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Abstract: Epigenetics describes how both lifestyle and environment may affect human health through
the modulation of genome functions and without any change to the DNA nucleotide sequence.
The discovery of several epigenetic mechanisms and the possibility to deliver epigenetic marks in
cells, gametes, and biological fluids has opened up new perspectives in the prevention, diagnosis,
and treatment of human diseases. In this respect, the depth of knowledge of epigenetic mechanisms is
fundamental to preserving health status and to developing targeted interventions. In this minireview,
we summarize the epigenetic modulation of the KISS1 gene in order to provide an example of
epigenetic regulation in health and disease.
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1. Introduction

Epigenetics describes how lifestyle and environment modulate genome functions without any
change in the DNA nucleotide sequence [1], thus affecting human health. The discovery of several
epigenetic mechanisms (i.e., DNA methylation of CpG islands within gene promoters, chromatin
remodeling, production of non-coding RNA) [2–6] and the possibility of delivering epigenetic marks
(i.e., non-coding RNA) in biological fluids or target cells via exosomes or microvesicles has opened up
new perspectives in the prevention, diagnosis, and treatment of human diseases [7–12].

Nevertheless, insights from genome-wide studies demonstrate that the epigenetic signature, such
as histone modifications or non-coding RNA, can be passed on to the next generation through gametes
and can affect gene expression in the offspring [13]. In mammals, such an intergenerational inheritance
rarely represents a stable transgenerational epigenetic inheritance, but may affect the epigenome
reprogramming in the embryo with consequences on embryogenesis and on the health status of the
offspring [13].

In this respect, the deep knowledge of epigenetic mechanisms is fundamental to preserving health
status and to developing targeted interventions.

The KISS1 gene was discovered in 1996 as a metastasis suppressor gene in malignant melanoma
cells [14], and it was later heavily enrolled in the control of reproduction, with functions related to
the sexual differentiation of the brain, the release of hypothalamic gonadotropin-releasing hormone
(GnRH), puberty onset, and the maintenance of reproduction in adults [15–18]. In humans, the KISS1
gene is located on chromosome 1 (1q32) and encodes a 145 amino acid protein that is proteolytically
cleaved in shorter peptides such as kisspeptin-54 (Kp-54), also known as “metastin” for its ability
to suppress metastasis, Kp-10, Kp-13, and Kp-14. All kisspeptins (Kps) share a common amidated
C-terminal end and are capable of binding and activating the kisspeptin receptor (KISS1R), previously
known as GPR54 and originally designed as Hot7t175 or AXOR12 [19–22]. Recently, a kisspeptin
system comprising ligands and receptors was discovered in vertebrates [23]. Apart from cancer-related
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activities, it has a broader spectrum of actions with direct consequences on gamete quality and fertility
rate, pregnancy, energy homeostasis, and body weight control, as recently summarized [24,25].

Due to the multiple facets of kisspeptin activity in biological systems, in this minireview we
summarize the epigenetic modulation of the KISS1 gene in order to provide an example of epigenetic
regulation in health and disease.

2. The Epigenetic Modulation of KISS1 in Reproduction

The deep involvement of the kisspeptin system in the central control of reproduction is well
known [15], with upcoming data concerning additional peripheral activities [24,25]. Reproduction
depends on the physiology of the hypothalamus–pituitary–gonad (HPG) axis. The main actor is
the hypothalamic GnRH, which is secreted in a pulsatile manner to target the pituitary gland, thus
inducing the secretion of pituitary gonadotropins (follicle-stimulating hormone (FSH) and luteinizing
hormone (LH)), the downstream production of sex steroids by gonads, and the progression of
gametogenesis [26]. Environmental factors like diet and nutritional status, endocrine disrupting
chemicals, stress, or intensive physical training may affect the functionality of the HPG axis with
consequences on reproductive ability [15,27–31]. In this respect, several neuronal networks catch
and integrate exogenous and endogenous environmental “cues”, thus modulating the activity of
GnRH-secreting neurons. Mechanisms depending, among others, on sex steroids or peripheral
metabolic biosensors have been suggested [15,26,30], and an inverse relationship between DNA
methylation and the Gnrh1 gene expression during the peripubertal period has been reported [32].
However, in the brain, kisspeptin neurons upstream modulate the secretion of GnRH parallel to
permissive or opposing signals mediated by neurokinin B (NKB) and dynorphin (DYN), thus composing
the kisspeptin-NKB-DYN neuronal (KNDy) system [15].

In vertebrates, the distribution of kisspeptin neurons in the hypothalamus is sexually dimorphic.
In fact, they are mainly located within the arcuate nucleus (ARC) in both males and females and in
the rostral periventricular area of the third ventricle (RP3V) of rodents—which contains the sexually
dimorphic anteroventral periventricular nucleus (AVPN)—and the anterior preoptic area (POA) of
non-rodents in females [15,33]. Such a distribution causes sex-specific changes in Kiss1 expression and
has functional consequences [34]. In fact, the KISS1 neuron population in the ARC is the main target of
the negative sex steroid feedback, which occurs in both males and females; the KISS1 neuron population
in the AVPN is the main target for estradiol-positive feedback only in females [15]. Interestingly,
the expression of both Kiss1 and Kiss1r depends on estradiol [15,23] and a mutual enhancement with
estradiol/estradiol receptors (ERs) has been reported [16,35], thus providing evidence that autocrine,
paracrine, and endocrocrine pathways affect the endogenous microenvironment and modulate the
activity of the kisspeptin system as a consequence.

Several studies, primarily in rodent or cell line models, have investigated the possible epigenetic
regulation of Kiss1 gene in the brain, with a focus on DNA methylation, histone acetylation, and histone
methylation [34]. Estrogen responsive element (ERE)-dependent and ERE-independent pathways
are responsible for the estradiol-dependent expression of the Kiss1 gene in the AVPV and ARC,
respectively [36]. Epigenetic mechanisms requiring activating histone H3 modification like H3K9/14
acethylation have been discovered [37] and excellently reviewed elsewhere [34,36].

In both animal and human models, the main consequence of kisspeptin signaling impairment is
central hypogonadotropic hypogonadism. Conversely, gain-of-function mutations in KISS1 or KISS1R
genes cause precocious puberty onset (see [16,38] for recent reviews). As a consequence, the kisspeptin
system is currently considered the main gatekeeper of puberty onset, the critical developmental process
particularly affected by lifestyle and environmental factors [39,40].

The epigenetic modulation of Kiss1 or Kiss1r genes within the hypothalamus at puberty onset has
been investigated in females, providing evidence that the methylation of both Kiss1 and Kiss1r genes
promotes changes across puberty [41], with the development of highly significant puberty-specific
differential promoter methylation patterns. An epigenetic mechanism of transcriptional repression
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involving the Polycomb (PcG) silencing complex prevents the premature pubertal process in female
rats. In fact, DNA methylation of the PcG genes Eed and Cbx7 precedes puberty, decreasing the
expression of both genes. Therefore, the activation of the Kiss1 gene in the ARC at puberty is the
consequence of EED protein loss from the Kiss1 promoter and activating histone H3 modifications such
as H3K4 trimethylation and H3K9/14 acetylation [42]. Consistently, treatment with 5′-Azacytidine
(Aza), a well-established DNA methyltransferase (DNMT) inhibitor, from postnatal day 22 to 28
(i.e., juvenile period) caused puberty failure in female rats [42] by means of failed eviction of the
EED from the Kiss1 promoter in the hypothalamus. The epigenetic switch of the Kiss1 gene from
transcriptional repression to activation finds dynamic counterparts in the repression of PcG into
mixed-lineage leukemia 1 (MLL1) and 3 (MLL3) [43]. MLL1 and MLL3 are two components of the
Trithorax group (TrxG) of modifiers which regulate chromatin remodeling. The first component is
capable of changing the chromatin configuration at the promoters of Kiss1 and Tac3 from repressive to
permissive, which encodes NKB [15]; the second component changes the functional status of a Kiss1
enhancer from poised to active [43]. However, due to the large number of actors in this physiological
process, it is not excluded that the antagonistic epigenetic mechanism of Kiss1 transcriptional regulation
may be common to additional puberty-activating genes like Nell2, TTF1, etc.

Since puberty onset is highly sensitive to nutritional and metabolic status, the epigenetic effect of
diet was recently investigated by Vazquez et al. [44], who designated the sirtuin SIRT1 as fuel-sensing.
This NAD+-dependent deacethylase was found to be highly expressed within the KISS1 neurons located
in the ARC [44]. Interestingly, SIRT1 interacts with the PcG complex and potentiates the repressive
activity of the PcG complex on the Kiss1 promoter by means of a repressive histone configuration on
the same promoter, thus contributing to Kiss1 repression. As for the PcG complex, at puberty SIRT1 is
evicted from the promoter of Kiss1, leading to the occurrence of Kiss1 transcription. Both under- and
overnutrition exert negative and positive effects, respectively, on puberty by the delayed or premature
removal of SIRT1 from the Kiss1 promoter. As for undernutrition, the central pharmacological
activation of SIRT1 or SIRT1 overexpression delays puberty [44]. A schematic representation of the
main epigenetic changes of Kiss1 in a female rat model is reported in Figure 1.
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Figure 1. Schematic representation of the main epigenetic changes in the Kiss1 promoter occurring at
puberty in female rats. Six CpG rich regions (CpG1-6) were predicted within the first 2kb 5′ upstream at
the transcription start site of Kiss1; the methylation status (*) of CpG4 changes at puberty (A). The main
histone modifications of the Kiss1 promoter in juvenile (B) and pubertal (C) rats. Undernutrition
and overnutrition mimic conditions in (B) and (C), leading to delayed puberty or precocious puberty,
respectively. Black circles, H3K27 trimethylation; white circles, H3K9/14 acethylation; gray circles,
H3K4 trimethylation. The length of the Kiss1 promoter, CpG-rich regions, exons, and introns are not
represented in scale. Modified from [41] and [44].
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3. The Epigenetic Modulation of KISS1 in Cancer

Cancer is a complex disease characterized by genetic and epigenetic alterations that together
contribute to tumor progression. Tumor genome analysis by next-generation sequencing (NGS)
highlights the presence of alterations in several epigenetic regulators, suggesting the important role
of epigenetic deregulation in cancer development [45]. On these bases, several studies have shown
that epigenetic alterations could represent an important target for the use of epigenetic modifiers as
therapeutic candidates for some types of cancers [46–48].

In tumor development, the epigenome undergoes multiple changes that include hypermethylation
in promoter CpG islands—in particular in tumor-suppressor genes—histone modifications that
contribute to gene expression alterations, and the deregulation of miRNA expression that is associated
with functional changes in target genes [49–56].

KISS1 was primarily identified as a human malignant melanoma metastasis-suppressor gene [14].
However, later, the involvement of KISS1/KISS1R in tumor development was demonstrated in several
tumor types [57]. In this respect, the epigenetic regulation of KISS1 in cancer deserves particular
attention, as there is a presently unfulfilled need to identify the alternative pathways required for
the expression of the tumor target molecules involved in the development of metastases. In fact,
epigenetic drugs have evolved in terms of specificity and efficiency for the treatment of human cancer,
representing a potential possibility of successful treatment [46–48].

The kisspeptin system has multiple functions in the regulation of tumor progression [57–59].
In several cancer types the kisspeptin system has an anti-metastatic role in the regulation of cellular
migration and invasion [60]. It might also be involved in other stages of tumor development [58].
For example, KISS1 is one of the candidate genes involved in the dormancy state, the phase of tumor
progression in which patients appear asymptomatic and the disease remains in a state of latency for
a variable period of time. In fact, cancer cells could be induced to enter a dormant state to survive
within the metastatic niche, causing the metastasis to remain latent for years [61]. KISS1 expression
elicits a dormancy state of the disseminated melanoma cells, inducing a suppression of metastatic
colonization to multiple organs [62].

The possible epigenetic modulation of KISS1 in cancer has been investigated and, although the
available data are still relatively few, research in the field is promising for cancer prevention, diagnosis,
and treatment. CpG islands are present in the KISS1 promoter and in cancer the hypermethylation
of the KISS1 promoter results in protein hypoexpression. In colorectal cancer (CRC), epigenetic
modifications of the KISS1 promoter were shown. In particular, hypermethylation of the KISS1
promoter frequently occurred in CRC samples and rarely in normal tissues. This modification was
correlated with transcription and protein expression loss. Therefore, the KISS1 methylation status was
shown to have a diagnostic and prognostic utility for the clinical management of CRC patients. In fact,
KISS1 methylation was related to tumor-grade metastasis, predicted recurrence, and disease-free and
overall survival [63]. Therefore, KISS1 may represent a candidate target for the treatment of metastatic
CRC. Furthermore, a combination of the methylation values of KISS1 and the serum concentration of
carcinoembryonic antigen (CEA) have an increased prognostic value in comparison to the evaluation
of CEA alone [64].

KISS1 hypermethylation has also been reported in numerous cases of bladder tumors, in correlation
with increasing tumor staging and grading. An epigenetic silencing hypothesis was tested by
Cebrian et al. in 2011. These authors related the expression levels of KISS1 to the histopathological
stage of tumors and demonstrated by quantitative reverse transcriptase polymerase chain reaction
(RT-PCR) that the methylation of the KISS1 promoter decreased KISS1 expression. The low KISS1
expression alone or in combination with the promoter methylation value was also correlated with poor
disease-specific survival. Furthermore, in bladder cancer cells analyzed by methylation-specific PCR
and bisulfite sequencing, KISS1 promoter hypermethylation was frequently reported and related to
a low gene expression. [65]. Table 1 summarizes the different studies on tumors showing changes in
KISS1 promoter methylation.
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Table 1. Changes in KISS1 promoter methylation in tumors.

Type of Tumor Number of Tumors Methylation (%) CpG around the
Transcription Start Site References

Colorectal cancer (CRC) 126 83.3 - [63]
CRC 352 72.7 19 [64]

Bladder cancer 804 83.1 19 [65]

At the molecular level, the epigenetic silencing of KISS1 in bladder cancer is due to the upregulation
of Ubiquitin-like with PHD and RING finger domains 1 (UHRF1). The upregulation of UHRF1 enhances
the methylation of CpG nucleotides and downregulates the expression of KISS1. UHRF1 was found to
be overexpressed in most clinical specimens of bladder cancer in comparison to normal tissues, and in
metastatic tumors in comparison to non-metastatic tumors [66].

Lastly, upcoming evidence highlights that miRNAs and long non-coding RNAs (lncRNAs)
could modulate Kisspeptin-mediated signaling. Furthermore, miRNAs appear to play an important
role in the regulation of proteins that modify and inhibit KISS1 expression [67]. For example,
the expression of KISS1 is upregulated by the cAMP response element-binding protein (CREB).
Additionally, the NAD+-dependent de-acetylase SIRT1 prevented the CREB-mediated upregulation of
KISS1 in a mechanism involving miR-199b. In fact, miR-199b overexpression in CRC represses SIRT1,
thus potentiating the CREB-triggered upregulation of KISS1. In this respect, miR-199b could represent
a valid prognostic marker or a new possible therapeutic target for patients with CRC due to its ability
to modulate the SIRT1/CREB/KISS1 pathway [68]. However, the exact mechanisms of KISS1 regulation
mediated by non-coding RNAs have not yet been sufficiently outlined, and remain an interesting
starting point for future studies.

In any case, the role of KISS1 in cancer is relevant. However, it is very controversial as a negative
or a positive modulator, depending on the cancer context [57]. In several types of tumors, KISS1 acts as
a tumor suppressor gene. Consistently, in pancreatic and ovarian cancer, KISS1/KISS1R was found
to be upregulated in initial phases of cancer development, thus acting as a tumor suppressor. These
patients presented a better prognosis and a longer survival rate than those with tumors in which
KISS1 was downregulated by some mechanisms, like promoter hypermethylation (i.e., colorectal and
bladder tumors) [57]. Conversely, in triple negative breast cancer (TNBC) cells, which lack estrogen
receptor (ER)α, progesterone receptor, and human epidermal growth factor receptor, KISS1 acts as
a tumor promoter, whereas in ERα-positive breast tumors, the situation appears more complex [57].
Hence, recent studies have just pointed out the importance of microenvironment. In fact, it has been
demonstrated that KISS1 and KISS1R expression in tumor cells is not sufficient, per se, to predict cancer
development behavior [57]. Thus, in the tumor microenvironment, we should evaluate not only the
expression of KISS1/KISS1R in surrounding cells, but also in additional regulation systems such as in
the production of cytokines [69,70].

4. Conclusions

When observed congruently, both environmental and lifestyle factors induce the epigenetic
modulation of the kisspeptin system in physiological and pathological conditions. Thus, the kisspeptin
system may represent a possible epigenetic target for the treatment of human diseases and the
development of personalized epigenetic therapies in reproduction and cancer.
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