the response to related and unrelated probes.

In order to determine whether or not the magnitude of the ERP decreases after more probes have been 
presented, we compare the ERP in response to the first probe in each plot, to the ERPs of those in final posi-
tions (i.e., the 9th and 10th position). Note, that due to the exclusion of unrelated probes that were preceded by a 
related probe, there are fewer instances available for unrelated probes in the final positions (104 in the first and 
53 in the final position respectively, per subject). For both locations (first vs final), we plot the difference ERP 
(unrelated-related) in Fig. 2a.

For both probes in the first and final positions, the response to unrelated probes was more negative than 
the response to related probes, resulting in a negative difference from around 400 ms to 800 ms. In the cluster 
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Figure 1.  Grand average ERPs of responses to related and unrelated probes (Cz). (a) Responses to probes 
differentiated by their predecessor (related or unrelated; ‘related, related’ did not occur in the experiment) from 
−1.35 s (presentation of previous probe) to 1.35 s (presentation of next probe). (b) Grand average of related and 
unrelated probes that followed an unrelated probe. The grey area marks, for this channel, the timepoints that 
were part of the significant cluster identified by the cluster permutation test. The accompanying topoplot from 
300 to 800 ms has been included on top (unrelated-related).
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Figure 2.  Grand average ERPs for probes presented immediately after a target (first; 1st position), and probes 
presented at the end of a trial sequence (final; 9th and 10th position) (Cz). (a) Difference waves of probe 
responses: unrelated minus related. No significant clusters were found in a cluster permutation test applied to 
the period from 0 to 1 s (indicated by the gray frame). (b) Related and unrelated ERPs from first and final probe 
positions.
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permutation applied to the two difference waves (from 0–1 s; indicated by the grey frame), no significant clusters 
were found (lowest cluster p-value observed: p = 0.21, two-tailed test, α = 0.05, n = 20). Unexpectedly, the figure 
suggests that there is a difference after one second. To look at this in more detail, we plot the individual ERPs for 
related and unrelated for both the first and final positions in Fig. 2b. Here, we see that ERPs in response to first 
and final probes look different, even though their difference waves are similar. Furthermore, the positive differ-
ence wave after 1 s in the final position, appears to be due to a late negative response for related probes in particu-
lar. This may be related to the late negative wave we observed in Fig. 1a for related probes, which would imply this 
late negative wave did not occur for probes in the first position.

Predicting relatedness.  As our interest is ultimately in the decoding of these signals from single probe pres-
entations, we trained classifiers to predict for a given probe response whether it is related or unrelated, separately 
for each subject, using a leave-one-sequence-out crossvalidation approach. No classifier was trained for subject 
19, as they were unable to complete the full experiment. The accuracy per subject can be found in Fig. 3a. Here, 
the accuracy of predicting whether a presented probe was related or unrelated is plotted per subject. To account 
for the larger number of unrelated probes in the test data, we report a balanced accuracy ((sensitivity + specific-
ity)/2), rather than the percentage of correctly predicted probes. In the figure, we shade the 99.74% binomial 
confidence interval of chance performance in red to get an indication of which participant’s results did not differ 
from chance (i.e., a 95% confidence interval, Bonferroni-corrected for 19 subjects, around 50%, estimated by 
drawing binomial proportions for each class to account for imbalance in class sizes). For 12 out of 19 participants, 
the classification accuracy could be distinguished from chance level. On average, the relatedness of probes was 
predicted correctly for 58.3% of probes (sd = 6.6%, AUC mean = 0.62, sd = 0.09). To ensure our crossvalidation 
approach did not overestimate the classification accuracies, we compare them to the accuracies obtained with a 
train-test split (80–20%). For this train-test split, the average accuracy across participants was 59.5%.

ERP plots for each individual subject are included in the Supplementary Information (Supplemental Fig. S1), 
with their respective classification accuracy, as these may provide an idea of the variability across subjects in the 
ERPs themselves.

Using the behavioural measure, we can determine whether there is a relation between how well the partici-
pant’s behavioural responses agreed with our labels, and how well the relatedness of a probe can be predicted from 
their brain signals. The correlation between behavioural agreement and classifier accuracy, across participants, 
was moderately high (r = 0.58, p = 0.009, α = 0.05).

In Fig. 3b we plot the classification accuracy based on where the probe occurred in a trial (i.e., the probe posi-
tion). The boxplots show the distribution of performance across participants for a given probe position. There is 
no clear pattern visible between probe position and the accuracy of the prediction. To determine statistical (in)
significance of any trend, we performed a permutation test, permuting the order of probe positions. Specifically, 
we compared the regression coefficient (of a line-fit) of the observed result against regression coefficients of 
results in which the order of probe positions was randomly permuted per subject (1000 permutations). The 
observed regression coefficient did not differ statistically from the coefficients from permuted results (p = 0.562; 
two-tailed alpha = 0.05).

Time frequency analysis.  To determine if there was any difference in oscillatory brain activity when con-
trasting the related or unrelated probes, we also analysed the data in the time-frequency domain. A cluster per-
mutation test applied to the Time Frequency Representations (TFRs) of related and unrelated probes, found a 
significant difference between the two conditions, identifying a significant negative cluster (p = 0.001, two-tailed, 
alpha = 0.05, n = 20)). To visualise this data, we obtain the difference between the the TFR for related probes 
and the TFR for unrelated probes (i.e., unrelated–related), as a fraction of the total power per frequency band 
(summed across the time-dimension) and plot this normalised difference, averaged across electrodes, in Fig. 4a. 
Clusters from a cluster-based permutation test are of limited use for determining which frequencies, timepoints, 
and electrodes in particular contribute to the significant difference, as the test does not control for the false alarm 
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Figure 3.  Classification accuracy of predicting (un)relatedness. (a) Classification accuracy per subject 
(balanced accuracy). Shaded in red, the 99.74% binomial confidence interval around 50% accuracy (interval: 
[0.4506, 0.5494]; Bonferroni-corrected for 19 subjects). (b) Classification accuracies for each position of a probe 
in the trial, across participants.
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rate at this level (only the condition level contrast)23. Therefore, to aid interpretation, and in particular, to be able 
to compare our results to another study reporting effects in the time-frequency domain21, we performed two 
post-hoc significance tests, in which we isolated the alpha and beta frequency band respectively, and applied two 
cluster permutation tests, each on data averaged over the relevant frequency bands, and timepoints for the full 
trial (0 to 1.35 s). We Bonferroni corrected the significance values for performing these two tests, resulting in a 
significant effect for the beta band (p = 0.001), but with a non-significant cluster (p = 0.015) for the alpha band, 
at the two-tailed α/2 = 0.0125 level (two-tailed tests, Bonferonni-corrected α = 0.025, n = 20). These results are 
plotted in Fig. 4b, with electrodes in a significant cluster marked with ‘×’. In Fig. 4b, we see that the raw increase in 
power was larger for the alpha band, than for the beta (see the respective colorbar labels). However, the post-hoc 
significance tests determine that, though less pronounced, the difference in the beta band is, in fact, significantly 
different.

To determine if this difference in oscillatory behaviour can be decoded from single probe presentations, we 
performed a classification analysis on this TFR data, analogously to the ERP data classification, and also created 
classifiers for both types of data combined. The results of this analysis can be found in Fig. 4c. In the first boxplot 
we see a summary of the classification results shown earlier in Fig. 3a, together with the TFR results and classifier 
accuracies from the combined data. It appears to be possible to predict the relatedness of a probe based on the 
time-frequency data for certain participants, but overall results look worse than for the ERP based classifiers. 
Furthermore, it looks like there is no benefit from including this data in addition to the ERP data when using a 
classifier.

Accumulating predictions across probes in a trial.  We have now generated predictions for single 
probes to estimate how well we can classify related from unrelated probes. However, for a BCI, information across 
multiple probes would need to be integrated to ultimately infer the original target. We can simulate such an anal-
ysis with our data, by using the consecutive predictions from a trial to predict which trial sequence they are from.

Each trial has a pattern of related and unrelated probes occurring in specific positions. We can try to predict 
from which trial a set of consecutive probe predictions was obtained, by comparing the similarity between the 
consecutive predictions and the true relatedness of all presented trials. That is, for each trial, we compute a simi-
larity as the inner product between the probe relatedness scores predicted by the classifier (raw decision values), 
and the ‘true’ relatedness expected for every possible trial, given the sequence of probe words. We then rank the 
trials based on this similarity (high to low). We can use this rank as an estimate of how well trials can be predicted 
from the sequence of probe predictions, by interpreting it as a percentile: a trial that receives a high percentile 
rank (e.g., 99th rank), obtained (among) the highest score on the basis of its predictions.

To show how this estimate changes as trials contain more probes, we start by only considering the first probe 
of each trial, then both the first and second probe, and so on, until all 10 probes are included in this analysis. In 
Fig. 5(a), the results for the probe predictions on the individual participants’ data can be found, together with the 
results for randomly generated probe predictions (1000 randomisations). Note that the maximum percentile rank 
that can be obtained is dependent on the total number of possible patterns. This does not necessarily correspond 
to the total number of trials, as trials may have duplicate patterns. This ceiling is plotted in the figure, together 
with the number of unique patterns per number of consecutive probes considered.

The figure shows that for random predictions it does not matter how many predictions are accumulated for 
the percentile rank of the correct trial. For actual predictions, however, the (mean) percentile rank in which the 
correct trial is found increases when more consecutive probes are considered. There are also participants (in the 
tail of the boxplots) for which, even with 10 consecutive probes, the percentile rank cannot be distinguished from 
the random prediction data.
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Figure 4.  Results from the time-frequency analysis. (a) Grand average TFR of related probes subtracted from 
unrelated probes relative to the summed power per frequency band, averaged across electrodes (frequency 
dependent window length). (b) Topographies for the alpha (8–12 Hz) and beta (16–19 Hz) bands. Electrodes 
belonging to an identified cluster are marked by ‘×’. (c) Classification results of the ERP classifier, the TFR 
classifier, and a classifier trained on both feature sets.
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In Fig. 5(b), we use simulated data to extend this analysis beyond 10 consecutive probes, to 25, 50, 75 and a 
100 probes. This simulation is achieved by generating longer trials (permuted concatenations of existing trials), 
and using each participant’s classification accuracy to simulate their responses to these hypothetical probes. As 
trials extend, the difference between participants grows. An average percentile rank of ∼97%, means that correct 
trial was on average within the top 3 predicted trial sequences (given a 105 unique trials). For 25, 50, 75 and a 100 
probes, this was achieved for 0, 2, 3 and 5 subjects, respectively.

Discussion
In this study we aimed to determine whether the N400 can be elicited reliably using multiple probes after an ini-
tial target. Overall, our results show that there is a difference in brain response to related versus unrelated probes, 
as evidenced by both the grand average ERPs and the classification results. Specifically, in the grand average ERP 
we see an early component, more negative for unrelated stimuli, that matches the N400 in timing and location. 
Furthermore, the amplitude of this N400 effect is similar for probes appearing at the start and end of a trial 
(Fig. 2). In addition, classification results did not show any change with probe position within a trial. Together, 
these results allow us to conclude that the magnitude of the N400 does not diminish over sequences of probes 
even when another, potentially distracting, semantic context was presented in between.

This result is consistent with a recent publication24, aiming to decode word relevance to a category of interest 
using sequential presentation of words and Fixation Related Potentials (i.e., ERPs time-locked to eye fixation on 
the stimulus). The authors found a more negative ERP for non-relevant words, similar to the N400. Interestingly, 
the results show markedly different brain responses for the online phase, where longer sequences were used (100 
words), compared to the calibration phase (22 words). This may still be an indication that the N400 amplitude 
reduces for very long sequences (e.g., >10). Alternatively, with only a limited number of words used per category, 
stimuli were likely repeated frequently, which is known to cause a reduction in the N400 amplitude16.

An unexpected result in our initial analysis was an overlapping late-negative component occurring after 
related probes (see Figs 1a and 2b). This component may be useful for BCI applications if it represents an addi-
tional signal to distinguish related from unrelated probes. Alternatively, as it appears most strongly for the final 
probes in a sequence, it may be an experimental confound reflecting an expectation of trial end. In future work we 
aim to investigate these possibilities further. In this work, to alleviate this late component overlapping with ERPs 
from the subsequent stimulus, we post-hoc excluded unrelated probes that appeared after a related probe. This 
reduced the number of unrelated probes in the final (53 probes) versus starting positions (104 probes).

Previous research has indicated that N400-tasks may also induce changes in power in the frequency domain21. 
When decomposing our data into the frequency domain, we visually observe higher power for related probes in 
the alpha and beta band from 600 to 1200 ms post stimulus presentation, though, only the beta band (16–19 Hz) 
increase was statistically significant. This is in contrast to Wang et al.21 who showed a decrease in beta power 
for in-congruent sentence endings (that elicit a more negative N400). This inconsistency in response suggests 
that either the role of beta power in relation to the N400 is different for sentence close-word paradigms, or that 
another aspect of our task (e.g., behavioural response preparation) results in these changes in beta power. These 
conflicting results, together with the classification analysis which showed no additional benefit from the inclusion 
of time-frequency data over ERP data only, suggest only limited usability of this response for a BCI.

Agreement between the behavioural responses and the probe labels ranged from 70% to 95% across partici-
pants (mean 87%). Disagreement can reflect an error, or an inherent disagreement on the relatedness of the most 
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Figure 5.  Percentile rank scores for predicting a trial, with varying number of consecutive probes considered. 
(a) Percentile ranks based on either the participants’ probe predictions, or on randomly generated probe 
predictions are depicted. Horizontal lines denote the highest percentile rank that can be achieved given the 
number of unique trials. The amount of unique trials varies based on the number of consecutive probes that are 
considered, denoted in gray with a ‘#’. (b) Results from simulated data, projected beyond the 10 probes in the 
study, using simulated trial sequences of varying length (10, 25, 50, 75 and 100 probes). Predictions for these 
trials were generated for each participant, modelled by their classification accuracies.
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recent probe and the target. Participants with higher percentage agreement, thus, may have been better at keeping 
the target on mind, or have more conventional relatedness judgements. The significant correlation between clas-
sification accuracy and behavioural agreement (r = 0.58), can in fact be explained by both interpretations.

The classification results overall, show relatively low accuracies (μ = 58%) and a large variability across sub-
jects (50–72%). The fact that for about a third of subjects their accuracy could not significantly be distinguished 
from chance is a concern for using any BCI application on the basis of this paradigm. There is some precedent 
in difficulty to detect the N400 within individual subjects in other N400 experimental paradigms25, and having a 
subset of users for whom the intended brain signal cannot be detected well, is a not an uncommon problem for 
BCIs (see e.g.26 for a discussion).

One approach to overcome low accuracies in a BCI is to aggregate results over multiple stimulus repetitions. 
However, as the N400 amplitude can be reduced by stimulus repetition16, we instead accumulate over a sequence 
of different probes, as shown in the analysis in Fig. 5. By generating longer trials and simulating classifier pre-
dictions for each subject, we then extrapolated the results beyond the 10 probes used in this study. These results 
(Fig. 5b), suggest that accumulation can be effective but only for subjects with sufficiently high single trial accu-
racy. Assuming these simulations are valid, this implies this type of semantic BCI would be usable (true target in 
the top-3 in <=100 probes) for only a small subset of participants (2–5 out of 20). In reality such long sequences 
present additional challenges, such as subject motivation and attention decrease over the trial, which may reduce 
performance further. On the other hand, a closed-loop BCI, could use the information accumulated from previ-
ous probes to select (the most) informative future probes, which may reduce the required sequence length com-
pared to the non-optimised probe sequences used in these simulations. This remains an area for future research.

While practical utility as a BCI that infers the target word may be limited, the consecutive probing paradigm 
may have alternate applications. For instance, in assessing linguistic processing in patients with Disorders of 
Consciousness27,28. For this purpose, word-pair priming or sentence congruence paradigms have previously been 
used, and the presence of the N400 in these tasks has been shown to correlate with recovery28. The sequential 
probing paradigm used in our experiment, might be able to detect higher level cognitive processing in patients 
that exhibit a N400, by determining whether or not these patients can hold a target active over multiple consec-
utive probe words. These approaches may similarly be useful for assessment of patients in a Complete Locked in 
State29.

In summary, our results show that we can decode responses of relatedness from EEG, on the basis of the N400, 
and we find no indication that this response attenuates across multiple consecutive probes. While this paradigm 
can in theory be adapted to a BCI that infers the target word on a user’s mind, low singe trial accuracies and high 
variability in accuracy across subjects make this unlikely to offer practical utility in communication applications. 
However, the paradigm itself may yet be of use for assessing cognitive processing in certain patients populations.

Methods
Participants.  Twenty-one participants took part in the experiment (12 female, 9 male), ranging in age from 
18 to 61 years old (mean age 29, sd = 12). Participants were only eligible to participate if they were native Dutch 
speakers and reported to have no reading problems (e.g., dyslexia)

One participant dropped out of the experiment due to excessive sleepiness. Her data are not included in the 
analysis. Response data are missing for participant 9, block 6, due to a technical problem, and there is no data for 
participant 19, block 6 (due to initial cap fitting difficulties, the experiment could not be completed in the allotted 
time-frame).

All participants provided informed consent prior to participation, and the study was approved by and 
conducted in accordance with the guidelines of the Ethical Committee of the Faculty of Social Sciences at the 
Radboud University.

Task.  In the experiment participants completed 212 trials, each consisting of a target word, followed by one to 
ten probe words. For each trial, participants were tasked to remember the target word, and subsequently mentally 
assess for each probe whether or not it was semantically related to the target. At the end of a trial participants were 
prompted to specify by button-press the relatedness status of the most recent probe (left = related, right = unre-
lated). 50% of trials contained ten probes, while the remaining 50% contained an equal distribution of one to ten 
probes. Trials with fewer probes were included to ensure that participants would mentally evaluate all probes, and 
not only those for which they could predict that a question would follow.

Participants were instructed to respond as fast as possible when prompted with a question, and received their 
reaction time as feedback (this feedback was coloured using a gradient: green to white to red at 700 ms, 950 ms, 
1200 ms, respectively). This feedback did not reflect ‘correctness’ of the choice as relatedness judgements can vary 
between individuals. To increase salience and facilitate memorisation, participants were asked to pronounce the 
target word during its presentation.

Each target word was presented for 2000 ms, followed by a 1000 ms interstimulus interval (ISI). Each subse-
quent probe was presented for 350–370 ms (jittered duration) and also followed by a 1000 ms ISI. The question 
prompt was displayed after the last ISI, and was replaced by feedback on buttonpress. Across the 212 trials a total 
of 539 related, and 1072 unrelated probes were presented (33.5% related).

In our analyses we compare probes occurring in the first position with probes occurring in the ‘final’ position 
(i.e., 9th and 10th position). Note that we define the ‘final’ category to consist of two probe positions, in order to 
get an equal number of brain responses, as only 50% of trials consisted of the full 10 probes. With this analysis in 
mind we designed trials such that there was an equal distribution of related and unrelated probes for the first and 
final position(s). Finally, these trials were set up such that no two related probes were ever presented in a row, as a 
brain response signifying relatedness in such a case could be purely from the pairing with the previous stimulus. 
The percentage of related probes per probe position can be found in Fig. 6a.
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Stimulus words were obtained from the Leuven association dataset30. This Dutch dataset consists of cue-words 
and responses from people who were asked to specify (up to) three words that a given cue-word brought to 
mind. In our design we used Leuven cue-words as targets, and Leuven response-words as (related) probes. We 
then used the CELEX Dutch Wordform database31 to obtain words unrelated the the targets, to use as unrelated 
probes. Probes never occurred more than once across all trials, as repetition of concepts has been shown to affect 
the N400 amplitude16, though some targets also occurred as probes. Unrelated words were selected to approxi-
mate the related probes in distribution of both word length and word frequency. Word frequency in particular, 
is known to affect N400 amplitudes, with words that occur frequently in a language eliciting smaller N400s14,15. 
Across all probes, the mean (log) word-frequency was 1.50 (sd = 0.65) for related, and 1.49 (sd = 0.63) for unre-
lated probes. On average the length of a related probe was 5.68 characters (sd = 1.98), and an unrelated probe 6.13 
characters (sd = 1.92).

Stimuli for a few example trials are depicted in Fig. 6b. A detailed description of the selection procedure and a 
full list of stimuli can be found in the Supplementary Information.

Trial order was randomised per subject.

Equipment.  EEG was recorded with 64 sintered Ag/AgCl active electrodes (BioSemi, Amsterdam, The 
Netherlands), placed according to the international 10–20 system, at a sampling rate of 512 Hz. The Biosemi 
ActiveTwo system uses a Common Mode Sense (CMS) and a Driven Right Leg (DRL) electrode, instead of a 
ground electrode. The recorded signals reflect the voltages between each electrode and the CMS, which can sub-
sequently be re-referenced to any electrode(s) of choice. We placed two electrodes on the mastoids for this pur-
pose and used four further electrodes to measure vertical and horizontal EOG.

Data Analysis.  Preprocessing.  Data were recorded in 6 blocks of 35 trial sequences each. These data blocks 
were loaded, highpass filtered at 0.1 Hz (4th order Butterworth filter)32, and then sliced into segments (i.e., 
epochs), from 1.5 s prior to and 2 s after each probe presentation. Then, data from different blocks were combined 
and downsampled to 256 Hz. All electrodes were mean-corrected (centered) and re-referenced to the average 
of the mastoid electrodes. The four EOG channels were then regressed-out of the EEG channels to remove any 
influence from eye movements or blinks33. The EEG channels were subsequently lowpass filtered at 40 Hz (6th 
order Butterworth filter).

After these preprocessing steps, any epochs or channels with abnormal activity were marked for removal 
(epochs) or interpolation (channels). A trial or channel was considered abnormal when the variance of the given 
unit diverged more than 3.5 standard deviations from the median of all units (channels or epochs). This was 
repeated, excluding previously marked units in the next iteration, until no units were considered abnormal (max 
6 iterations). This resulted in between 12 and 156 epochs and up to 4 channels to be marked per participant. Any 
identified bad channels were replaced with an interpolated’virtual channel’ using a spherical spline interpola-
tion34, while bad epochs were marked to be ignored during grand average calculation and training of classifiers. 
Finally, epochs were baselined to a period from −100 ms to 0 ms from stimulus onset.

Grand Averages.  For brain responses in the time domain, we obtained grand average ERPs by averaging across 
relevant probes, and then averaging across subjects. The data for the grand average ERPs were low-pass filtered 
at 20 Hz, prior to averaging, for plotting purposes (smoothing). To analyse brain responses in the frequency 
domain, the data from each trial was decomposed into frequency bins of 2 Hz, from 2 to 40 Hz. The power in these 
bins was calculated for each 50 ms, starting from 0.5 s prior to probe onset to 1.35 s after, using a Hanning win-
dow and a frequency dependent window length (ranging 3.5 s - to 175 ms respectively). These Time Frequency 
Representations (TRFs) were then averaged across participants to obtain grand average TRFs.

Significance testing.  To determine whether brain responses between conditions (e.g., related vs unrelated) were 
significantly different, we used non-parametric cluster-based permutation tests22 (as implemented in Fieldtrip35). 
Such a test allows for the combination of information across electrodes and timepoints, to increase sensitivity of 
the statistical test, without having to correct for multiple comparisons with respect to those aspects. These tests 

Figure 6.  Trial design with example stimuli (a) Percentage of related stimuli per probe position in the trial. 
(b) Example trials: A trial consists of an initial target, followed by up to 10 probes. A probe is either related or 
unrelated to the target. Each trial ends with a behavioural prompt. A translation of the first trial in english: ‘dog’ -  
‘asked’, ‘operation’, ‘pet’, ‘birch tree’, ‘narrow’, ‘derive’, ‘hand’, ‘abrupt’, ‘bark’, ‘delivery van’.
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were performed using a within-subject design, and a dependent samples t-test as test-statistic. Note that this 
non-parametric cluster-based permutation test does not rely on assumptions with regard to the distribution of 
the data, regardless of the chosen test-statistic (the test-statistic is merely used to quantify the difference between 
datapoints). In all cases, we performed a two-tailed test, (tail-corrected alpha = 0.025), using 1000 permutations, 
supplying all channels, and timepoints and/or frequency bins as specified.

Classification.  For classification analyses on data in the time domain, the preprocessed data were further down-
sampled to 64 Hz and low-pass filtered to 15 Hz to reduce the amount and complexity of data passed to the 
classifier and prevent overfitting. We use a classification pipeline identified as robust for different types of ERPs36, 
consisting of a spectral filter, a spatial whitening and classification using a regularized classifier. Specifically, the 
preprocessed data from time 0 to 1 s and all remaining epochs and channels (already spectrally filtered), were spa-
tially whitened, and subsequently classified using a L2-regularized logistic regression. The regularization param-
eter was optimised using a 5-fold (nested) crossvalidation. A separate classifier was trained for each participant. 
For classification analysis on data in the time-frequency domain, preprocessed data were again decomposed into 
frequency bins of 2 Hz (2–40 Hz), but here the bins were calculated for each 100 ms from probe onset (0 s), until 
the end of the trial (1.35 s), using a Hanning window and a frequency dependent window length (1 s–175 ms 
respectively). These time-frequency data were then processed using the same classification pipeline.

To estimate classification performance, the data were separated into crossvalidation folds of training and test 
sets, for each participant, where all but one trial sequences were used as training data, and the data from probes 
in the excluded trial sequence were used as the test set. Only trial sequences in which ten probes were presented 
were used as test sets, to avoid biasing the results toward responses to early probes. Epochs that were marked for 
removal during preprocessing were excluded when occurring in a training set, but were included when part of the 
test set (in an online BCI application poor data quality does not always preclude an accurate prediction).

Data Availability
The dataset and accompanying analysis files generated during the current study are available in the Donders Re-
pository: http://hdl.handle.net/11633/di.dcc.DSC_2016.00314_172.
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