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Objectives: Methylation of the neuronal nitric oxide synthase (NOS1/nNOS) gene has

recently been identified as a promising biomarker of psychiatric disorders.NOS1 plays an

essential role in neurite outgrowth and may thus affect the microstructure development

of white matter (WM) in the corpus callosum (CC), which is known to be altered in panic

disorder (PD). We examined the relationship between NOS1 methylation, WM tracts in

the CC, and symptoms based on this finding.

Methods: Thirty-two patients with PD and 22 healthy controls (HCs) were recruited

after age, gender, and the education level were matched. The cell type used was

whole-blood DNA, and DNA methylation of NOS1 was measured at 20 CpG sites in the

promoter region. Although 25 patients with PD were assessed with the Panic Disorder

Severity Scale (PDSS), diffusion tensor imaging (DTI) scans were only collected from 16

participants with PD.

Results: We observed that the PD group showed lower methylation than did the HCs

group and positive correlations between the symptom severity of PD and methylation

at CpG4 and CpG9. In addition, CpG9 methylation was significantly correlated with

the fractional anisotropy (FA) and mean diffusivity (MD) values of the CC and its major

components (the genu and the splenium) in the PD group. Furthermore, path analyses

showed that CpG9 methylation offers a mediating effect for the association between the

MD values of the genu of the CC and PD symptom severity (95%CI=−1.731 to−0.034).

Conclusions: The results suggest that CpG9methylation leads to atypical development

of the genu of the CC, resulting in higher PD symptom severity, adding support for the

methylation of NOS1 as a future prognostic indicator of PD.

Keywords: panic disorder (PD), nitric oxide synthase type I, corpus callosum (CC), DNA methylation, diffusion

tensor imaging

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2021.755270
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2021.755270&domain=pdf&date_stamp=2021-10-18
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:fm51109@163.com
mailto:happyliun@126.com
https://doi.org/10.3389/fneur.2021.755270
https://www.frontiersin.org/articles/10.3389/fneur.2021.755270/full


Xu et al. NOS1 Methylation and CC in PD

INTRODUCTION

Panic disorder (PD) is a frequent anxiety disorder characterized
by recurrent accidental panic attacks and unexpected anxiety.
PD is considered to be a multifactorial disease resulting from
the interactions of multiple genetic and environmental factors.
According to previous studies, the 12-month prevalence rate of
PD is 0.3%, and the lifetime prevalence rate is estimated at about
0.5% in China (1, 2).

The etiology, neuropathology, and pathophysiology of PD
remain elusive. Extensive research has been performed to identify
specific biomarkers of PD. Nitric oxide (NO) has been identified
as a neuromodulator in the central nervous system (CNS). NO,
formed by the enzyme NOS1 and encoded by the NOS1 gene,
has the capacity to influence neurodevelopment and growth, the
plasticity of synapse, and neurotransmitter release (3–6). NO also
plays an important role in many behavioral domains, including
aggression (7), anxiety (8), depression, and cognitive functioning
(9). Of note is that NO can regulate both the glutamatergic
and dopaminergic systems, which are strongly implicated in the
biochemical pathology of anxiety (10).

NOS1, located on chromosome 12q24.21 (11), is the central
source of NO in the CNS (12, 13). Increasing evidence suggests
that NOS1 is implicated in multiple complex neurobiological
mechanisms in neuropsychiatric disorders (14–17). For example,
Zhou et al. have studiedNOS1 and its signal mechanism involved
in the pathophysiology of anxiety (18).

Additionally, Kurrikoff et al. demonstrated that females with
a short NOS1 ex1f-VNTR allele had higher anxiety scores than
did females homozygous for the long alleles when confronted
with environmental adversity (15). A recent report by Sarginson
et al. with large sample sizes corroborated this finding (19).
Thus, exploring DNA methylation may be able to provide a
comprehensive view of both the genetic and environmental
risk factors for PD. Existing evidence shows that epigenetic
modification of NOS1 caused by DNA methylation is related
to gene expression and that these NOS1 modifications can
affect the generation and bioavailability of NO (20–23). These
findings provide preliminary evidence that NOS1 methylation is
an indicator of abnormal NO signaling. Also, considering that
NO plays an essential role in the neuron and neurite outgrowth
in the brain (24–28), this suggests potential influences of NOS1
methylation on brain development through white matter (WM)
outgrowth and neurogeny.

In the “fear network model” for PD, the important fear
network regions are connected by the corpus callosum (CC)
in the bilateral sides (29). The CC is an area dedicated
to attention, physical complaints, and related anxiety (30).
Structural abnormalities in the CC may predispose patients with
PD to panic attacks because of the uneven distributions of the
fear network on each side. Thus, the CC likely plays a key
role in the pathophysiology of PD (31). Evidence from previous
diffusion tensor imaging (DTI) studies not only supports the
notion that the CC may play a critical role in PD (32–34) but
also revealed an association between altered WM connectivity in
PD and dysfunctional clinical symptoms. In particular, anxiety
symptoms appear to impact the human WM microstructure,

leading us to investigate whether epigenetic modifications (i.e.,
DNA methylation) contribute to these WM differences (35).
DNAmethylation provides tools to better understand the impact
of PD symptoms on the molecular pathways in PD patients.
These markers may provide insights into the potential molecular
mediating pathways contributing to the neurodevelopmental
effects associated with PD symptoms. Consequently, NOS1
methylation may influence the WM microstructure of CC
development in the brain, but this is yet to be investigated.

Therefore, the present study aimed to identify NOS1
methylation and the pathways involved in WM development
in PD patients. We examined the levels of NOS1 methylation
between patients with PD and healthy controls (HCs) and how
the levels of DNAmethylation related to the WMmicrostructure
in the CC. We hypothesized that the level of NOS1 methylation
would differ between the two groups and are related to the WM
microstructure in the CC. This study was expected to contribute
to the early intervention and treatment in PD.

MATERIALS AND METHODS

Participants
A total of 54 participants were recruited from the Nanjing Brain
Hospital affiliated with Nanjing Medical University between
August 2014 and July 2018. Thirty-two adult patients were
diagnosed with PD by an experienced psychiatrist conforming to
the Diagnostic and Statistical Manual ofMental Disorders (DSM-
IV) criteria. In order to reduce the probability of diagnostic
errors, all patients were evaluated with the Mini-International
Neuropsychiatric Interview (MINI) by two resident physicians.
Patients were also assessed with the Hamilton Anxiety Rating
Scale (HAMA) (36) and the Panic Disorder Severity Scale (PDSS)
(37, 38) on the same day. Magnetic resonance imaging (MRI) and
peripheral blood collection were performed at the Nanjing Brain
Hospital within 7 days. A deputy chief physician supervised the
whole procedure. Twenty-two age- and sex-matched HCs were
consecutively recruited from theNanjing BrainHospital viaword
of mouth and public advertisements according to the inclusion
and exclusion criteria. HAMA was also used to assess the anxiety
levels for HCs.

Inclusion and Exclusion Criteria

In the PD group, the inclusion criteria were as follows: (1)
a primary diagnosis of PD by an experienced psychiatrist
conforming to the DSM-IV criteria; (2) confirmation of
PD diagnosis using MINI; (3) age 18–55 years; and (4)
right-handed and masterful at completing all examinations.
The exclusion criteria were as follows: (1) any neurological
disorders or other psychiatric disorders and major physical
or infectious diseases; (2) any comorbid mental illness such
as depression, generalized anxiety disorder, bipolar disorder,
obsessive–compulsive disorder, schizophrenia, alcohol addiction,
social phobia, or eating disorder; (3) history of psychotherapy
within 6 months of study enrollment; (4) inability to complete
MRI; and (5) pregnancy and lactation.

The inclusion criteria for the HCs were as follows: (1) age
18–55 years; (2) HAMA total score ≤7; and (3) right-handed
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and masterful at completing all examinations. The exclusion
criteria were: (1) any neurological disorders or other psychiatric
disorders and major physical or infectious diseases; (2) history of
mental illness or family history; (3) pregnancy and lactation; (4)
history of psychotherapy within 6 months of study enrollment,
and (5) inability to complete MRI.

Analysis of NOS1 DNA Methylation
The cell type used was whole-blood DNA, and the DNA
methylation of NOS1 was measured at 20 CpG sites in the
promoter region. Specifically, the genomic regions of interest
(ROIs) were analyzed with the geneCpG software and the
methylation patterns determined with bisulfite sequencing (see
Supplementary Table 1). Firstly, the PCR primer pairs were
designed from bisulfate-converted DNA with the Methylation
Primer software (see Supplementary Table 2). Genomic DNA
was then extracted from frozen samples using a Genomic
Tip-500 column (QIAGEN, Valencia, CA, USA) according to
the manufacturer’s protocol, and sulfurous acid was obtained
from sulfite using the EZ DNA MethylationTM-GOLD Kit
(Zymo Research, Irvine, CA, USA). After PCR amplification
(HotStarTaq polymerase kit; TAKARA, Tokyo, Japan) and
construction of the library, the samples were sequenced using a
paired-end sequencing protocol according to the manufacturer’s
guidelines (Illumina MiSeq Benchtop Sequencer, San Diego, CA,
USA) (39). Normality of the continuous variables was performed
with Shapiro–Wilk’s test. Statistics were performed using t-tests
and ANOVA.

MRI Acquisition and Processing
The MRI data (3.0T Siemens Medical System scanner, Nanjing
Brain Hospital) were obtained using a diffusion tensor echo-
planar pulse sequence [matrix = 128 × 128, field of view
(FOV) = 240mm × 240mm, slice thickness = 3mm with no
interslice gap, repetition time (TR) = 6,600ms, and echo time
(TE) = 93ms]. For the DTI, the diffusion sensitization gradients
were applied in 30 non-collinear directions (b = 1,000 s/mm2),
together with non-diffusion-weighted acquisition (b= 0). During
the scan (240 volumes), each participant was instructed to remain
motionless and to keep the eyes closed. Foam pads and earplugs
were used to reduce head movement and noise.

DTI data were processed using the pipeline for analyzing brain
diffusion images (PANDA; http://www.nitrc.org/projects/panda)
implemented inMATLAB (40). Firstly, all files in Digital Imaging
and Communications in Medicine (DICOM) format were
converted into Nifti format by MRIcron. Subsequently, using the
bet command of FSL (41), the non-diffusion b0 image was used
to estimate the brain mask. The purpose of the brain mask was
to aid in determining the boundaries of the three dimensions
of the brain. Any distortions of the diffusion-weighted images
(DWI) caused by eddy current or simple head movement during
scanning were corrected by registering the DWI to the b0 image
through affine transformation. Then, voxel-wise calculations
of the tensor matrix and the calculated diffusion tensor (DT)
metrics were estimated, including fractional anisotropy (FA)
and mean diffusivity (MD). MD represents the intensity of the
diffusion, while FA represents the direction of water diffusion

in the brain, both of which indicate the organizational and
microstructural integrity of the brain WM tracts. By executing
the first command of FSL, non-linear registration was performed
on the individual FA and MD images in local space, which were
then imported into the FA and MD templates in the Montreal
Neurological Institute (MNI) space. We then resampled the
diffusion metric (FA and MD) images into the MNI space with
a custom spatial resolution (1 × 1 × 1mm). Finally, the FA and
MD images were smoothed with a full width of 6mm at half of
the maximum Gaussian filter.

Regions of Interest
To explore the relationship between structural changes and the
clinical symptoms in PD patients, we selected the CC and its
major components (genu, body, and splenium) as ROIs. The
CC mask contained in MRIcron (JHU ICBM-DTI-81 WM labels
atlas) (42) included the genu, body, and splenium of the CC.
The regional diffusion metrics, FA and MD, were calculated by
averaging the values within each region of the CC in DPABI (43).
Then, the data were statistically analyzed with SPSS 22.0.

Statistical Analysis
Demographic and clinical characteristics were evaluated using
chi-square and t-tests. Standard statistical protocol was used for
descriptive statistics, followed by the Shapiro–Wilk’s test (see
Supplementary Table 3) to establish differences between the two
groups. To investigate region-specific correlations between the
PDSS scores and CpG4,9 methylation, we performed Pearson’s
correlation analysis using SPSS 22.0. Then, the CpG9 site related
to the clinical symptoms was further evaluated using Spearman’s
correlation analysis to examine its relationship with the FA
and MD values of the ROIs. Simple mediation analyses were
performed using PROCESS, and age, gender, and education
were included as covariates in the model. PROCESS is based
on a regression-based path analysis framework and incorporates
mediation and reconciliation into a conditional process model
(44). All analyses were based on 5,000 bootstrap samples.
When the CI did not include zero, an indirect effect was
considered significant.

RESULTS

Sample Characteristics
From the 40 PD patients and 40 HCs who were invited, 32
PD patients and 22 HCs met the study criteria and completed
the assessment. Table 1 compares the socio-demographic and
clinical characteristics of the 32 patients with PD (age ± SD =

33.1± 7.4, 16 males) and the 22 controls (age± SD= 33.3± 7.2,
12 males). Patients and controls did not differ with regard to age,
sex, or education (all p> 0.05) (Table 1). The HAMA total scores
were significantly different between patients with PD vs. HCs
(Table 1). Since seven patients with PD did not fully complete
the PDSS or clinical measures, the numbers varied slightly in
different categories. The mean PDSS score in patients was 14.8
(n= 25, SD= 5.7), ranging from 8 to 22. DNA methylation data
were available for all 54 participants, and neuroimaging data were
available for 16 participants with PD.
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TABLE 1 | Comparison of the demographic and clinical variables between PD patients and HCs.

PD patients (n = 32) HCs (n = 22) Statistics

N % N % χ
2 df p

Gender 0.11 1 0.74

Male 16 50.0 12 54.5

Female 16 50.0 10 45.5

Mean SD Mean SD T df p

Age (years) 33.1 7.4 33.3 7.2 0.73 52 0.94

Education (years) 13.9 3.3 15.6 3.8 1.71 52 0.09

HAMA-T 20.3 7.0 2.2 1.9 −11.8 52 0.00

PDSS scorea 14.8 3.8

χ2 and p-values were obtained with the chi-squared test. T and p-values were obtained with two-sample t-tests. PD, panic disorder; HCs, healthy controls; SD, standard deviation;

PDSS, Panic Disorder Severity Scale; HAMA-T, total score of the Hamilton Anxiety Scale. aTwenty-five patients with PD completed the PDSS.

NOS1 Methylation Status
We compared the methylation of each CpG unit in the PD (n =

32) andHC (n= 22) groups using t-tests (Figure 1).We observed
that the PD group had significantly lower methylation at CpG4,
CpG7, CpG9, CpG10, and CpG15 than did the HC group (p <

0.05). Thus, all subsequent epigenetic analyses were carried out
only for these five CpG sites.

Correlation Between Clinical Symptoms
and DNA Methylation of NOS1
We then performed Pearson’s correlation analysis in the PD
group to confirm the relationship between reduced methylation
at five CpG sites and clinical status. A significant positive
association was observed between PD symptom severity and the
DNA methylation of CpG4 (n = 25, r = 0.412, p = 0.041) and
CpG9 (n= 25, r = 0.509, p= 0.009) in the PD group (Figure 2),
whereas no significant association was found for CpG7, CpG10,
and CpG15 (p > 0.05).

Correlation Between Corpus Callosum
Alterations and Clinical Assessments
The FA and MD values of the bilateral CC (including three
parts of it) (Figure 3A) were extracted and correlated with NOS1
methylation. As described in the previous section and presented
in Figure 2, we observed significant positive correlations between
PD severity and NOS1 methylation (at sites CpG4 and CpG9)
in the PD group. We then performed Spearman’s correlation
analysis between CpG4 and CpG9 methylation and the FA and
MD values of the CC in the PD group. As shown in Figure 3A,
the results of the correlation analysis showed that the degree of
CpG9 methylation was negatively correlated with the MD values
in the total CC (n = 16, r = −0.700, p = 0.003), genu (n = 16, r
= −0.532, p = 0.036), and the splenium (n = 16, r = −0.737,
p = 0.002) (Figure 3B). In contrast, no significant association
was found in the body of the CC (p > 0.05). Similarly, we found
that the degree of CpG9 methylation was positively correlated
with the FA values in the total CC (n = 16, r = 0.535, p = 0.03)
and the splenium (n= 16, r= 0.647, p= 0.008) (Figure 3C). The
effect was not statistically significant for CpG4.

NOS1 Epigenetic Variation as a Mediator of
the Brain and Relationship With Clinical
Symptoms
Based on the findings above, we conducted an additional path
analysis to examine whether a reduced NOS1 methylation
mediated the relationship between the WM microstructure
in the CC and PD symptom severity. All phenotypes
were examined simultaneously in one model. As shown
in Figure 4, the mediation model suggested that NOS1
methylation at CpG9 mediated the connection between the
genu of CC and PD symptom severity. The indirect effect
of PD on the MD values of the genu of CC through DNA
methylation was significant (β = −0.639, 95% CI = −1.731
to −0.034). The effect was not statistically significant for the
other regions.

DISCUSSION

The current study extended the association between NOS1
DNA methylation in PD by investigating the relationship
between this novel epigenetic risk locus, clinical symptoms,
and the microstructure and organization of WM tracts. We
observed that the PD group showed lower NOS1 CpG4 and
CpG9 methylation than did the HC group, which led us to
examine the link between CpG4 and CpG9 methylation and
PD symptoms. The results showed that NOS1 methylation
at these loci had an apparent positive correlation with
current PD symptoms. Finally, path analysis showed that
NOS1 methylation at the CpG9 site significantly mediated
the relationship between PD and the WM microstructure in
the CC. These discoveries extend previous findings by linking
NOS1 to alterations in the WM, representing a possible brain
endophenotype of oxidative stress in anxiety and broadening its
potential clinical service by revealing its value as a promising
PD biomarker.

Although the role of NOS1 methylation in the relationship
between clinical PD symptoms and the WM microstructure
has not been extensively studied, a recent study has shown
that the NOS1 ex1f-VNTR genotype is associated with clinical
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FIGURE 1 | Frequency of DNA methylation at 20 CpG sites located in the promoter region of the NOS1 gene in patients with panic disorder (PD) and in healthy

controls (HCs). *p < 0.05.

FIGURE 2 | Correlations between the clinical symptoms (PDSS scores) and CpG4 and CpG9 DNA methylation in the panic disorder (PD) group. The threshold was

set at a significance level of p < 0.05. PDSS, Panic Disorder Severity Scale.

symptoms and a high MD value in several major WM tracts,
including the genu of the CC in patients with psychotic
disorders (17). This finding is in line with the notion that
NO influences brain development through WM organization.
Our study expanded on this by showing that WM alterations
in the CC were related to NOS1 methylation in the PD
group. Our assumption that the DNA methylation of NOS1
might add to the susceptibility of PD is verified by these
results. Additionally, we found that methylation of the NOS1
promoter was significantly reduced in the PD group and was
positively associated with current PD severity. This finding is
supported by a genome-wide epigenetic study that found the
hypomethylation of NOS1 in brain tissue from patients with
schizophrenia (23). Additionally, previous studies have found

hypomethylation of the glutamate decarboxylase 1 (GAD1)
and monoamine oxidase A (MAOA) genes in PD (45, 46),
which might very well describe a compensatory mechanism to
counteract a genetically driven reduction of NOS1 expression in
the prefrontal cortex. Thus, our results of a positive correlation
between the methylation of NOS1 and the PDSS scores are in
line with these findings because the reduction in methylation can
be thought to counteract the genetically driven reduced NOS1
expression in PD. Methylation that occurs in the CpG islands
of promoter regions usually suppresses gene expression (47);
therefore, a reduced methylation of NOS1 could be associated
with increased NOS1 gene expression. NOS1, known as one
of the NOS isoforms that produce the signaling molecule
NO (48–50), has convincingly been linked to anxiety-like
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FIGURE 3 | Scatter plot and line show the association between the degree of CpG9 methylation and the fractional anisotropy (FA) and mean diffusivity (MD) values in

the region of interest (ROI) of the brain. (A) ROI: the total corpus callosum (CC). Red represents the genu, orange represents the body, and green represents the

splenium of the CC. The statistical threshold for the contrasts was p < 0.05. (B) Black circles and line represent the MD values of the whole CC, the red circles and

line represent the MD values of the genu of the CC, and the green circles and line represent the MD values of the splenium of the CC. (C) Black circles and line

represent the FA values of the whole CC and the green circles and line represent the FA values of the splenium of the CC.

FIGURE 4 | The mediating role of CpG9 methylation of NOS1 in the

relationship between the mean diffusivity (MD) values of the genu the corpus

callosum (CC) and the Panic Disorder Severity Scale (PDSS) scores.

behavior (9, 51, 52) in rodents. In contrast, very few works
in humans have found nitrinergic system involvement in PD.
Two studies indicated that the levels of NO in the blood refer
to diurnal changes in patients with PD (53, 54). Overall, NO
is strongly related to the dopamine system and serotonergic
neurotransmission, which offers a rationale for the participation
of NO in PD.

Abnormal WM integrity in the CC in anxiety disorders
has been reported in several DTI studies (29, 55, 56). The
CC is a non-uniform aggregation of nerve fibers below the
cortex next to the longitudinal fissure that works to integrate
motor, emotional, and cognitive functions (57). The results of
the structural ROI analysis revealed a correlation between a
reduced NOS1 methylation and the FA and MD values in the
CC in the PD group. As is known, MD represents the average
molecular motion, and both the size and integrity of cells can
affect it. FA is a measure of axonal integrity and is closely
associated with fiber integrity (58). Consistent with previous
evidence for a strong genetic influence on the organization
and microstructure of WM tracts (59), the negative association
between the MD values in the CC and CpG9 methylation, as
well as the positive association between the FA values in the CC
and the CpG9 methylation in our study, suggested a directional
influence of NOS1 on neurite outgrowth. For example, lower
FA values or higher MD values can be an indicator of axonal
density reduction or axonal mutation. Based on these findings,
the hypomethylation of CpG9 may have led to the modulation
of NOS signaling by affecting the NOS1 gene transcription and
expression through aberrant outgrowth and organization of the
WM microstructure during early brain development. There are
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many NOS1 gene products that have not been widely studied, so
the precise mechanisms by whichNOS1may influence the CC are
unknown. Moreover, no neuroanatomical structure generating
NO in a centralized manner has been defined since every
NO-producing neuron is independent and synthesizes NO in a
non-synchronous way (60). Hence, NO has different effects in
the different brain regions and might even be antagonistic on the
behavioral level.

Given that DNA methylation may represent a key link
between external environmental factors and persistent
phenotypic changes, our work provides the first evidence
for a mediating role of methylation in NOS signaling in brain
development in patients with PD. Although we could not clarify
the causality in this cross-sectional study, path analysis showed
that NOS1 methylation significantly mediated the association
between the MD values of the genu of the CC and clinical
symptom severity in PD. There was no similar association for
the other components in the model, which suggests that the
genu of the CC might be more sensitive to changes in WM
microintegrity in PD patients. Aboitiz et al. found that thin
fibers are most dense in the genu of the CC (61), indicating
a better capacity for interhemispheric transfer. Laitinen et al.
reported that psychiatric patients with symptoms of anxiety
and tension could immediately benefit from high-frequency
electrical stimulation in the genu of the CC (62). These findings
highlight the importance of the genu of the CC and its prominent
role in the severity of PD symptoms. Furthermore, we found a
mediating effect of NOS1 hypomethylation on the relationship
between the genu of the CC and the severity of symptoms in
PD, while no direct relationship was found between the two.
One of the possible reasons for the relevance of the genu of
the CC not being observed with the PDSS may be the role
negative life events play in PD. Several studies found that
early-life stress was associated with increased symptom ratings
and meaningful alterations in the CC (63–66). Moreover, DNA
methylation has also been regarded as a gene × environment
interaction biomarker (46, 67–69)). Thus, the DNA methylation
mechanism may explain why adversity in early life causes
biological changes in psychiatric disorders. Taken together,
these findings suggest that the aberrant microstructure of
the WM in the genu indirectly affects the severity of PD
symptoms, mediated by the lower NOS1 methylation expressed
in the CC.

Several limitations should be noted in our study. Firstly,
our results are limited given the relatively small sample
size in a single center and the cross-sectional nature of
our data, so potential selection bias may exist. We did
not have the statistical power to draw firm conclusions on
the direction of the proposed effects. Secondly, we were
unable to assess gene expression and could not evaluate its
relationship with the methylation changes. Thirdly, peripheral
blood may not necessarily reflect the levels of DNA methylation
in the CNS despite previous evidence suggesting that the
DNA methylation patterns in peripheral blood cells and
several brain areas are highly comparable (70, 71). Finally,
confirming the mechanism of epigenetic changes and neural

integrity implicated in traumatic stress may need more
prospective studies.

In conclusion, these findings extend our understanding
of the effects of the increased underlying neuropathological
basis on psychiatric disorders by identifying NOS1
methylation as a potentially valuable blood biomarker for
WM microstructure in psychiatrically relevant brain regions,
which ultimately could be applied to early intervention and
treatment. Furthermore, our results provide new insights
into a neurobiological pathway from NOS1 epigenetic
variation, which may confer increased susceptibility
to PD.
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