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1  |  INTRODUC TION

Pu-erh tea (PT) belongs to a particular tea class which origi-
nates from Yunnan Province in China. It is known to be beneficial 
for human health due to its antioxidative, anticancerogenic, and 

toxicity-suppressing activities (Lv et al., 2013). The raw Pu-erh tea 
(RPT) is usually processed through plucking, spreading, fixation, roll-
ing, and sun drying. Among them, sun drying is the most crucial step 
and the basis for distinguishing RPT from other teas (Lv et al., 2013). 
In this step, moisture content must be controlled to an optimal level 
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Abstract
In this study, moisture contents and product quality of Pu-erh tea were predicted with 
deep learning-based methods. Images were captured continuously in the sun-drying 
process. Environmental parameters (EP) of air humidity, air temperature, global radia-
tion, wind speed, and ultraviolet radiation were collected with a portable meteoro-
logical station. Sensory scores of aroma, flavor, liquor color, residue, and total scores 
were given by a trained panel. Convolutional neural network (CNN) and gated recur-
rent unit (GRU) models were constructed based on image information and EP, which 
were selected in advance using the neighborhood component analysis (NCA) algo-
rithm. The evolved models based on deep-learning methods achieved satisfactory re-
sults, with RMSE of 0.4332, 0.2669, 0.7508 (also with R2 of .9997, .9882,  .9986, with 
RPD of 53.5894, 13.1646, 26.3513) for moisture contents prediction in each batch 
of tea, tea at different sampling periods, the overall samples, respectively; and with 
RMSE of 0.291, 0.2815, 0.162, 0.1574, 0.3931 (also with R2 of .9688, .9772, .9752, 
.9741, .8906, with RPD of 5.6073, 6.5912, 6.352, 6.1428, 4.0045) for final quality 
prediction of aroma, flavor, liquor color, residue, total score, respectively. By analyzing 
and comparing the RMSE values, the most significant environmental parameters (EP) 
were selected. The proposed combinations of different EP can also provide a valuable 
reference in the development of a new sun-drying system.
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to achieve the best product quality. However, the moisture content 
was difficult to estimate instantly with traditional methods. Also, 
with the loss of water from the tea leaves, the total flavonoid, phe-
nolic, vitamin C content, chlorophyll II, antioxidant activity, ascor-
bic acid equivalent are changing significantly (Chan et  al.,  2009; 
Roshanak et al., 2016). These changes are not only determined by 
the tea characters themselves but also related to the environmental 
parameters (EP) such as air temperature, air humidity, global radia-
tion, light intensity, wind speed, and ultraviolet radiation. Hence, on-
line monitoring of the EP and fast prediction of the moisture content 
are necessities in the PT industry.

Traditionally, during the sun-drying process of PT, the estima-
tion of moisture content was conducted by the tea makers with their 
eyes and hands, and the evaluation of product quality was upon 
the sensory scoring performed by a panel of trained tasters after 
sun drying. The estimation and evaluation accuracy was based on 
people's experience, mood, and mental state, which was not stable 
and consistent (Zhi et  al.,  2017). Recently, some sophisticated in-
struments, such as near-infrared spectroscopy (Huang et al., 2021; 
Zhang et al., 2020), hyperspectral imaging (Wei et al., 2019), micro-
NIRS (Wang et  al.,  2021), electronic nose (Tudu et  al.,  2009), and 
electronic tongue (He et al., 2009), have been used for tea moisture 
and quality prediction. These methods can provide good results, but 
require professional knowledge and expensive equipment. Hence, a 
rapid and convenient evaluation method is still expected.

Computer vision (CV) is an engineering technology that com-
bines electromagnetic sensing, mechanics, digital video, and 
image processing technology (Zareiforoush et  al.,  2015). Evidence 
has proved that CV is suitable for food quality evaluation (Wu & 
Sun,  2013), such as moisture detection of black tea in the with-
ering process (An et  al.,  2020), prediction of moisture content for 
Congou black tea (Liang et al., 2018), rapid identification of tea qual-
ity (Xu et al., 2019), quality monitoring during black tea processing 
(Wang, Li, Liu, et al., 2021), determination of black tea's fermenta-
tion quality (Dong et al., 2018), evaluation of black tea fermentation 
degree (Jin et al., 2020), and identification of tea category (Zhang 
et al., 2016). The above studies mainly used color histogram, wavelet 
transforms, and gray-level co-occurrence matrix as image informa-
tion extraction methods, and used support vector machines (SVM), 
multilayer perceptron (MLP), and radial basis function (RBF) neural 
network to fit the data for quality prediction. Although these meth-
ods can reduce the amount of calculation and improve the program's 
execution speed, they still have the disadvantage of accuracy de-
creasing in most situations. Recently, with the development of high-
performance computing (HPC) and Graphics processing unit (GPU), 
deep learning (DL) methods have become a promising approach in 
various food quality evaluations. Among these technologies, con-
volutional neural network (CNN) and Gated recurrent unit (GRU) 
combination has been successfully applied in tea leaf disease rec-
ognition (Chen et al., 2019; Hu et al., 2019; Hu et al., 2019), apple 
flower detection (Dias et al., 2018), fishery pond dissolved oxygen 
prediction (Li et  al.,  2021), and univariant time series forecasting 
(Saini et al., 2020). The increased computing ability on HPC and GPU 

allowed people to efficiently process high-dimensional variables, 
which further promotes their practical applications.

Limited studies have reported the quantitative evaluation of PT 
moisture content and product quality in sun-drying process using 
DL-connected CV techniques. Thus, this study aimed to assess the 
feasibility of using the image and environmental information based 
on DL-connected CV techniques for moisture content and product 
quality prediction. The specific objectives of this study were to:

1.	 use an industrial camera and a meteorological station to collect 
image information and EP during sun-drying process;

2.	 establish prediction models based on the image information of tea 
leaves to predict its moisture content;

3.	 construct prediction models based on the image information and 
EP of sun-dried tea to predict the final product quality; and

4.	 select the most influential EP by comparing the change rate of 
RMSE for optimization of the sun-drying process of PT for future 
studies.

2  |  MATERIAL S AND METHODS

2.1  |  Sample preparation

The fresh leaves of PT were collected from large-leaf tea trees in 
Simao District, Pu-erh City, Yunnan Province, China. Grade III sam-
ples were used in this experiment according to the Chinese national 
standard GB/T 22111-2008: More than 50% of samples were one 
bud with two leaves or one bud with three leaves, and the others were 
buds or leaves with the same tenderness. A total of 100 batches of 
PT were used in the current study. The spreading, fixation, and roll-
ing were all done by machines, and the processing conditions were 
set to be the same for all batches to reduce the impact of uncertain 
factors. During the sun-drying process, sample tests (image capture 
and moisture content measurement) were performed every 2 h, and 
moisture detection was performed immediately after the images of 
leaves were captured to reduce the measurement errors. A total of 
546 sample tests were conducted during the sun drying of the 100 
batches of tea leaves. The EP of each batch of tea were collected for 
analysis. After the sun-drying processes, the sensory scores of the 
tea products were given by a well-trained panel.

2.2  |  Image information collection

A machine vision system in a separate room beside the drying shel-
ter was used to capture the images of tea leaves during the drying 
process. The system consists of an industrial color camera (MV-
CE120-10GC, HIKROBOT TECHNOLOGY CO., LTD., Hangzhou, 
China) with 8 million pixels and a C-mount Varro-focal lens (MVL-
MF0828M-8MP, HIKROBOT TECHNOLOGY CO., LTD.), as well as 
a uniform light source which can be adjusted on an articulating arm 
boom. The uniform light emitted by the light source in the room can 
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provide better tea leaf images without shadows. The interior wall of 
the room was painted white to achieve a uniform diffuse reflection. 
Image capture included three steps: (1) 15 ± 0.5 g of PT leaves in the 
sun-drying process was placed in a glass vessel and spread uniformly, 
(2) the glass vessel was moved to a separate room and placed on a 
sampling platform in the machine vision system, and (3) the images 
of tea leaves were captured. The parameters of the machine vision 
system were optimized as follows: (1) The industrial camera's white 
balance was set to automatic mode to correctly display the color of 
tea and reduce the negative effect by illumination changes. (2) The 
aperture was adjusted to make the photo's brightness moderate so 
that the tea leaves could be clearly visible. (3) The working distance 
of the camera was fixed at 200 mm. After image capture, the raw 
digital image was saved as bmp files based on RGB color system.

In the whole sun-drying process, the original images of tea leaves 
were collected every 2 h. It is worth noting that the last sampling 
intervals may be <2 h due to a possible early finishing of the drying 
process. The end time of the sun-drying process was judged by the 
experts in the factory. Since the total drying duration required for 
different batches of tea was different, different numbers of images 
of 100, 100, 100, 89, 41, 16, and 100 were collected at the zeroth, 
the second, the fourth, the sixth, the eighth, the tenth, and the end-
ing hour, respectively. A total of 546 images of all the above sam-
ples were used for moisture analysis, but only the images of the final 
products were used for product quality evaluation.

2.3  |  Moisture detection

In each sample test, the 300-g PT leaves was collected and mixed 
evenly. Three grams was used for the moisture content measure-
ment by a halogen moisture analyzer (AMTAST MB65, Amtast USA 
Inc.). Referencing the Chinese standards of GB/T 8304-2013, the 
tea samples were placed in a drying vessel and heated to 120℃ for 

1 h. The weight loss before and after drying was recorded. The ratio 
of the changed value to the original weight was the moisture content 
(wet based).

2.4  |  Monitoring of EP

Pu-erh tea production specifications (Lv et al., 2013) were followed 
for the selection of the experimental site. The experimental area was 
located in a tea factory. A drying shed was used in the experiment. 
To maximize sunshine duration in the daytime, the shed was finally 
placed on the top of a factory building. As illustrated in Figure 1, an 
intelligent plastic roof was installed on the shed, which can monitor 
air pressure and rainfall, and automatically close or open before and 
after rains. There are ditches around the shed to prevent rainwater 
from flowing into the experimental area. The shed roof was usually 
open and free of obstructions to ensure better ventilation, in case of 
no rain. An automatic meteorological station (RS-QXZM-M3-Y-4G, 
Shandong Renke Control Technology Co., Ltd.) was mounted in the 
center of the sample area to collect the EP, including air temperature 
(℃), air humidity (%RH), total radiation (W/m2), light intensity (lux), 
wind speed (m/s), and ultraviolet radiation (mW/cm2). The measure-
ment error of the temperature sensor was ±0.4℃, and the humid-
ity sensor error was ±2%RH. The range of measurement is 0–60℃ 
for the air temperature sensor and 1%–100%RH for the air humidity 
sensor.

In the meteorological station, global radiation was measured 
with a pyranometer, the measuring range of the pyranometer was 
0–1800 W/m2, and the resolution was 1 W/m2. Furthermore, light 
intensity was measured by the light sensor. The light sensor is a light-
dependent resistor (LDR) that works based on the semiconductor 
photoelectric effect. The light sensor has a resistance that varies 
with ambient light intensity. By determining the corresponding rela-
tionship between resistance and illumination, the light intensity can 

F I G U R E  1  Drying shed with 
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be calculated. The light sensor can measure the light intensity of 0–
200,000 lux with an error of no more than 7%.

The wind speed was measured with a sonic anemometer. The 
wind information was gathered when it passed through the spaces 
between the antennae. The sonic anemometers measured the time 
it takes for an ultrasonic pulse to move from one transducer to an-
other. Compared with the cup and propeller anemometer, the sonic 
anemometer has fewer moving parts and less inertia, so the results 
were more accurate and reliable. The sonic anemometer can mea-
sure the wind speed of 0–60 m/s with an accuracy of 0.2 m/s.

Ultraviolet radiation was measured with an ultraviolet intensity 
meter in the station. The ultraviolet intensity meter consists of a sil-
icon photocell and a microampere meter. The photovoltaic element 
converts light energy into electrical energy. The incident light passes 
through the metal film to reach the interface between the semicon-
ductor selenium and the metal film, producing a photoelectric effect 
at the interface. The magnitude of the general potential difference is 
proportional to the illuminance of the light. The measurement range 
of the ultraviolet intensity meter is 0–15 mw/m2, and the measure-
ment error is <5%.

2.5  |  Sensory evaluation

After drying, the sensory quality was assessed (according to the 
Chinese national standard of GB/T 23776-2018) by a tasting panel 
of three panelists. Five quality aspects, including appearance, aroma, 
flavor, liquor color, and residue, were evaluated. All tasters had more 
than 5 years of experience in PT quality evaluation. A white matt 
evaluation table was used for sensory evaluation. Both the evalu-
ation cup and bowl were made of white porcelain. The evaluation 
cup was cylindrical with a height of 75 mm and an outer diameter 
of 80 mm. The height of the evaluation bowl was 75 mm and the 
upper diameter was 80 mm. The 3-g sun-dried PT was weighed and 
infused in an evaluation cup with 250 ml freshly boiled water for 
4 min. The liquor was then poured into the 440-ml evaluation bowl. 
The residues were sniffed three times for aroma evaluation. Then, 
the liquor was first evaluated for intensity, clarity, and brightness. 
When the temperature dropped to 40℃, 5–10 ml liquor was drunk 
and swirled continuously by the tasters with their tongue tips. For 
the tea liquor taste, the aroma was expelled through the nose when 
the top of the tongue was swirling the liquor (Wang & Ruan, 2009). 
The evaluation of the tea leaf was then followed immediately. 
According to the weighting of each sensory attribute for green tea 
provided by the Chinese National Standard (GBT23776-2018), the 

score of the overall quality was calculated by the following for-
mula: appearance × 25% + aroma × 25% +  flavor × 30% +  liquor 
color × 10% + residue × 10%. The final scores were the mean values 
of the three experts. In this study, all PT samples were picked from 
similar tea trees and had the same tenderness, and hence, their ap-
pearance scores were 20 points from all the panelists.

2.6  |  Quantitative prediction models with image 
information

Different models were constructed to predict moisture content dur-
ing the sun-drying process and to predict the sensory scores after 
drying as well. As shown in Figure 2, the image information was used 
for moisture prediction first. The color histogram, color moments, 
color autocorrelogram, and wavelet scattering methods were used to 
extract low-level image features of PT leaves, and a well-trained Rank 
expansion network (RexNet; Han et al., 2020) was used as the CNN 
image extractor to extract high-level image features. After neighbor-
hood component analysis (NCA) feature selection, two predictors of 
MLP and GRU used generic features and CNN features as inputs to fit 
the moisture content and compare the prediction accuracy.

As illustrated in Figure  3, both image information and en-
vironment parameters were input to a designed predictor for 
sensory score evaluation. After NCA feature selection, the R-
Square, RMSE, and RPD values of four models (low-level image 
features  +  EP  +  MLP, low-level image features  +  EP  +  GRU, 
high-level image features  +  EP  +  MLP, and high-level image fea-
ture  +  EP  +  GRU) were compared. Residual prediction deviation 
(RPD) was defined as the ratio of the standard deviation to the root 
mean square error (RMSE) in the prediction set (Liu et al., 2015). 
More accurate prediction models have larger R-squared and RPD 
values, and smaller RMSE values. Based on RPD, prediction models 
are classified into three categories: Category A (RPD > 2), Category 
B (1.4 < RPD < 2), Category C (RPD < 1.4). Prediction models which 
successfully categorized A and B were presumed to have the po-
tential to achieve satisfactory results (Chang et al., 2001).

2.6.1  |  Wavelet scattering

Wavelet scattering is a null-parameter, handcrafted convolution 
network originally proposed by Mallat (2012) for generating stable-
invariant feature representation. Invariant image descriptors could be 
produced through sequential wavelet decomposition over multiple 
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layers. The filters of the wavelet scattering network and CNN are 
different. The scattering network makes use of complex directional 
wavelet filters while CNN trains introduced convolution kernels for fil-
tering. Invariant scattering coefficients Smx and a subsequent layer of 
covariant wavelet module coefficients Um+1x are the outcomes of |Wm|. 
The average Smx carries the low frequencies of Umx while it loses all 
the high frequencies. |Wm| transforms Umx into the standard Smx and 
a new layer Um+1x of wavelet amplitude coefficients: |Wm|(Umx) = (Smx, 
Um+1x). For m = 0, U0x=x, the scattering feature vector (Sx) should be 
a concatenation of Six coefficients. A filter bank of low-pass and high-
pass filters for implementing Wm operators is illustrated in Figure 4.

Compared with wavelet scattering, Fourier transform also can 
produce invariants, but its power spectrum depends on the second-
order moments (Bruna & Mallat, 2013). The information on higher 
order moments is collected by scattering transform, which improves 
discrimination for scattering representation. Consequently, employ-
ing scattering transform for feature learning has advantages in tex-
ture feature extraction.

2.6.2  |  CNN image feature extractor

With the help of GPU, the training process of CNN can be effectively 
accelerated. In the case of a large amount of training data input, 
compared with the generic (low-level) image feature extraction 

technique, CNN can extract high-level features in the pictures and 
achieve higher accuracy. Consequently, CNN was used in this study 
as the feature extractor to compensate for the inefficiency and low 
accuracy of generic methods.

Convolution is a shift-invariant operation, including the perfor-
mance of locally weighted combinations across all the input images. 
The convolution layer is composed of several convolution kernels 
which are used to compute different feature maps. Depending on 
the set of chosen weights, various input features are revealed. 
Mathematically, the feature value at location (i, j) in the k-th feature 
map of l-th layer, Zl

i,j,k
 is calculated by,

where W l

k
 and bl

k
 are the weight vector and bias term, and X l

i.j
 is the 

input patch centered at location (i, j) of the l-th layer. The weight of the 
kernel W l

k
 is shared by filters across the entire visual field, which can 

reduce the model complexity and make the CNN easier to be trained 
(Aloysius & Geetha, 2017).

In general, the traditional CNN consists of convolutional layers, 
activation layers, downsampling layers, fully connected layers (FC), 
and loss function. A FC is usually used to collect feature information 
extracted in the filtering stage. The earlier layers of a CNN tend to 
learn more low-level elements such as edges and contours, which 
are then combined by the last layers to recognize complex high-level 
image features of task-specific objects (Dhillon & Verma, 2020). In 
short, by careful manipulation, an excellent CNN structure can ef-
fectively turn complex information into simple features.

In recent years, Mobilenet V2 has become one of the most pop-
ular CNN models that researchers and practitioners frequently use. 
It is based on an inverted residual structure, which provides more 
efficient and lightweight architecture. RexNet can be improved with 

(1)Zl
i,j,k

= W
l T

k
X
l

i,j
+ bl

k

F I G U R E  3  Flowchart of the sensory quality prediction model
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Mobilenet V2. By making use of the representational bottleneck 
and squeeze-and-excitation attention module, it has achieved bet-
ter model performance (Sandler et al., 2018). As shown in Figure 5, 
RexNet was used as a CNN image feature extractor in this study. 
Images of 546 samples and corresponding moisture content labels 
were input to the RexNet in the training process. PT images were 
augmented to increase the number of training data. The augmenta-
tion helped to improve the generalization of classifiers and reduce 
the possibility of overfitting. The augmentation methods included 
combinations of adding white noise, random reflection, random ro-
tation, and random scaling in this study.

In the feature extraction process, the weights of the RexNet lay-
ers were frozen. All pictures were passed through the CNN feature 
extractor, and the FC's output vectors were obtained simultane-
ously. Finally, the multiplication of the FC feature vectors and 546 
moisture content was used as the CNN image features. The expres-
sion is shown in (3):

Where Z is the CNN features of a single image (1 × 546), X is the fully 
connected vector (546 × 1), and Y is the 546 moisture content label 
vector (546 × 1).

2.6.3  |  Neighborhood components analysis 
feature selection

Feature selection involves a selection of a small subset of original 
features by discarding redundant and inappropriate data. Reducing 

the dimensions of variables can increase the interpretability of the 
chosen features and reduce computing resources. As a nonparamet-
ric feature selection technique, NCA chooses features by measur-
ing objective function, which calculates the regression loss over 
the training data (Goldberger et al., 2004). Feature selection can be 
achieved based on the significance of variable weights.

Given n observations:

where xi are the feature vectors and yi are continuous response values. 
The aim is to predict the response of y given by the training set S.

Randomly pick a point Ref(x) from S as the reference point for x, 
and set the response value at x equal to the response value of the 
reference point Ref(x). The probability P(Ref(x)=xj|S) that point xj is 
picked from S as the reference point for x is expressed as:

Predicting response for xi using the data in S−i, the training set S 
excludes the point (xi, yi). The probability that point xj is picked as the 
reference point for xi is

Let l be a loss function that measures the difference between 
response value ŷi and reference value yi. Then, the average value of 
l(yi , ŷi) is

(2)Z=YX
T

(3)S =
{
(xi , yi), i = 1, 2,…, n

}

(4)P
�
Ref (x) = xj|S

�
=

k(dw (x, xj))
∑n

j=1
k(dw (x, xj))

(5)Pij = P(Ref(x) = xj�S−i) =
k(dw (x, xj))

∑n

j=1,j≠i
k(dw (x, xj))

F I G U R E  5  Flowchart of CNN image 
feature extraction model
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The objective function for minimization is:

The NCA method is used to select feature variables with higher 
weights as the input of the prediction model to improve the training 
speed of the model while ensuring prediction accuracy.

2.6.4  |  MLP and GRU predictor

The recurrent neural network (RNN) is an extension of a conven-
tional feedforward neural network. However, RNN cannot avoid the 
gradient explosion problem (Yu et al., 2019), which limits its appli-
cation. The long short-term memory (LSTM) network not only uses 
a complex structure to overcome this challenge but it also causes 
slow computing speed. In contrast, a GRU network has only two gate 
structures, including an update gate and a reset gate. It can reduce 
computation as much as possible while solving the gradient explo-
sion problems. At the same time, a multilayer GRU stacking could 
increase its prediction ability. In fact, in recent years, many methods 
have been reported to be used in deep CNNs, such as ReLU acti-
vation function, batch normalization layer, and shortcut connection 
(He et al., 2016). As illustrated in Figure 6, the above methods were 
used to deepen the GRU model further while obtaining a smaller loss 
value in this study.

To improve the prediction accuracy of GRU, the rectified linear 
unit (ReLU) was used to clip negative values to zero and keep the 
positive value unchanged (Hara et al., 2015). Activation functions can 
be used to combine the weighted sum of input and biases, in order 
to decide if a neuron could be fired. Therefore, the overall speed of 

neural network computation can be enhanced by avoiding computer 
exponentials and divisions: It simply outputs 0 when X < 0 and out-
puts a linear function when X ≥ 0, where X refers to the input vectors.

Multilayer CNNs are highly nonlinear as it is a cascade of sev-
eral nonlinear operations. Therefore, Batchnorm was developed 
to improve the training process of neural networks by stabilizing 
the distributors of inputs (Ioffe & Szegedy,  2015), which plays an 
essential role in rectifying nonlinearity in CNN. It has been used in 
most DL models as a default setting. The shortcut connections were 
first used in residual network (He et al., 2016), which skips layers in 
the forward step of an input. This milestone architecture solves the 
problem that deep neural networks were slow in the training process 
and resulted in a better performance than similar counterparts.

As shown in Figure 3, generic (low-level) and CNN (high-level) 
image features were input into the GRU model, and the moisture 
content is fitted into the model in this study. The methods in Section 
2.6.1 used low-level color and texture features as input to the pre-
dictors, ignoring most high-level image information, and resulting in 
model instability and poor generalization performance. On the other 
hand, using GRU predicted value instead of CNN labels as moisture 
prediction output has many advantages. The critical reason is GRU 
can infer values that do not exist in CNN labels based on the FC 
vectors, while CNN can only find specific labels as the model's out-
put, which indirectly lowers the model performance. Hence, in this 
study, the combination of CNN image features and GRU predictor 
was proposed to predict moisture content and sensory cores of PT.

In summary, the above methods are organized as follows: (1) The 
HSV color histogram, L a* b* color moments, RGB color autocorrelo-
gram, and wavelet scattering are used to extract the low-level image 
features. (2) The RexNet CNN is used to extract the high-level image 
features. (3) Low- and high-level features are used to predict tea 
moisture during the sun-drying process by MLP and GRU. (4) Low-
level features + EP and high-level features + EP are used to predict 
sensory scores (including aroma, flavor, liquor color, residue, and 
total score) of sun-dried tea by MLP and GRU. (5) All input variables 
of MLP and GRU predictor would be selected by the NCA method to 
reduce the number of variables.

3  |  RESULTS AND DISCUSSION

3.1  |  Moisture content prediction with image 
processing

Experiments were performed and moisture prediction models were 
established for the sun-drying process. The low-level image feature 
extractor (including HSV color histogram, L a* b* color moments, RGB 
color autocorrelogram, and wavelet scattering) and high-level image 
feature extractor (CNN) were used to extract color and textural fea-
tures of tea leaves. In order to simplify the modeling process and 
improve the model performance, the NCA feature selection method 
was applied to select crucial variables essential for moisture predic-
tion. MLP and GRU were established as the moisture predictor.

(6)li = E(l(yi , ŷi)|S−i) =
n∑
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3.1.1  |  Variations of image features with 
moisture contents

The trend curves of color features that varied with moisture con-
tents are shown in Figure 7a,b. In the sun-drying process, the tea 
leaves fade and color changed gradually. In order to extract color 
features, RGB images were converted into HSV and L a* b* color 
spaces. The (0, 1) normalization was conducted on the original data 
to investigate the dynamic principle of color and texture features. 
The coefficients between color features and moisture contents 
were obtained from the Spearman two-tailed test (Zar, 1972). The 
coefficient of the blue channel's value is 0.094, which is not signifi-
cant at the level of 0.05. The other coefficients are 0.724 for red 
channel (R), 0.750 for green channel (G), 0.703 for hue (H), 0.823 
for saturation (S), 0.724 for value (V), 0.739 for lightness (L*), −0.670 
for a* component (a*), and 0.815 for b* component (b*), which are 
significant at the level of 0.01.

During the sun-drying process, the leaf texture also changed from 
spreading to shrinking form. The trend curves of texture features 
which varied with moisture contents are shown in Figure 7c,d. The 
texture features were extracted using the gray level co-occurrence 
matrix (Haralick et al., 1973). The Spearman correlation coefficient 
of homogeneity is 0.095, which is not significant at the level of 0.05. 
The coefficients of contrast, energy, correlation, sum average, and 
sum variance are −0.354, −0.286, 0.558, 0.577, and 0.580, respec-
tively, which are significant at the level of 0.01.

As shown in Figure  7, a* presented an upward trend with de-
creased moisture content, and R, G, H, S, V, L, b* demonstrated a de-
clining linear trend. Contrast, energy, correlation, sum average, and 

sum variance of texture features presented a decreasing trend with 
reducing moisture content. Consequently, the color and texture fea-
tures of PT leaves changed considerably with the loss of water during 
the sun-drying process, which indicated that the moisture content of 
tea leaves could be predicted by color and textural features.

3.1.2  |  Generic (low-level) image feature extraction

The extraction method of low-level image features requires less 
computing resources, but it is easy to cause insufficient feature 
extraction and reduced prediction accuracy. To extract the generic 
(low-level) features, the HSV color histogram, L a* b* color moments, 
and RGB color autocorrelogram of tea leaves’ images during the sun-
drying process were calculated. The low-level image features were 
extracted by the following steps:

1.	 The hue, saturation, and value (HSV) histogram of tea leaf 
images was calculated. The photos were transformed into HSV 
color space with 8  ×  2  ×  2 equal bins. The HSV histogram 
feature includes a 1  ×  32 vector, which was suggested by the 
literature (Barman & Choudhury,  2020).

2.	 Color moments is a practical, robust method to describe the 
image color features. The tea leaves' mean, standard deviation, 
skewness value of L, a*, b* channel were considered and formed a 
1 × 9 vector, which was suggested by the same literature (Barman 
& Choudhury, 2020).

3.	 The color autocorrelogram was used to find the spatial correla-
tion of the identical pixels. The input images were transformed 

F I G U R E  7  Changes in color (a and b) 
and texture (c and d) features with the 
variation of moisture contents
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into 64 colors in RGB as 4  ×  4  ×  4 color space, and calculated 
in a 1 × 64 color autocorrelogram feature with a distance set of 
1,3,5,7, which was also suggested by the literature (Barman & 
Choudhury, 2020).

4.	 As illustrated in Figure 8, also referring to Section 2.6.1, the mean 
values along the second and third dimensions were calculated to 
obtain 391 element feature vectors for each image. This resulted 
in a significant reduction of data from 65,536 elements down to 
391. The wavelet scattering method was applied for the extrac-
tion of textural features. As illustrated in Figure  7, the textural 
features extracted by wavelets with multiple angels have signifi-
cant differences, allowing wavelet scattering to analyze tea leaf 
images’ texture features comprehensively.

3.1.3  |  CNN (high-level) image feature extraction

The extraction method of CNN image features has been improved 
with the development of GPU. With the assistance of GPU, com-
pared with the low-level image feature extraction methods, the 
training time of the CNN extractor has been shortened and the 
inference time of each picture has been reduced. The tea leaves 
with different moisture contents were photographed and the im-
ages were then used as the input of the CNN extractor to extract 
the CNN (high-level) image features. The CNN extractor was mainly 
composed of a RexNet CNN.

As described in Section 2.6.2, the multiplication values of the 
FC's vector and moisture content were used as CNN features. The 

training options of CNN are shown in Table 1. Few training epochs 
have a poor classification effect during the training procedures, 
but more epochs lead to wastage of time. In this study, only part 
of the data were used for the determination of the suitable train-
ing epochs. After observation, it was found that 300 epochs can 
make RexNet achieve a stable accuracy. Consequently, 300 train-
ing epochs were selected under a comprehensive consideration. 
The 10-fold cross-validation method was applied to reflect the 
feature extraction capabilities of the RexNet mode. Finally, after-
the 10-fold cross-validation was performed, the accuracy of the 
training set was 99.45% and that of the validation set was 98.82%. 
However, the feature extraction process was only implemented on 
the validation set. In this study, all experiments were carried out 
under the PyTorch 1.4 framework with Ubuntu 18.04 operating 
system.

In order to illustrate the essential information for the determina-
tion of the category, Grad-CAMs and saliency maps were developed. 
Feature heat map pixels in the Grad-CAMs were highlighted with a 
color gradient if they were considered critical for classification. Input 
image pixels in the saliency maps, on the other hand, were bright-
ened based on the levels of significance to categories.

Grad-CAM collected the global gradient to calculate the weight 
of the feature map. The weighted sum is obtained after including 
the weight of the category for all the feature maps. An image of a 
known classification was input into a trained CNN model in the pro-
cess to show the saliency map. The derivatives of model output with 
respect to the input image's pixels were calculated using a guided 
backpropagation algorithm (Jin et al., 2020).

F I G U R E  8  Wavelet scattering transform features of 63.91% (a), 29.96% (b), and 9.82% (c) moisture content with six different angels per 
wavelet
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The feature maps in Table 2 show that the first convolutional layer 
focused on extracting edges of leaves and branches in tea leaf pic-
tures. As shown in feature maps, branches and leaves are currently 
distinguished. The residues that cannot be used for classification are 
identified at the same time, which proves the advantages of CNN as 
an image feature extractor. As illustrated in Grad-CAM and saliency 
map, the RexNet tended to analyze the leaf area changes caused 
by water loss when predicting the moisture contents of different 
tea leaves. As shown in Grad-CAM (b) and saliency map (b), since 
the shape of the branches is not sensitive to changes in moisture 

content, water loss has less influence on the shape of branches than 
on the shape of leaves. Consequently, the branch area was blue in 
Grad-CAM and black in the saliency map. On the other hand, the 
leaf area was red in Grad-CAM and white in the saliency map, which 
proved that RexNet can be used to reflect the moisture content of 
tea leaf. In sample (c), the red area in Grad-CAM was smaller than 
the white area in the saliency map and correct regions in the orig-
inal picture; hence, the red area in Grad-CAM (c) should be larger. 
As illustrated in the literature (Ju et al., 2021), the main reason for 
this phenomenon may be as follows: in Grad-CAM, the heat map is 
generated by features from the shallow layers of CNN, which causes 
the presentation of high semantic features and loss of part of spatial 
information. This makes the final result area have a specific error, 
and an increase in training samples may help to solve this problem.

3.1.4  |  Moisture content prediction based on 
MLP and GRU

In order to predict the moisture content of PT during the sun-drying 
process, the extracted image information (including 688 vari-
ables for low-level image features and 546 variables for high-level 

TA B L E  1  CNN training options and parameters

CNN training options CNN training parameters

Validation method Tenfold cross-validation

Optimizer Stochastic gradient descent 
with the momentum of 0.9

Total training epochs 300 epochs

Mini batch size 64 images

Initial learning rate 0.01

Learning rate drop period 100 epochs

Learning rate drop factor 10%

TA B L E  2  Feature map, Grad-CAM, and saliency map of RexNet in different moisture contents

Original Feature map Grad-CAM Saliency map 
(a) Moisture: 63.91%

(b) Moisture: 29.96% 

(c) Moisture: 9.82% 
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features) was input into the MLP and GRU predictor. The image fea-
tures contained collinearity, which caused inefficient modeling and 
more training time. Therefore, it is necessary to select crucial vari-
ables for prediction with NCA methods.

The results of the NCA feature selection are illustrated in 
Figure S1. The 10% features were selected from the original data-
sets. The numbers of image features were significantly decreased 
by 619 for low-level image features and 490 for high-level image 
features, suggesting the advantages of the NCA method. According 
to the results, color moments, color histogram, and wavelet scatter-
ing had a higher priority in predicting tea leaves’ moisture content. 
However, the CNN features of a sample with moisture content <10% 
and more than 60% were relatively hard to select, indicating that the 
CNN features with the tea moisture between 10% and 60% have a 
more significant impact on the accuracy of the moisture prediction.

Datasets selected by NCA were used to develop moisture con-
tent prediction models to accelerate the model's training speed 
and improve the model accuracy. The MLP is a multilayer feedfor-
ward network. It has a simple structure and can be trained quickly, 
but the prediction performance of MLP is usually worse than that 
of GRU. The data were divided into training and testing datasets 
using a random number generator to implement the 10-fold cross-
validation in the neural network model. The size of hidden layers 
is 10. By using the optimized algorithm of the gradient descent 
method, the network was trained for 200 epochs to achieve a 
stable loss value and optimize the model performance. The same 
method used in Section 2.6.4 was also applied to determine the 
GRU training parameters. The training parameters of the GRU 
model are shown in Table 3.

Two image feature extractors (generic and CNN feature ex-
tractor) and two predictors (MLP and GRU) were combined to form 
four models. Only the image information was applied for moisture 
content prediction during the whole sun-drying process. Moisture 
content prediction models were built in three situations, including 
the prediction for each batch of tea sample, tea sample in the same 
batch but at different sampling periods, and the overall samples. 
The R-Square, RMSE, and RPD values of each model were applied to 
measure the prediction accuracy.

As illustrated in Figures  S2 and Fig.  S3, for moisture content 
prediction for each batch of tea, the prediction accuracy and stabil-
ity of the four constructed models, which are denoted using RMSE 
values, decreased in the following order: 0.8529 of low-level image 

feature  +  MLP, 0.6585 of low-level image feature  +  GRU, 0.5635 
of high-level image feature + MLP, and 0.4332 of high-level image 
feature  +  GRU. The R2 values of the above models are .9988, 
.9992,  .9994, and .9997, respectively. The RPD values of the above 
models are 25.9479, 34.1184, 40.2256, and 53.5894, respectively. 
Consequently, the point with the most significant prediction error in 
the CNN-GRU model can still meet the relatively high moisture pre-
diction accuracy for each batch of tea. The batch with the most sig-
nificant error is shown in Figure S2, and the errors of other batches 
were smaller than the 74th batch.

As illustrated in Figures S4 and S5, for moisture prediction for 
tea at different sampling periods, there is no significant change in 
the ranking of model prediction performance compared with the 
prediction for each batch of tea. The average RMSE decreased in the 
following order: 0.7884 of low-level image feature + MLP, 0.6338 
of low-level image feature + GRU, 0.5023 of high-level image fea-
ture + MLP, and 0.2699 of high-level image feature + GRU. The R2 
values of the above models are .9118, .9351, .9595, and .9882, re-
spectively. The RPD values of the above models are 4.4482, 5.5428, 
7.0313, and 13.1646, respectively. The sampling time of 4 h has a 
relatively larger prediction error and achieves satisfactory predic-
tion accuracy (R2 > .9 and RPD > 2). Therefore, the high-level image 
features  +  GRU model is suitable for detecting various sampling 
times’ moisture contents.

For moisture content prediction for the overall samples, the 
data of the above two parts were merged and predictions were con-
ducted. As shown in Figure S6 and Table 4, the combination of CNN 
image features and GRU predictor achieved the best performance, 
followed by high-level image features + MLP, low-level image fea-
tures + GRU, and low-level image features + MLP.

In summary, as illustrated in Table  4, although the values of 
RMSE are different in the above three cases of moisture content 
prediction, the RMSE rankings of the four models were consistent. 
The values of R2 are >.9, and RPD values are >2. Consequently, the 
CNN-GRU model can achieve good prediction accuracy under var-
ious conditions.

3.2  |  Sensory quality evaluation of sun-dried PT

Experimental data were selected and analyzed to build more ef-
fective prediction models for sensory quality prediction. As re-
ported in the literature (Chan et al., 2009; Roshanak et al., 2016), 
during the sun drying of PT, the chemical substances’ changes are 
closely related to the final sensory quality, and moisture content 
prediction models are helpful in the evaluation of the sensory 
scores. The image features (reflecting moisture content) and the 
EP were input into the MLP and GRU prediction models. The re-
sults of RMSE were then compared for the selection of the most 
effective combination to reduce the total input parameters, im-
prove model accuracy, and find the most critical EP that affect the 
sensory quality mostly.

TA B L E  3  GRU training options and parameters

GRU training options GRU training parameters

Validation method Tenfold cross-validation

Optimizer Adaptive moment estimation

Total training epochs 300 epochs

Number of GRU hidden units 100

Number of shortcut block 2
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3.2.1  |  Correlation between image information, 
EP, and sensory scores

As mentioned in Section 3.1.1, the correlation coefficients between 
image information, EP, and sensory scores were calculated with the 
Spearman two-tailed test. The larger the correlation coefficient is, 
the brighter the grid appears. The EP used here are the average val-
ues of the whole sun-drying process.

As illustrated in Figure 9, air humidity is significantly but neg-
atively correlated with sensory scores. Air temperature, global 
radiation, light intensity, wind speed, and ultraviolet significantly 
are positively correlated with sensory scores. As illustrated in 
Figure  10, a*, contrast, and energy are significantly negatively 
correlated with sensory scores. The remaining image features are 
positively correlated with sensory scores, in which the correlation 
coefficient of B and homogeneity are not significant, and R, G, H, 
S, V, L, b*, correlation, sum average, and sum variance are signifi-
cant. Most image features are not significantly correlated with EP. 
Besides air humidity, most of the EP are positively correlated with 
image features.

The reasons for the above phenomena may be as follows: (1) too 
high air humidity reduced the quality of PT in the sun-drying process, 
and a reasonable increase in air temperature, global radiation, light in-
tensity, wind speed, and ultraviolet helped to improve sensory scores. 
(2) Image features and EP can reflect the changes in sensory scores. 
(3) The correlations between EP and image features are not signifi-
cant. The reason might be that the image features were affected by 

multiple EP in the sun-drying process, so a single environmental pa-
rameter could not fully reflect the changes in image features.

3.2.2  |  Image features’ extraction and sensory 
scores' prediction

In order to fit the sensory scores of the sun-dried PT, both EP and 
image information were used to evaluate the aroma, flavor, liquor 
color, residue, and total score of sun-dried PT. After adding vari-
ous combinations of EP to the models, the significance of EP was 
measured. By comparing the change rate of RMSE, the most compel-
ling environmental parameter combination is proposed, which uses 
fewer inputs to achieve higher accuracy.

The CNN-GRU model with the highest accuracy had been 
used in moisture content prediction to evaluate the sensory 
scores but did not incorporate EP into the model. As illustrated 
in Figure S7, sensory scores cannot be evaluated when the image 
information only was input into the GRU model. Subsequently, 
EP (including air humidity, air temperature, global radiation, 
light intensity, wind speed, and ultraviolet radiation) were used 
as GRU input variables. The NCA feature selection method was 
used to decrease the number of inputs and improve the model 
performance.

As illustrated in Figure 11a,b, with EP' join, the NCA weights of 
air temperature, air humidity, light intensity, global radiation, wind 
speed, and ultraviolet were higher than any single image feature, 

TA B L E  4  Moisture detecting average accuracy of different models in each batch of tea, tea at various sampling times, and the overall tea 
samples

Samples
Evaluation 
methods

High-level image 
features + GRU

High-level image 
features + MLP

Low-level image 
features + GRU

Low-level image 
features + MLP

Each batch of tea R2 .9997 .9994 .9992 .9988

RMSE 0.4332 0.5635 0.6585 0.8529

RPD 53.5894 40.2256 34.1184 25.9479

Various sampling times R2 .9882 .9595 .9351 .9118

RMSE 0.2699 0.5023 0.6338 0.7884

RPD 13.1646 7.0313 5.5428 4.4482

All tea samples R2 .9986 .9981 .9977 .9958

RMSE 0.7508 0.8621 0.9533 1.2856

RPD 26.3513 22.9500 20.7544 15.3898

F I G U R E  9  The Spearman 
correlation between sensory scores 
and environmental parameters (* and ** 
represent significance level of 0.05 and 
0.01, respectively)
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which further emphasized the significance of EP in PT sensory qual-
ity prediction.

Furthermore, as illustrated in Figure  S8, combinations of dif-
ferent EP were separately input into the CNN-GRU model to at-
tempt the prediction possibility. As shown in Figures  S9–S11, the 
prediction performance of the four models was different in terms 
of sensory score prediction. With regard to aroma, flavor, liquor 
color, residue, and total score, the CNN-GRU model obtained the 
best prediction performance compared with other models. The ac-
curacy of the CNN-GRU model for sensory evaluation, which was 
denoted by RMSE, decreased in the following order: 0.3135 for the 

total score, >0.2656 for flavor, >0.2005 for aroma, >0.1521 for li-
quor color, >0.1332 for residue. The R2 values of the above sensory 
scores are  .6900, .8777, .9119, .9380, and .9433, respectively. The 
RPD values of the above sensory scores are 1.8829, 3.3682, 4.1225, 
4.4098, and 4.5940, respectively.

As illustrated in Figures S9–S11, for evaluation of aroma, flavor, 
liquor color, residue, and total score, there existed the most signifi-
cant error when only image features were used as input. Overall, as 
illustrated in Table 5, the average R-Square, RMSE, and RPD values 
of the models from low to high were ranked as follows: high-level 
image feature + EP + GRU, low-level image features + EP + GRU, 

F I G U R E  1 0  The Spearman correlation between image information and environmental parameters, image information and sensory scores 
(* and ** represent significance level of 0.05 and 0.01, respectively)
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high-level image features  +  EP  +  MLP, and low-level image fea-
tures + EP + MLP. The above sequence is different from the ranking 
of moisture content prediction. The possible reason is as follows: 
when predicting the moisture content, the color and texture of im-
ages were closely related to water, and the degree of image infor-
mation extraction has a more significant impact on the prediction 
performance of models. Therefore, whether to use CNN as an image 
feature extractor is a crucial factor. In contrast, when evaluating sen-
sory scores, EP are in a more critical position compared to image 
information, so the advantages of GRU were more easily reflected. 
However, in all cases, the CNN-GRU model achieved the highest 
prediction accuracy, which fully proved the advancement and supe-
riority of the deep learning-based moisture content prediction and 
sensory quality determination model.

From Figures  S9–S11, it can also be found that an increase 
in the number of EP does not necessarily improve the predic-
tion accuracy of the sensory score of the CNN-GRU model. 
When predicting the sensory scores, the accuracy of the model 
prediction is ranked the same. For aroma prediction, the aver-
age RMSE of the four models decreased as follows: 1.7458 of 
low-level image features  +  EP  +  MLP  >  1.2812 of high-level 
image features  +  EP  +  MLP  >  1.1440 of low-level image fea-
tures + EP + GRU > 0.4897 of high-level image feature + EP + GRU. 
The R2 values of the above models are .4848,  .6370, .6880, 
and  .9119, respectively. The RPD values of the above models are 
0.9669, 1.3429, 1.5146, and 4.1225, respectively. For flavor pre-
diction, the RMSE values of the four models are: 1.9342, 1.5250, 
1.1288, 0.6699 (R2: .4757, .6008, .7303, .8777, RPD: 0.9796, 1.249, 
1.813, 3.3682). For liquor color prediction, the RMSE values of 
the four models are: 0.6750, 0.5363, 0.4046, 0.2562 (R2: .7027, 

.7895,  .8675, .938, RPD: 1.5632, 1.9661, 2.7647, 4.4098). For res-
idue prediction, the RMSE values of the four models are: 0.5503, 
0.4735, 0.3735, 0.2302 (R2: .7567, .8064, .8698, 0.9433, RPD: 1.77, 
2.0669, 2.6837, 4.594). For total score prediction, the RMSE val-
ues of the four models are: 3.7053, 3.0444, 2.0739, 1.1578 (R2: 
.1697,  .2423, .4167, .69, RPD: 0.4389, 0.5473, 0.848, 1.8829).

In order to achieve a high prediction accuracy and minimize the 
number of required EP, the highest accuracy points of different num-
bers of EP are analyzed and shown in Figures S9–S11 and Table 5. 
For example, when only three EP were input to the model, for eval-
uation of aroma and flavor, the CNN-GRU model using air tempera-
ture + air humidity + light intensity as the EP got the local minimum 
RMSE value. For liquor color, residue, and total score, the best is air 
temperature + wind speed + ultraviolet.

The RMSE value and change rate of the points in Tables S1–S3 
are shown in Table 6. As illustrated in Table 7, the points with the 
fastest RMSE reduction were selected as the most efficient combi-
nation of EP. The combinations in Table 7 were used to evaluate the 
sensory scores of PT after the sun-drying process, and the scatter-
gram results are shown in Figure 12. It is evident that usage of the 
recommended environment parameters can accurately evaluate the 
aroma, flavor, liquor color, residue, and total score of PT. This conclu-
sion is important for the optimization of the sun-drying process and 
improvement of the sensory quality of PT.

4  |  CONCLUSION AND FUTURE WORKS

1.	 The EP and moisture contents (reflected through image informa-
tion) are essential attributes for the evaluation of the sensory 

TA B L E  5  Sensory quality evaluation average accuracy of different models using various environment parameters as inputs

Samples
Evaluation 
methods

High-level image 
features + GRU

Low-level image 
features + GRU

High-level image 
features + MLP

Low-level image 
features + MLP

Aroma R-Square .9119 .6880 .6370 .4848

RMSE 0.4897 1.1440 1.2812 1.7458

RPD 4.1225 1.5146 1.3429 0.9669

Flavor R2 .8777 .7303 .6008 .4757

RMSE 0.6699 1.1288 1.5250 1.9342

RPD 3.3682 1.8130 1.2490 0.9796

Liquor color R2 .9380 .8675 .7895 .7027

RMSE 0.2562 0.4046 0.5363 0.6750

RPD 4.4098 2.7647 1.9661 1.5632

Residue R2 .9433 .8698 .8064 .7567

RMSE 0.2302 0.3735 0.4735 0.5503

RPD 4.5940 2.6837 2.0669 1.7700

Total score R2 .6900 .4167 .2423 .1697

RMSE 1.1578 2.0739 3.0444 3.7053

RPD 1.8829 0.8480 0.5473 0.4389
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quality of PT during the sun-drying process. Compared with 
other literature, this work is the first to use image information 
and EP to predict moisture contents (including the prediction 
for each batch of tea, tea at different sampling periods, and 
the overall samples) and the sensory quality of PT in a fast 
speed.

2.	 In this work, an ultraportable and low-cost industrial camera and 
a meteorological monitoring device were used to collect data 
during the sun-drying process. Moreover, a deep-learning-based 
high-level image feature extractor and sensory score predictor 
were developed, which achieved high accuracy (RMSE values of 
0.297 vs. 1.3311 for aroma, 0.2815 vs. 1.4976 for flavor, 0.162 vs. 
0.4777 for liquor color, 0.1574 vs. 0.4701 for residue, and 0.3931 
vs. 2.5318 for total score; R2 values of .4805 vs. .9688, .4875 
vs.  .9772, .7541 vs. .9752, .7904 vs. .9741, 0.0039 vs. 0.8906; RPD 
values of 1.1365 vs. 5.6073, 0.9893 vs. 6.5912, 1.6696 vs. 6.352, 
1.8232 vs. 6.1428, 0.2855 vs. 4.0045).

3.	 By comparing all the RMSE values of different EP, the crucial EP 
that should be firstly measured and regulated are suggested as 
follows: air humidity  +  light intensity for aroma and residue; air 
temperature + wind speed + ultraviolet for flavor, liquor color, and 
total score. These promising results provided suitable and accurate 
models for the optimization of the sensory quality prediction by 
regulating the EP. This convenient tool is also useful for large-scale 
commodity production lines.

Compared with the traditional models with low-level image fea-
ture extractors and MLP accessories, the deep learning-based mod-
els exhibited good performance by using the features selected by 
the NCA method. The proposed prediction models have gotten sat-
isfactory results: in moisture content prediction during sun drying 
with RMSE values of 0.4332 for each batch of tea, 0.2699 for tea at 
different sampling periods, and 0.7508 for the overall samples. The 
R2 values of the above samples are .9997, .9882, and .9986, respec-
tively. The RPD values of the above samples are 53.5894, 13.1646, 
and 26.3513, respectively. This study proved that the designed sys-
tem can be used to evaluate the sensory scores of PT accurately. 
Moreover, the proposed combinations of different EP can also pro-
vide a valuable reference in the development of a new sun-drying 
system.

Future works are recommended to optimize the PT sun-drying 
procedure by changing part of the EP only. Efforts should be made to TA
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TA B L E  7  Recommended environment parameters for sensory 
quality determination

Sensory evaluation 
index Selected environmental parameters

Aroma Air humidity + Light intensity

Flavor Air temperature + Wind speed + Ultraviolet

Liquor color Air temperature + Wind speed + Ultraviolet

Residue Air humidity + Light intensity

Total score Air temperature + Wind speed + Ultraviolet
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improve the sensory quality and insure the consistency of the sen-
sory scores of different batches of tea products.

ACKNOWLEDG MENT
The authors acknowledge financial support from the key pro-
ject of the Chinese Academy of Engineering and Yunnan Province 
(2020YNZH6).

ORCID
Cheng Chen   https://orcid.org/0000-0002-6049-2030 

R E FE R E N C E S
Aloysius, N., & Geetha, M. (2017). A review on deep convolutional neural 

networks. Paper presented at the 2017 International Conference on 
Communication and Signal Processing (ICCSP).

An, T., Yu, H., Yang, C., Liang, G., Chen, J., Hu, Z., Hu, B., & Dong, C. 
(2020). Black tea withering moisture detection method based on 
convolution neural network confidence. Journal of Food Process 
Engineering, 43(7), e13428. https://doi.org/10.1111/jfpe.13428

Barman, U., & Choudhury, R. D. (2020). Soil texture classification 
using multi class support vector machine. Information Processing 
in Agriculture, 7(2), 318–332. https://doi.org/10.1016/j.
inpa.2019.08.001

Bruna, J., & Mallat, S. (2013). Invariant Scattering Convolution Networks. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 
1872–1886. https://doi.org/10.1109/tpami.2012.230

Chan, E. W. C., Lim, Y. Y., Wong, S. K., Lim, K. K., Tan, S. P., Lianto, F. 
S., & Yong, M. Y. (2009). Effects of different drying methods on 
the antioxidant properties of leaves and tea of ginger species. 
Food Chemistry, 113(1), 166–172. https://doi.org/10.1016/j.foodc​
hem.2008.07.090

Chang, C.-W., Laird, D., Mausbach, M. J., & Hurburgh, C. R. Jr (2001). 
Near-infrared reflectance spectroscopy–principal components 

F I G U R E  1 2  Scattergram of sensory 
score evaluation reference and predicted 
values using recommended environment 
parameters as CNN-GRU model inputs

8

10

12

14

16

18

8 10 12 14 16 18

R
ef

er
en

ce
 v

al
ue

s 

Predicted values

Aroma

R-Square=0.9688
RMSE=0.2970
RPD=5.6073

15

16

17

18

19

20

21

22

23

24

25

15 17 19 21 23 25

R
ef

er
en

ce
 v

al
ue

s 

Predicted values

Flavor

R-Square=0.9722
RMSE=0.2815
RPD=6.5912

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

4 5 6 7 8 9

R
ef

er
en

ce
 v

al
ue

s 

Predicted values

Liquor color

R-Square=0.9752
RMSE=0.1620
RPD=6.3520

5

6

7

8

9

10

5 6 7 8 9 10

R
ef

er
en

ce
 v

al
ue

s 

Predicted values

Residue

R-Square=0.9741
RMSE=0.1564
RPD=6.1428

63

64

65

66

67

68

69

70

71

72

73

63 65 67 69 71 73

R
ef

er
en

ce
 v

al
ue

s 

Predicted values

Total score

R-Square=0.9384
RMSE=0.3931
RPD=4.0045

https://orcid.org/0000-0002-6049-2030
https://orcid.org/0000-0002-6049-2030
https://doi.org/10.1111/jfpe.13428
https://doi.org/10.1016/j.inpa.2019.08.001
https://doi.org/10.1016/j.inpa.2019.08.001
https://doi.org/10.1109/tpami.2012.230
https://doi.org/10.1016/j.foodchem.2008.07.090
https://doi.org/10.1016/j.foodchem.2008.07.090


    |  1037CHEN et al.

regression analyses of soil properties. Soil Science Society of America 
Journal, 65(2), 480. https://doi.org/10.2136/sssaj​2001.652480x

Chen, J., Liu, Q., & Gao, L. (2019). Visual tea leaf disease recognition 
using a convolutional neural network model. Symmetry, 11(3), 343. 
https://doi.org/10.3390/sym11​030343

Dhillon, A., & Verma, G. K. (2020). Convolutional neural network: A 
review of models, methodologies and applications to object de-
tection. Progress in Artificial Intelligence, 9(2), 85–112. https://doi.
org/10.1007/s1374​8-019-00203​-0

Dias, P. A., Tabb, A., & Medeiros, H. (2018). Apple flower detection using 
deep convolutional networks. Computers in Industry, 99, 17–28. 
https://doi.org/10.1016/j.compi​nd.2018.03.010

Dong, C., Liang, G., Hu, B., Yuan, H., Jiang, Y., Zhu, H., & Qi, J. (2018). 
Prediction of congou black tea fermentation quality indices from 
color features using non-linear regression methods. Scientific 
Reports, 8(1), 10535. https://doi.org/10.1038/s4159​8-018-28767​-2

Goldberger, J., Hinton, G. E., Roweis, S., & Salakhutdinov, R. R. (2004). 
Neighbourhood components analysis. 17, 513–520.

Han, D., Yun, S., Heo, B., & Yoo, Y. J. (2020). Rexnet: Diminishing repre-
sentational bottleneck on convolutional neural network. arXiv pre-
print, arXiv:2007.00992.

Hara, K., Saito, D., Shouno, H., & IEEE (2015). Analysis of Function of 
Rectified Linear Unit Used in Deep learning. In 2015 International 
Joint Conference on Neural Networks (IJCNN). (pp. 1–8). IEEE. https://
doi.org/10.1109/IJCNN.2015.7280578

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural fea-
tures for image classification. IEEE Transactions on Systems, 
Man, and Cybernetics, SMC-3(3, SMC-3(6), 610–621. https://doi.
org/10.1109/TSMC.1973.4309314

He, K. M., Zhang, X. Y., Ren, S. Q., Sun, J., & IEEE (2016). Deep Residual 
Learning for Image Recognition. In 2016 IEEE Conference on 
Computer Vision and Pattern Recognition (pp. 770–778). IEEE. 
https://doi.org/10.1109/CVPR.2016.90

He, W., Hu, X., Zhao, L., Liao, X., Zhang, Y., Zhang, M., & Wu, J. (2009). 
Evaluation of Chinese tea by the electronic tongue: Correlation 
with sensory properties and classification according to geographi-
cal origin and grade level. Food Research International, 42(10), 1462–
1467. https://doi.org/10.1016/j.foodr​es.2009.08.008

Hu, G., Wu, H., Zhang, Y., & Wan, M. (2019). A low shot learning 
method for tea leaf’s disease identification. Computers and 
Electronics in Agriculture, 163, 104852. https://doi.org/10.1016/j.
compag.2019.104852

Hu, G., Yang, X., Zhang, Y., & Wan, M. (2019). Identification of tea leaf 
diseases by using an improved deep convolutional neural network. 
Sustainable Computing: Informatics and Systems, 24, 100353. https://
doi.org/10.1016/j.suscom.2019.100353

Huang, Z., Sanaeifar, A., Tian, Y. A., Liu, L., Zhang, D., Wang, H., Ye, D., & 
Li, X. (2021). Improved generalization of spectral models associated 
with Vis-NIR spectroscopy for determining the moisture content 
of different tea leaves. Journal of Food Engineering, 293, 110374. 
https://doi.org/10.1016/j.jfood​eng.2020.110374

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. Paper presented at 
the International conference on machine learning.

Jin, G., Wang, Y., Li, L., Shen, S., Deng, W.-W., Zhang, Z., & Ning, J. (2020). 
Intelligent evaluation of black tea fermentation degree by FT-NIR 
and computer vision based on data fusion strategy. LWT, 125, 
109216. https://doi.org/10.1016/j.lwt.2020.109216

Ju, J., Zheng, H., Xu, X., Guo, Z., Zheng, Z., & Lin, M. (2021). Classification 
of jujube defects in small data sets based on transfer learning. Neural 
Computing and Applications, 33, 1–14. https://doi.org/10.1007/
s0052​1-021-05715​-2

Li, W., Wu, H., Zhu, N., Jiang, Y., Tan, J., & Guo, Y. (2021). Prediction of 
dissolved oxygen in a fishery pond based on gated recurrent unit 
(GRU). Information Processing in Agriculture, 8(1), 185–193. https://
doi.org/10.1016/j.inpa.2020.02.002

Liang, G., Dong, C., Hu, B., Zhu, H., Yuan, H., Jiang, Y., & Hao, G. (2018). 
Prediction of Moisture Content for Congou Black Tea Withering 
Leaves Using Image Features and Nonlinear Method. Scientific 
Reports, 8(1), 7854. https://doi.org/10.1038/s4159​8-018-26165​-2

Liu, C., Liu, W., Chen, W., Yang, J., & Zheng, L. (2015). Feasibility in multi-
spectral imaging for predicting the content of bioactive compounds 
in intact tomato fruit. Food Chemistry, 173, 482–488. https://doi.
org/10.1016/j.foodc​hem.2014.10.052

Lv, H.-P., Zhang, Y.-J., Lin, Z., & Liang, Y.-R. (2013). Processing and chemi-
cal constituents of Pu-erh tea: A review. Food Research International, 
53(2), 608–618. https://doi.org/10.1016/j.foodr​es.2013.02.043

Mallat, S. (2012). Group Invariant Scattering. Communications on Pure and 
Applied Mathematics, 65(10), 1331–1398. https://doi.org/10.1002/
cpa.21413

Roshanak, S., Rahimmalek, M., & Goli, S. A. H. (2016). Evaluation of seven 
different drying treatments in respect to total flavonoid, pheno-
lic, vitamin C content, chlorophyll, antioxidant activity and color 
of green tea (Camellia sinensis or C-assamica) leaves. Journal of 
Food Science and Technology-Mysore, 53(1), 721–729. https://doi.
org/10.1007/s1319​7-015-2030-x

Saini, U., Kumar, R., Jain, V., & Krishnajith, M. U. (2020). Univariant 
Time Series forecasting of Agriculture load by using LSTM and GRU 
RNNs. Paper presented at the 2020 IEEE Students Conference on 
Engineering & Systems (SCES).

Sandler, M., Howard, A., Zhu, M. L., Zhmoginov, A., Chen, L. C., & IEEE 
(2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. In 
2018 Ieee/Cvf Conference on Computer Vision and Pattern Recognition 
(pp. 4510–4520). IEEE. https://doi.org/10.1109/CVPR.2018.00474

Tudu, B., Jana, A., Metla, A., Ghosh, D., Bhattacharyya, N., & 
Bandyopadhyay, R. (2009). Electronic nose for black tea qual-
ity evaluation by an incremental RBF network. Sensors and 
Actuators B: Chemical, 138(1), 90–95. https://doi.org/10.1016/j.
snb.2009.02.025

Wang, K. B., & Ruan, J. Y. (2009). Analysis of chemical components in green 
tea in relation with perceived quality, a case study with Longjing 
teas. International Journal of Food Science and Technology, 44(12), 
2476–2484. https://doi.org/10.1111/j.1365-2621.2009.02040.x

Wang, Y., Li, L., Liu, Y., Cui, Q., Ning, J., & Zhang, Z. (2021). Enhanced 
quality monitoring during black tea processing by the fusion of 
NIRS and computer vision. Journal of Food Engineering, 304, 110599. 
https://doi.org/10.1016/j.jfood​eng.2021.110599

Wang, Y.-J., Li, T.-H., Li, L.-Q., Ning, J.-M., & Zhang, Z.-Z. (2021). 
Evaluating taste-related attributes of black tea by micro-NIRS. 
Journal of Food Engineering, 290, 110181. https://doi.org/10.1016/j.
jfood​eng.2020.110181

Wei, Y., Wu, F., Xu, J., Sha, J., Zhao, Z., He, Y., & Li, X. (2019). Visual detec-
tion of the moisture content of tea leaves with hyperspectral imag-
ing technology. Journal of Food Engineering, 248, 89–96. https://doi.
org/10.1016/j.jfood​eng.2019.01.004

Wu, D., & Sun, D.-W. (2013). Colour measurements by computer 
vision for food quality control – A review. Trends in Food 
Science & Technology, 29(1), 5–20. https://doi.org/10.1016/j.
tifs.2012.08.004

Xu, M., Wang, J., & Gu, S. (2019). Rapid identification of tea quality by 
E-nose and computer vision combining with a synergetic data fu-
sion strategy. Journal of Food Engineering, 241, 10–17. https://doi.
org/10.1016/j.jfood​eng.2018.07.020

Yu, Y., Si, X. S., Hu, C. H., & Zhang, J. X. (2019). A review of recur-
rent neural networks: LSTM Cells and network architectures. 
Neural Computation, 31(7), 1235–1270. https://doi.org/10.1162/
neco_a_01199

Zar, J. H. (1972). Significance testing of the Spearman rank correlation 
coefficient. Journal of the American Statistical Association, 67(339), 
578–580. https://doi.org/10.1080/01621​459.1972.10481251

Zareiforoush, H., Minaei, S., Alizadeh, M. R., & Banakar, A. (2015). 
Potential applications of computer vision in quality inspection of 

https://doi.org/10.2136/sssaj2001.652480x
https://doi.org/10.3390/sym11030343
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.1016/j.compind.2018.03.010
https://doi.org/10.1038/s41598-018-28767-2
https://doi.org/10.1109/IJCNN.2015.7280578
https://doi.org/10.1109/IJCNN.2015.7280578
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.foodres.2009.08.008
https://doi.org/10.1016/j.compag.2019.104852
https://doi.org/10.1016/j.compag.2019.104852
https://doi.org/10.1016/j.suscom.2019.100353
https://doi.org/10.1016/j.suscom.2019.100353
https://doi.org/10.1016/j.jfoodeng.2020.110374
https://doi.org/10.1016/j.lwt.2020.109216
https://doi.org/10.1007/s00521-021-05715-2
https://doi.org/10.1007/s00521-021-05715-2
https://doi.org/10.1016/j.inpa.2020.02.002
https://doi.org/10.1016/j.inpa.2020.02.002
https://doi.org/10.1038/s41598-018-26165-2
https://doi.org/10.1016/j.foodchem.2014.10.052
https://doi.org/10.1016/j.foodchem.2014.10.052
https://doi.org/10.1016/j.foodres.2013.02.043
https://doi.org/10.1002/cpa.21413
https://doi.org/10.1002/cpa.21413
https://doi.org/10.1007/s13197-015-2030-x
https://doi.org/10.1007/s13197-015-2030-x
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1016/j.snb.2009.02.025
https://doi.org/10.1016/j.snb.2009.02.025
https://doi.org/10.1111/j.1365-2621.2009.02040.x
https://doi.org/10.1016/j.jfoodeng.2021.110599
https://doi.org/10.1016/j.jfoodeng.2020.110181
https://doi.org/10.1016/j.jfoodeng.2020.110181
https://doi.org/10.1016/j.jfoodeng.2019.01.004
https://doi.org/10.1016/j.jfoodeng.2019.01.004
https://doi.org/10.1016/j.tifs.2012.08.004
https://doi.org/10.1016/j.tifs.2012.08.004
https://doi.org/10.1016/j.jfoodeng.2018.07.020
https://doi.org/10.1016/j.jfoodeng.2018.07.020
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1080/01621459.1972.10481251


1038  |    CHEN et al.

rice: A review. Food Engineering Reviews, 7(3), 321–345. https://doi.
org/10.1007/s1239​3-014-9101-z

Zhang, M., Guo, J., Ma, C., Qiu, G., Ren, J., Zeng, F., & Lü, E. (2020). An 
Effective prediction approach for moisture content of tea leaves 
based on discrete wavelet transforms and bootstrap soft shrinkage 
algorithm. Applied Sciences, 10(14), 4839. https://doi.org/10.3390/
app10​144839

Zhang, Y., Yang, X., Cattani, C., Rao, R. V., Wang, S., & Phillips, P. (2016). 
Tea category identification using a novel fractional fourier entropy 
and jaya algorithm. Entropy, 18(3), 77. https://doi.org/10.3390/
e1803​0077

Zhi, R. C., Zhao, L., & Zhang, D. Z. (2017). A framework for the multi-level 
fusion of electronic nose and electronic tongue for tea quality as-
sessment. Sensors, 17(5), 1007. https://doi.org/10.3390/s1705​1007

SUPPORTING INFORMATION
Additional supporting information may be found in the online 
version of the article at the publisher’s website.

How to cite this article: Chen, C., Zhang, W., Shan, Z., Zhang, 
C., Dong, T., Feng, Z., & Wang, C. (2022). Moisture contents 
and product quality prediction of Pu-erh tea in sun-drying 
process with image information and environmental 
parameters. Food Science & Nutrition, 10, 1021–1038. https://
doi.org/10.1002/fsn3.2699

https://doi.org/10.1007/s12393-014-9101-z
https://doi.org/10.1007/s12393-014-9101-z
https://doi.org/10.3390/app10144839
https://doi.org/10.3390/app10144839
https://doi.org/10.3390/e18030077
https://doi.org/10.3390/e18030077
https://doi.org/10.3390/s17051007
https://doi.org/10.1002/fsn3.2699
https://doi.org/10.1002/fsn3.2699

