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Abstract

Reinforcement learning (RL) has become a dominant paradigm for understanding animal behaviors and neural correlates of
decision-making, in part because of its ability to explain Pavlovian conditioned behaviors and the role of midbrain
dopamine activity as reward prediction error (RPE). However, recent experimental findings indicate that dopamine activity,
contrary to the RL hypothesis, may not signal RPE and differs based on the type of Pavlovian response (e.g. sign- and goal-
tracking responses). In this study, we address this discrepancy by introducing a new neural correlate for learning reward
predictions; the correlate is called ‘‘cue-evoked reward’’. It refers to a recall of reward evoked by the cue that is learned
through simple cue-reward associations. We introduce a temporal difference learning model, in which neural correlates of
the cue itself and cue-evoked reward underlie learning of reward predictions. The animal’s reward prediction supported by
these two correlates is divided into sign and goal components respectively. We relate the sign and goal components to
approach responses towards the cue (i.e. sign-tracking) and the food-tray (i.e. goal-tracking) respectively. We found a
number of correspondences between simulated models and the experimental findings (i.e. behavior and neural responses).
First, the development of modeled responses is consistent with those observed in the experimental task. Second, the
model’s RPEs were similar to dopamine activity in respective response groups. Finally, goal-tracking, but not sign-tracking,
responses rapidly emerged when RPE was restored in the simulated models, similar to experiments with recovery from
dopamine-antagonist. These results suggest two complementary neural correlates, corresponding to the cue and its evoked
reward, form the basis for learning reward predictions in the sign- and goal-tracking rats.
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Introduction

Pavlovian conditioning is a major paradigm for studying

associative learning between cues and rewards. Partly inspired

by Pavlovian conditioning behavior, reinforcement learning (RL)

and temporal difference (TD) learning in particular has become a

dominant computational paradigm for understanding reward-

based learning and decision-making as well as their underlying

neural correlates [1–7]. A celebrated RL account posits that the

phasic activity of midbrain dopamine (DA) neurons signals reward

prediction error (RPE), the difference between expected and actual

reward; the phasic DA activity is involved in learning reward

predictions and associated behaviors [8,9]. In the RL description

of Pavlovian conditioning, the strength of Pavlovian responses

evoked by a cue is proportional to the predicted reward, while

phasic DA activity signals the response-independent difference

between actual and predicted reward [10,11].

However, the RL account was recently challenged [12,13] using

a variant of Pavlovian conditioned approach (PCA) task [14,15],

wherein the reward (food pellets) was delivered in a food tray at a

different location from the cue (illuminated-lever) (Figure 1A). The

task was thus able to dissociate responses towards the cue from

those towards the reward. Following paired presentations of the

cue and the reward (Figure 1B), the rats in the study approached

distinct locations during the cue presentation phase (Figure 1C) -

some rats approached the cue (i.e. sign-tracking) while others

approached the food-tray (i.e. goal-tracking) [14,16,17]. The two

dissociable approach responses develop at the same rate in the

corresponding groups of rats; it could be interpreted that both

groups learned reward prediction at the same rate. The DA

activity, measured as peak DA concentration in the core of nucleus

accumbens (Nacc), was found to be different between the two

groups: DA activity in the sign-tracking rats exhibited a large

phasic response at the time of the cue and no response at the time

of the reward (Figure 1C) while DA activity in the goal-tracking

rats showed a relatively weaker phasic response at both the time of

the cue and the reward (Figure 1C) [12]. The observed DA

concentration challenges the RL account of DA activity: similar

DA activity for similar reward predictions. Furthermore, the goal-

tracking, but not sign-tracking, rats could learn cue-reward

predictions under the influence of dopamine antagonist, i.e. in

absence of dopamine RPE signals [12].

This study addresses the apparent discrepancy of these

experimental findings with the RL description by clarifying the

neural correlates underlying the reward prediction [18,19]. Early

conditioning theories, like Konorski’s [20], and other recent works

[21–24] have proposed that different properties of reward (e.g.

location, reward type) may be transferred to the reward-predicting
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cue. These transferred properties of reward underlie different

characteristic Pavlovian responses, i.e. observed variations in the

experiments [22]. This notion of transferring reward properties is

not well incorporated in the RL description. In this description, at

the cue only a quantitative expectation of the reward is learned

and associated response is induced. However, this description

ignores the possibility that cue can evoke recall of rewards that in

addition to the cue can participate in learning the reward

predictions. The resulting reward prediction contains multiple

components that can differentially contribute to behavior in

conditioning tasks producing response variations observed in

experiments like sign-tracking and goal-tracking.

We used a simplified TD model that includes transfer of reward

properties to the cue to study these intuitions on response

variability (Figure 2). In this model, the reward prediction is

learned, using the RPE, over two neural correlates – a correlate of

the cue and a correlate of cue-evoked reward. We refer to the

reward predictions assigned to the two neural correlates as sign

and goal components respectively. The development of goal

component may differ depending upon the rate at which the

correlate of cue-evoked reward is learned. The sign and goal

reward prediction components together contribute to the animal’s

net reward prediction and their relative magnitude determines the

prevalence of sign- and goal-tracking in the PCA task. We suggest

that these processes underlie the differential tendency for sign- and

goal-tracking observed in the experiments. We simulated the

model in the experiment, with differential learning of the two

components, and observed a number of correspondences between

the models and the different response groups in the experiment.

Methods

We first describe the standard TD formulation applied to

reward prediction and decision-making [2,8,10] and then provide

description of our model. Reward prediction given a stimulus at

time t, denoted by V(t), is computed based on neural correlates

evoked by the stimulus denoted by xt (referred to as input). The

reward prediction is given by

V (t)~wt
T xt, ð1Þ

where wt is the weight vector. The predictions are learned

iteratively using learning signals referred to as temporal difference

(TD) errors. On transition to the next time period (i.e., t+1), the

TD error (d(t)) is computed as:

d(t)~r(tz1)zcV (tz1){V (t), ð2Þ

where r(t) is the obtained reward (or its absence) at time t and c is

the discount factor ([0, 1]). Phasic DA activity is considered to

encode this TD error signal. The reward prediction V(t) is updated

using TD error, i.e. the weight vector is updated as follows:

wtz1~wtza � d(t) � et, ð3Þ

where a is the learning rate ([0, 1]) and et is the eligibility of the

previous inputs. The eligibility trace is recursively computed as

et~et{1zl � c � xt (with the initial value being e0 = 0) where l is

the decay parameter ([0, 1]) that determines the extent of updates

due to TD error at time t (d(t)): for instance, when l = 0 only the

weights of input at time t are eligible for update and when l = 1

the weights of all previous inputs in the trial are eligible for update.

Figure 1. Schematic of the Pavlovian conditioned approach
(PCA) task. (A) The apparatus. (B) Temporal order of events in a trial.
(C) Illustrations of sign- and goal-tracking responses in the task (top)
and respective DA responses (middle, bottom). (A) One of the two cues
(illuminated-levers) is randomly assigned to each animal and then
consistently used for all of the sessions. (B) In each trial, the cue was
presented for 8s and then immediately followed by reward (food pellets
in the food tray). (C) (Top) Two types of conditioned-approach
behaviors are observed immediately during cue presentation; one
group of rats approach the cue and stay at the cue until it is retracted at
which time they approach the food-tray (sign-tracking); the other group
approach the food-tray and wait for the reward (goal-tracking). (Middle)
Phasic dopamine (DA) release recorded in the core of the nucleus
accumbens using fast-scan cyclic voltammetry during cue and reward
presentation in the final conditioning session [25]. (Bottom) Illustration
of the phasic DA activity assumed in this study, based on the DA release
recorded in the nucleus accumbens.
doi:10.1371/journal.pone.0108142.g001

Figure 2. Schematic diagram of reward prediction and
Pavlovian responses. Reward predictions (V(t)) are learned as the
sum of the sign (Vs(t)) and the goal component (Vg(t)), which are based
on neural correlates of cue (xs

t ) and cue-evoked recall of reward (xg
t )

respectively. Upon the cue presentation, in addition to the standard cue
correlate, the correlate of cue-evoked reward is generated (indicated by
the dashed arrow from xs

t to x
g
t ). The TD error is used for learning both

Vs(t) and Vg(t) (‘‘TD Error’’). On the other hand, the correlate of cue-
evoked reward presentation is learned independent of TD error
(‘‘reward rep’’), which further influences the learning of goal component
(‘‘TD error + reward rep’’). Each reward prediction component Vs(t) and
Vg(t) supports specific pavlovian responses directed towards the cue
and the food tray respectively.
doi:10.1371/journal.pone.0108142.g002
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We built a simplified model that includes learning the correlate

of cue-evoked reward in the standard TD formulation (Figure 2).

We replaced the original input (Equation 1) with an input with two

parts: the first part (xs
t ) is the original input i.e. the neural correlate

of the cue and the second part (x
g
t ) is the neural correlate of cue-

evoked reward

xt~
xs

t

x
g
t

� �
, ð4Þ

The correlate of cue-evoked reward is initialized to zeros at the

start of the task, as no cue-reward pairing has been experienced

yet, but is learnt by recursively updating, based on presence or

absence of reward in the trial, to decrease the difference between

x
g
t and observed reward,

x
g
t ~(1{g)x

g
t zgIR ð5Þ

where IR is 1 if reward is delivered in the trial, 0 otherwise. Thus

the correlate of cue-evoked reward reflects an approximation of

any rewards previously associated with the cue in the task.

Correspondingly, the weight vector was also divided into two

parts, i.e. wt~
ws

t

w
g
t

� �
. It is updated using standard TD error

(Equations 2, 3).

The reward prediction (V(t)) and the correlate of cue-evoked

reward (x
g
t ) both contain estimates of expected reward in the trial.

The reward prediction (V(t)) being a quantitative description of the

prediction while the correlate of cue-evoked reward (x
g
t ) is a direct

recall of rewards associated with the cue. We introduced another

learning rule for w
g
t to take advantage of direct recall of rewards

available in the correlate of cue-evoked reward (x
g
t ). The correlate

of cue-evoked reward (x
g
t ) is used to update reward predictions,

within the trial, independent of TD learning.

w
g
t ~w

g
t z0:1 � g � (x

g
t {w

g
t ) ð6Þ

In our proposed model, the reward prediction can be learned

through two distinct learning mechanisms – standard TD error

dependent learning and learning through the correlate of cue-

evoked reward that is independent of TD error. The TD error

independent learning includes two processes – the learning of the

correlate of cue-evoked reward (x
g
t ; Equation 5) and the weight

update based on x
g
t (Equation 6).

The reward prediction (V(t)) can be defined as sum of two

components,

V (t)~Vs(t)zVg(t), ð7Þ

each of which is given by Vs(t)~ws
t

T
xs

t and Vg(t)~w
g
t

T
x

g
t

respectively.

We refer to Vs and Vg during the cue period, as the sign and

goal components respectively. We associated these components to

promote sign- and goal-tracking respectively. The relative

magnitude of the components determines the probabilistic choice

of sign- and goal-tracking responses during the cue period; the

probability of sign-tracking is given by

PST (t)~s b Vs(t){Vg(t)
� �� �

,

where s(.) is the sigmoid function (s(z)~ 1
1z exp ({z)

) and b is the

so-called inverse temperature parameter that determines the

influence of the relative magnitudes of the reward prediction

components on the probability. The probability of goal-tracking is

given by PGT(t) = 12PST(t).
In the model, we hypothesized that an animal’s preference for

sign- or goal-tracking in the PCA task depends on differential

learning of sign and goal components. We instantiated this view by

using different learning rates in the two distinct learning processes

i.e. we used different learning rates, a and g, to model the

responses of sign- and goal-tracking rats respectively: we used the

set (a, g) = (0.2, 0.01) for sign-tracking group and (a, g) = (0.01, 0.2)

for goal-tracking group. Otherwise all the parameters of the

models were equal between the two groups and these were set to

c = 0.9, l = 0.9 and b = 5.

We also extended our model to action-dependent reward

predictions to study the models in SR task. In the standard RL

account, action-dependent reward predictions for taking action a
at time t, Qa(t), are defined as Qa(t)~wa

t

T

xa
t , where xa

t is the action

specific input and wa
t is the action-specific weight vector. The

probability of choosing action a among two options (a and b) at

time t is given by softmax function Pa(t) = s(b(Qa(t)2Qb(t))). On

choosing action a, the action-dependent prediction error is

computed as da(t) = r(t+1)+cV(t+1)2Qa(t) and is used to update

Qa(t) i.e. update the weight vector wa
t , wa

t ~wa
t za � da(t) � et,

where a is the learning rate ([0, 1]) and et is the eligibility of the

previous inputs (xa
t ). In the revised model of action-dependent

reward predictions, we used an input with two parts xa
t ~

xsa

t

xga

t

� �
:

the first part (xsa

t ) is the original action specific input and the

second part (xga

t ) is the neural correlate of action-associated

rewards (i.e. recall of rewards that follow the action). The

corresponding weight vector was also divided into two parts,

wa
t ~

wsa

t

wga

t

� �
. The revised model was used in the simulation of SR

task with the parameters of the model set to be the same as in the

PCA task.

In this study, we simulated the model in two experimental tasks

[25]: a Pavlovian conditioned approach (PCA) task and a

secondary reinforcement (SR) task, which measure different facets

of animals’ reward prediction learning.

PCA task
The PCA task is used to access learning of cue-reward

association by measuring the strength and direction of conditioned

responses evoked by the cues [14,26]. In this task, a cue and a

reward are presented, either separately or together, repeatedly in

random schedule. The rewards are delivered independently of the

animals’ responses to the cue. In Flagel et al [12], a retractable

illuminated lever (cue) was presented, by inserting it into the

chamber 2.5 cm to the left or right of the centrally located food

tray, for 8 seconds. When the lever was retracted, one food pellet

(reward) was delivered into the food-tray (Figure 1B: paired-

condition). In each session (one session per day), the cue-reward

pair was presented in 25 trials on a random interval 90-second

schedule. A random condition was employed, in which the cue

and reward were presented pseudo-randomly (the reward never

occurred within 5 seconds of the cue). Each of these sessions also

contained 25 presentations of the cue and reward. In a third

condition (DA-blockade), a non-specific DA receptor antagonist

(cis-flupenthixol) was systemically administered during ‘‘training’’

sessions (1–7) of the paired-condition; behavior was also measured

Competition in Reward Predictions
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in the 8th session when the DA receptor antagonist was not

administered.
Simulation procedure. We simulated the three task condi-

tions (paired, random, and DA-blockade) in the PCA task, using

our TD model in an episodic (trial-by-trial) setting. Each trial

comprised 100 discrete time bins (each time bin = 160 ms in the

experiments). In the paired condition, cue and reward were

presented in the 10th and 60th time bins respectively. In the

random condition, the cue was always presented in the 10th time

bin; whether or not the reward was presented in a trial was

determined by drawing a uniformly random bin number in the

range [0, 300] and the reward was presented in the trial if the bin

number was in the range [21, 100], otherwise no reward was

presented in the trial. A session consisted of 25 trials. In the DA-

blockade condition, reward prediction was not updated during

sessions 1–7 (in which the DA receptor antagonist was adminis-

tered). For ease of comparison with the experimental data, the

response probabilities were scaled to be between [21, 1] in

figures 3A and 4A. We reported each result, taking the mean of 20

simulations.
Statistical tests. We analyzed the effect of session on

probability of responses for each group and condition. The

difference in probability of sign-tracking responses vs. goal-

tracking responses was examined using one-sample t-tests to

determine if any preference is exhibited in each of the paired and

the random conditions. Responses in the 8th session were

compared between groups of DA-blockade condition using an

unpaired t-test for each group separately. Furthermore, responses

in the 8th session of the DA-blockade models were compared to

that of the paired models responses in the 8th session (using an

unpaired t-test). We used a mixed model ANOVA with session as

the repeated measure and stimulus (cue and reward) or group

(sign- and goal-tracking) as the between-group measure to

compare TD errors across paired and random conditions.

SR task
In this two-choice task, animals could freely choose to nose-poke

one of two ports at any time. An illuminated-lever (the experienced

cue in the original PCA task) was presented for a short time

interval (2 s) if the port designated as active by the experimenter

was poked; otherwise (poking the inactive port) the cue was not

presented. In this task, food rewards were not given. The relative

bias in choosing between the active and inactive ports is thus

considered to indicate the degree of attractiveness of the cue, i.e.,

how much presentation of the cue (due to its previous association

with reward) would induce animals to choose the active port

relative to the inactive port.

Simulation procedure. We simulated the task using revised

action-dependent reward prediction learning model. For simplic-

ity, we simulated the task using two-choice episodic trials with only

one choice allowed in a trial. Each trial was divided into 3 time

periods – port selection, outcome (lever or no-lever) and end-of-

trial – with action selection allowed only in port selection period.

This simplification of the SR task was to focus our simulation on

measuring the relative preference of active ports in paired vs.

random condition. In the experiments, animals performed PCA

task in either paired or random condition before they were

presented with the SR task. Accordingly, we simulated the SR task

after the model learned the reward predictions in either paired or

random condition.

Action-dependent reward predictions for the active (Qactive–port)

and inactive (Qinactive–port) ports were used to compute probability

of choosing active or inactive port given by, Pactive–port = s(b(Qac-

tive–port – Qinactive–port)). The action-dependent reward predictions

were learned based on the reward prediction assigned to the

outcome (V toutcomeð Þ~ Vcue,chosen~active

0,otherwise

�
). When the active-

port was chosen, the cue was presented in the trial and at the end

of the trial, the neural correlate of cue-evoked reward (xg
cue) were

updated. We ran 20 simulations for each condition (paired or

random) each of 1000 trials and used the mean number of choices

during port selection period. In Figure 5B and 5C, the observed

number of choices was rescaled to be within the range [0, 50]

(where the maximum value is the total number of trials divided by

20).

Statistical tests. The responses in the port selection period

were analyzed using a 3-way ANOVA with the group (sign- vs.

goal-tracking), condition (paired vs. random) and port (active vs.

inactive) as independent variables and number of choices as

dependent variable. The effect of condition or port on the group

and effect of group or condition on port were analyzed using

ANOVA.

Results

We first examined the behavior of the models in the PCA task

(Figure 3). The simulations confirmed our hypothesis on prefer-

ence for sign- and goal-tracking behaviors due to differential

Figure 3. Pavlovian approach responses in the PCA task. Results showing the probability of approach responses, mean + s.e.m., of (A) the
simulated models and (B) the animal experiments [25]. ST: sign-tracking, GT: goal-tracking. The plots show the probability of sign-tracking responses
relative to the probability of goal-tracking responses in the range [21, 1].
doi:10.1371/journal.pone.0108142.g003
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learning of sign and goal components. Sign-tracking behavior

gradually developed over sessions in models with relatively larger

learning rates for reward prediction via TD error (a = 0.2) and

smaller rates for correlates of cue-evoked reward presentation

(g = 0.01) (Figure 3A; white-circles; sessions 1–12, P,0.001; one

sample t-test). In contrast, goal-tracking behavior developed over

sessions in models with larger and smaller rates of learning for cue-

evoked reward representation correlates (g = 0.2) and TD error

learning (a = 0.01) respectively (Figure 3A; black-diamonds; ses-

sions 1–12, P,0.001; one sample t-test). When the cue and reward

Figure 4. Responses of intermediate group (IG) in the PCA task. Results showing the probability of approach responses, mean + s.e.m., of (A)
the simulated models and (B) the animal experiments [14]. ST: sign-tracking, GT: goal-tracking, IG: intermediate-group. The plot shows the probability
of sign-tracking responses relative to the probability of goal-tracking responses in the range [21, 1].
doi:10.1371/journal.pone.0108142.g004

Figure 5. Secondary reinforcer task. (A) Task apparatus. In this task, a nose poke into the active or inactive port led to insertion of the cue into
the chamber for 2 s or nothing occurred, respectively. The active and inactive ports were randomly pre-assigned for each animal. (B, C) Simulation
results: number of choices, mean + s.e.m, of the active and inactive ports in sign-tracking (B) and goal-tracking (C) models with either paired (black
bars) or random (white bars) cue-reward presentations in the PCA task. (D, E) Results of experiments [25]: number of nose pokes into the active and
inactive ports in sign-tracking (D) and goal-tracking (E) rats that received either paired (black bars) or random (white bars) cue-reward presentations
in the PCA task. Significantly different responses to active port in paired vs. random condition (P,0.01; t-test) are indicated with ‘*’.
doi:10.1371/journal.pone.0108142.g005
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were unpaired (random condition: Methods), preference for

neither sign- nor goal-tracking was observed (Figure 3A; black-

circles and white-diamonds respectively). Response probability in

both these models grew at the same rate and similar intensity, as

found in the sign- and goal-tracking rats in the experiment

(Figure 3B).

Interestingly, an intermediate group of rats were previously

described [14] in the PCA task – initially these rats show

preference for goal-tracking responses but after sufficient learning

changed preference to sign-tracking responses. Although, this

preference for sign-tracking responses remains lower than that of

the sign-tracking group of rats. We tested if the model could

explain these types of Pavlovian behaviors observed in the PCA

task. We used learning rates (a, g) = (0.1, 0.1) that are intermediate

to learning rates used in both sign- and goal-tracking groups and

found the model showed preference for goal-tracking in early

sessions and gradually developed preference for sign-tracking

responses (Figure 4A; gray circles). The simulated intermediate

learning rates model showed qualitatively similar responses over

sessions as intermediate group of rats in the experiments

(Figure 4B; gray circles). The model produces different response

types in PCA task in different parameter regimes and thus can be

used to model and understand the neural correlates of reward

prediction in the sign- and goal-tracking rats.

We next measured the behavior of the models in the SR task

(Figure 5A) and found that the cue was a significantly better

secondary reinforcer in the sign-tracking group (Figure 5B) than in

the goal-tracking group (Figure 5C). The number of responses

toward the active-port was significantly greater in models that

learned reward prediction in the paired condition than in models

that learned reward prediction in the random condition in both

the sign- and goal-tracking groups (i.e. significant effect of

condition in both groups). But, the differences in the number of

responses towards the active-port between the paired and random

conditions were greater in the sign-tracking than in the goal-

tracking group (group x condition interaction; F(1, 80) = 77, P,

0.0001). These responses are consistent with those observed in the

animal experiments, in which the rats were divided into sign-

tracking (Figure 5D) and goal-tracking (Figure 5E) groups based

on their behavior.

We then evaluated the TD errors (Equation 2) of sign- and goal-

tracking groups in the PCA task with DA activity in corresponding

rats. First, we found that the TD errors in the sign-tracking group

(Figure 6A) behaved qualitatively similarly to the DA activity in

sign-tracking rats (Figure 6C). Specifically, we found that the sign-

tracking group in paired condition exhibited TD errors that

increased at the time of cue and decreased at the time of reward

(Figure 6A; condition x session interaction; F(5, 40) = 12, P,

0.005; compared to random condition). Second, we also found a

correspondence between the TD error of the goal-tracking group

(Figure 6B) and DA activity in goal-tracking rats (Figure 6B). The

goal-tracking group in paired condition had persistent and similar

TD errors at the time of cue and reward throughout the simulation

(Figure 6B; condition x session interaction; F(5, 40) = 0.2, P = 0.3;

compared to random condition). These TD errors are qualitatively

consistent with the DA activity at the time of cue and reward

presentation in goal-tracking rats (Figure 6D).

We looked at the sign and goal reward prediction components

at the time of cue presentation in both sign- and goal-tracking

groups (Figure 7A, B). In the sign-tracking group, the sign

component (Figure 7A; black circles) develops to a high value

over sessions while the goal component (Figure 7A; white circles)

remains at a very small value. The sign component thus becomes

predominantly responsible for reward prediction in this group. In

the goal-tracking group, the goal component (Figure 7B; white

diamonds) increases to relatively larger value and sign component

(Figure 7B; black diamonds), though small initially, slowly

decreases over sessions. We should also notice that although the

goal component in goal-tracking group (Figure 7B; white

diamonds) increased it asymptotes at a lower level than the sign

component in the sign-tracking group (Figure 7A; black circles).

The increase in goal component and decrease in sign component

leads to a larger role of goal-component in the goal-tracking

group. Based on this data, we consider that the sign and goal

component primarily determine the observed TD errors in sign-

and goal-tracking groups respectively, i.e. larger TD error at the

cue and smaller TD error at the reward in sign-tracking group

compared to goal-tracking group. In addition, the fact that the sign

component is larger in sign-tracking than in the goal-tracking

group underlies the higher number of active-port choices in the

sign-tracking group than in goal-tracking group in the SR task.

We further investigated the role of TD errors in the learning of

these responses in the PCA task simulations, in relation to the

experimental findings with DA-receptor antagonist administered

to the rats. Neither the sign- nor the goal-tracking group expressed

corresponding responses during the sessions in which reward

prediction was not updated (i.e., first 7 sessions with the presence

of the DA-receptor antagonist in the rats; see Methods). During

this phase, there is no reward prediction (Figure 7C and D; black

circles and diamonds) and only the correlate of cue-evoked reward

(x
g
t ) is updated based on associative learning (Equation 5). Since

the goal-tracking group has higher rate of learning the correlate of

cue-evoked reward (g) than the sign-tracking group, they will have

higher x
g
t at the end of this phase (not shown). Due to the larger x

g
t

in goal-tracking group, when the reward prediction learning was

restored in the 8th session, the change in goal component

(Equation 6) as well as change in reward prediction due to TD

error (Equation 4) is larger in goal-tracking group than in sign-

tracking group (Figure 7D; black diamonds and Figure 7C; black

circles respectively). Thus, the goal-tracking group recovered goal-

tracking responses in the 8th session as soon as the reward

prediction learning was restored (Figure 8B; P.0.1; unpaired t-

test, 8th session DA-blockade vs. 8th session paired condition). In

contrast, in the sign-tracking group, the magnitude of x
g
t in the 8th

session of DA-blockade condition is similar to that of 1st session of

paired condition. Thus, no such immediate recovery was evident

in the sign-tracking group (Figure 8A; P,0.001; unpaired t-test,

8th session DA-blockade vs. 8th session paired condition). These

results correspond with observed behaviors in the experiments

(Figure 8C, D).

Discussion

This study introduced a new TD model that demonstrated a

number of characteristics in correspondence with the experimental

findings of sign- and goal-tracking: the respective behavioral

responses and DA activity (putative TD error) in the PCA task,

including the effect of DA antagonist on learning, and secondary

reinforcer effect in the SR task. The TD model has two correlates

that support reward prediction. One is the standard input in the

RL description, i.e. the correlate of cue itself, but the other is the

correlate of cue-evoked reward learned via cue-reward association.

The reward prediction, and its components, is learned using TD

error. The learning of reward prediction is also affected by

learning through the correlates of cue-evoked reward, which is

independent of TD learning. We hypothesized that the relative

prediction due to the standard and new correlates leads to sign- or

goal-tracking response; differential rates of learning in leads to
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variability in the behavioral response. We examined these effects

by simulating our models using two different set of learning rates: a
and g, for learning reward prediction (via TD error) and the

correlates of cue-evoked reward representation.

There is a different view on the discrepancy between the

findings on the sign- and goal-tracking and the standard RL

account based on the distinction between model-free and model-

based RL [27–29]. In brief, model-free RL is associated with

learning via DA activity, whereas the model-based RL involves

additional learning about the environment, or the task (e.g., the

location of food-tray). In this view, sign- and goal-tracking rats are

differentiated based on relative influence of model-free and model-

based RL, respectively. We assumed the neural correlates relating

to cue-reward association are learned, similar to this view, but the

goal-tracking response in our model is learning in the model-free

RL, i.e. corresponding prediction is learned using DA activity.

These two accounts can be distinguished using experimental

manipulations probing the difference between model-based and

model-free RL mechanisms, such as devaluation of rewards to

verify the role of model-based RL in goal-tracking rats. Our

proposal is related to other works in a broader context as well

[30,31], on preparatory vs. consummatory responses [20],

stimulus-substitution vs. stimulus-response conditioning theories

[11,14], and Pavlovian-instrumental transfer [32,33]. Intriguingly,

these studies often point to different regions of the brain involved

in cue- or reward specificity in reward predictions – especially the

role of core vs. shell of the nucleus accumbens; other studies have

shown that the cue-evoked neural correlate may change in

orbitofrontal cortex, according to the motivation (reward specific)

[34–37] but perhaps not so much in the insular cortex and

amygdala (cue specific) [38,39].

We used a number of simplifying assumptions in our modeling

in this study with the aim of instantiating our proposal in a simple

formulation. First, we did not include any mechanisms to arbitrate

the contribution of two components in reward prediction. Others

have used reward uncertainty to arbitrate between two competing

Figure 6. Temporal difference (TD) errors and phasic dopamine (DA) responses in the PCA task. (A, B) Simulations: temporal difference
errors (a putative indicator of phasic DA activity), mean + s.e.m, at the time of cue and reward (white) in the sign-tracking (A) and goal-tracking (B)
models. (C, D) Experiments [25]: peak DA concentration recorded in the core of the nucleus accumbens (mean + s.e.m), using fast-scan cyclic
voltammetry and measured as change in peak DA concentration during the 5 s after cue or reward presentation averaged over 25 trials in each
session, of sign-tracking (D) and goal-tracking (D) rats. Significantly different responses (P,0.01) between the cue and the reward are shown with ‘*’
(paired t-test).
doi:10.1371/journal.pone.0108142.g006
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reward prediction components [2,40–42]. Second, more sophis-

ticated forms of cue-reward association could be used for learning

the correlates of cue-evoked reward. These improvements might

help address dynamic aspects of the sign- and goal-tracking, e.g.,

the role of distance, timing, and contingency between the cue and

reward [17,43,44]. In terms of computational techniques, the

predictive state [45,46] or successor [47,48] representations may

be applied. Third, it has been shown that sign-tracking rats are

generally higher responding in a novel task compared to goal-

tracking rats [14,16]. We did not address this issue or response

times in the behavior. Related to this, we used a simplified

simulation of SR task with only choice allowed in the trial and

mainly focused on the differences between groups in number of

active-port choices. But, we also found that the preference for

inactive port in paired condition was much lower in sign-tracking

models than in sign-tracking rats. Finally, we followed the RL

hypothesis that the firing rate of single DA neurons encodes TD

errors. In contrast to model TD errors, the experimental measured

DA activity is the peak concentration of dopamine in the core of

the nucleus accumbens. It is unclear how the experimental

measurement should be compared to TD errors and so we did not

address the discrepancy between simulated TD errors and

experimental measurements.

In Flagel et al 2011[25], the cue became ‘‘incentive’’ stimulus

for sign-tracking rats, as it became not only predictive but also

‘‘attractive’’ (approach in PCA task) and ‘‘wanted’’ (preference for

active-port in SR task). In our model, we did not explicitly define

such a unified concept that is acquired by the stimulus. Instead the

model assumed two components in reward prediction and

associated with the two responses. In this view, the ‘‘incentive

salience’’ of the stimulus is, not a unified property acquired by the

stimulus, but a consequence of interactions between the two

components during the learning of reward predictions. The

differential role of cue-reward association learning on reward

prediction also points to a role for DA activity independent

learning in incentive salience attribution in sign- and goal-tracking

rats.

In summary, this study proposed that DA activity might still

encode reward prediction error signals, despite the discrepancy

between the findings on sign- or goal-tracking rats. However, the

influence of DA activity in learning reward predictions can vary

between the individuals. We validated our proposal by simulating

the models and comparing them to experimental results. We

conceptualized the notion that the neural correlates that support

reward prediction in the RL may have multiple origins, i.e.

correlate of cue itself as well as cue-evoked representation of

associated rewards. The results of this study demonstrate the

importance of investigating the neural correlates underlying

reward prediction [18,19,49,50] in future studies of conditioning.

Figure 7. Components of reward prediction at the time of cue presentation in ST and GT. Reward predictions (V(t)) are learned as the sum
of the sign (Vs(t)) and the goal component (Vg(t)), which are based on correlates of cue (xs

t ) and cue-evoked reward (xg
t ) respectively. Reward

prediction components evoked by the cue presentation are shown for both ST and GT groups across different sessions of the PCA task in paired (or
control) (A, B) and DA-blockade (C, D) conditions.
doi:10.1371/journal.pone.0108142.g007
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