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ABSTRACT Multiple-trait analysis typically employs models that associate a quantitative trait locus (QTL)
with all of the traits. As a result, statistical power for QTL detection may not be optimal if the QTL
contributes to the phenotypic variation in only a small proportion of the traits. Excluding QTL effects that
contribute little to the test statistic can improve statistical power. In this article, we show that an optimal
power can be achieved when the number of QTL effects is best estimated, and that a stringent criterion for
QTL effect selection may improve power when the number of QTL effects is small but can reduce power
otherwise. We investigate strategies for excluding trivial QTL effects, and propose a method that improves
statistical power when the number of QTL effects is relatively small, and fairly maintains the power when the
number of QTL effects is large. The proposed method first uses resampling techniques to determine the
number of nontrivial QTL effects, and then selects QTL effects by the backward elimination procedure for
significance test. We also propose a method for testing QTL-trait associations that are desired for biological
interpretation in applications. We validate our methods using simulations and Arabidopsis thaliana tran-
script data.
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Quantitative trait locus (QTL) mapping has been a powerful tool for
dissecting genetic variants underlying quantitative traits in numerous
biological studies and breeding programs. There are two primary
concerns in QTL mapping. One is the power for QTL identification
under a controlled false positive rate, and the other is accuracy of QTL
localization. Advanced intercross lines (Darvasi and Soller 1995), col-
laborative cross (Churchill et al. 2004), and heterogeneous stock
(Valdar et al. 2006) are examples that research efforts have been made
to create experimental mapping resources to enhance mapping resolu-
tion. In the meantime, various statistical methodologies have been de-
veloped to improve statistical power as well as parameter estimation.
Joint analysis of multiple complex traits was proposed for QTL map-
ping in this context as quantitative genetic studies commonly collect

data on several to dozens of phenotypes. While multiple traits are
usually analyzed separately (referred to as single-trait analysis), there
has been plenty of interest in joint analysis of multiple traits over
the last two decades. Multivariate analysis of multiple complex traits
(referred to asmultiple-trait analysis ormultitrait analysis) is known for
its potential for a higher statistical power and more accurate QTL
localization (Korol et al. 1995; Jiang and Zeng 1995), and has a wide
range of successful applications in various genetic studies such as
crops (Wu et al. 1999), dairy cattle (Bolormaa et al. 2010), model
organisms (Zeng et al. 2000), diseases (Zhong et al. 2010), and
other (Lan et al. 2006).

Themost commonmethodology formultiple-trait analysis includes
multivariate regression (Ronin et al. 1995; Knott and Haley 2000), and
multiple-trait interval mapping (Jiang and Zeng 1995; Korol et al. 1995;
2001). Multiple-trait interval mapping usually relies on multivariate
regression models, also when genotypes of a putative QTL are assumed
to be known; however, at a putative QTL other than marker loci, the
genotypes are only certain with probabilities, and, therefore, the actual
model underlying interval mapping is typically a mixture. Generalized
linear models, as well as methods that deal with non-normality,
also have their applications in multiple-trait analysis (Henshall and
Goddard 1999; Lange and Whittaker 2001; Xu et al. 2005; Liu et al.
2009). In recent years, mixed linear models popular in single-trait
analysis have been extended for multiple-trait analysis (Lund et al.
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2003; Malosetti et al. 2008; Hernandez et al. 2012; Korte et al.
2012). While these multiple-trait approaches generally specify
parameters for the effects of a putative QTL on all traits, models
that associate different QTL with different traits have been intro-
duced to multiple-trait mapping in both Bayesian and Frequentist
frameworks (Verzilli et al. 2005; Banerjee et al. 2008; Wisser et al.
2011; Silva et al. 2012).

As indicated above, the common practice of multiple-trait analysis
uses multivariate regression models, or models of this type, where
parameters are specified for QTL effects on all traits. This corresponds
to assuming that a putative QTL is associated with all of the traits,
which is usually not true in reality. There are two potential con-
sequences (Brown et al. 2014). First, a model with overly excessive
QTL effect parameters can reduce the power for QTL detection
because the increase in a test statistic due to additional parameters
may not compensate for the increase in the degrees of freedom.
Second, it is desirable to know which traits are associated with
a QTL, and/or which are not; however, multiple-trait analysis that
is based on multivariate regression models, or models of this type,
does not facilitate such biological interpretation. On the other
hand, methods that allow different traits to have different QTL,
which facilitates biological interpretation, often focuses on meth-
odological development with little effort to exploit the power for
QTL identification (Verzilli et al. 2005; Banerjee et al. 2008; Wisser
et al. 2011; Silva et al. 2012). Motivated to resolve these limitations,
we developed methods for multiple-trait analysis with two aims: to
(1) improve statistical power for QTL detection; and (2) derive
QTL-trait associations with improved power. We validated our
methods using simulations and Arabidopsis thaliana transcript
data.

MATERIALS AND METHODS
Before we proceed to present our methodology, we assume a mapping
population of recombinant inbreed lines (RILs) for QTL analysis, and
the likelihood ratio test (LRT) statistic for hypothesis testing or model
comparison (i.e., we will use LRT statistics in simulations, and real data
analysis unless stated otherwise). These assumptions are simply for ease
of description of our methodology; however, the methods to develop
will not be limited to RILs but will apply to a general mapping
population.

We assume a multiple-trait single-QTL model (without covariates)

yn1 ¼ b01 þ xnlbl1 þ en1;
yn2 ¼ b02 þ xnlbl2 þ en2;
. . . . . .
ynp ¼ b0p þ xnlblp þ enp;

(M1)

where ynk is the n-th (n ¼ 1; 2; . . . ;N) observation of the k-th trait,
b0k is the intercept, xnl is 1=2, or 21=2 if the genotype of the l-th
scanning locus (referred to as putative QTL) is AA or aa, blk is the
coefficient representing QTL effect, and ðen1; en2; . . . ; enpÞ is a p-variate
random error term. We may assume that ðen1; en2; . . . ; enpÞ;
n ¼ 1; 2;⋯;N; are independent and follow a normal distribution
Nð0;ΣÞ with Σ ¼ ðsijÞ being a p · p positive definite matrix. In
model (M1), we may omit l if there is no confusion.

Usually, hypotheses for testing the putative QTL in model (M1) are

H0 : blk ¼ 0  for  all  k ¼ 1; 2;⋯; p;
H1 : blk 6¼ 0  for  any  k ¼ 1; 2;⋯; p:

(H1)

If we assume the k-th trait, k 2 �K⊂ 1; 2;⋯; p ;gf is not associated with
the putative QTL, then model (M1) becomes

ynk ¼ b0k þ enk   if   k 2 �K; or

ynk ¼ b0k þ xnlblk þ enk   if   k;�K
(M2)

and the hypotheses for testing the putative QTL are

H0 : blk ¼ 0  for  all  k ¼ 1; 2;⋯; p;

H1 : blk ¼ 0  for  all  k 2 �K; and 

blk 6¼ 0  for  any  k 2 f1; 2;⋯; pgn�K
(H2)

if we use model (M1), or

H0 : blk ¼ 0  for  all  k 2 f1; 2;⋯; pgn �K;

H1 : blk 6¼ 0  for  any  k 2 f1; 2;⋯; pgn �K
(H2a)

if we look at model (M2).
We next present a few methods that can be used to detect QTL:

maximumbootstrap power (MBP), testQTL effects individually (Indv),
remove trivial QTL effects sequentially (Seq), and model selection by
Bayesian information criterion (BIC) (BICd). While we propose MBP
for multiple-trait analysis, we consider the others for the sake of com-
parison, as they are natural and intuitive choices whenwe are interested
in QTL-trait associations in applications. Especially, we compare them
with the most common approach, i.e., test hypotheses (H1) for QTL,
which we denote by “All”. These methods, except Indv, do not neces-
sarily adequately provide information aboutQTL-trait associations, but
instead can yield excessive false positive QTL-trait associations even
though the type I error rate of QTL is appropriately controlled at
a nominal significance level. Therefore, we also propose a method that
tests QTL-trait associations after a scanning locus is identified as QTL.
At the end of this section, we describe a real data set and simulation
settings.

MBP
It is known that multiple-trait analysis is likely, but not always, more
powerful than single-trait analysis, depending on QTL effects and the
residual correlation structure of the traits (Jiang and Zeng 1995; Korol
et al. 1995). In Cheng et al. (2013), we argued that addition of a trait to
multiple-trait analysis can lead to a reduced statistical power for QTL
identification if, given other traits, it contributes little to the test statistic.
Therefore, we proposed to select a subset of traits for multiple-trait
analysis as follows: (1) determine the maximum number, K (up to
the total number of traits), of traits to be selected; (2) take 1000 (say)
nonparametric bootstrap samples, and estimate the (pseudo) statistical
power and its SE for k ¼ 1; 2;⋯;K “best” traits, denoted by pk
and ek respectively; (3) choose the largest k�ð#KÞ such that
pk� $ pk�þ1 2 ek�þ1 and pk�21 , pk� 2 ek�: The key point is to select
a number of traits such that any additional trait contributes little to the
statistical power according to certain criterion. This method improves
statistical power as we showed in Cheng et al. (2013). On the other
hand, we showed that addition of a trait increases statistical power for
QTL detection if this trait is reasonably correlated with traits of interest,
and is not associated with the QTL. As a useful application, we can
include additional traits that satisfy the above conditions when we do
not have sufficient power to detect QTL underlying traits of our interest.
In such a case, the QTL is not associated with all traits in the model.

Now,we consider a situationwherewe are interested in joint analysis
of multiple traits without excluding any of them or including additional
traits. Inpractice, aQTLmaybeonly associatedwith some, butnot all, of
the traits, i.e., some blk values in model (M1) are zero. As shown in the
Results section, power for QTL detection is not optimal if the model
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contains parameters representing QTL effects on all of the traits, but
not all of the traits are influenced by the QTL. Then, we may improve
power by excluding “trivial”QTL effects that are either actually zero or
statistically nonsignificant. How to exclude trivial QTL effects is our
focus in this paper. We adopt the idea for variable selection of traits in
Cheng et al. (2013) as introduced above, and propose a procedure as
follows.

1. Obtain significance threshold lkðaÞ for the best k (k ¼ 1; 2; . . . ; p)
effects at genome-wide significance level, a, where p is the total
number of traits;

2. Take B (say 250) nonparametric bootstrap samples, and, for the

b-th bootstrap sample, obtain the test statistic, TðbÞ
k ; for the best k

(k ¼ 1; 2; . . . ; p) effects at a putative QTL;
3. For each k, calculate the proportion, fk, of the bootstrap samples

where TðbÞ
k . lkðaÞ; b ¼ 1; 2;⋯;B; i.e., fk ¼

PB
b¼1ITðbÞ

k . lkðaÞ
.
B

where I
TðbÞ
k . lkðaÞ ¼ 1 if TðbÞ

k . lkðaÞ, or 0 otherwise;

4. Find k0 such that k0 ¼ argmax1# k# pfk if k0 is unique, or take the
integer part of the average of the smallest and the largest k0value
otherwise;

5. Claim a QTL if Tk0 . lk0ðaÞ; where Tk (k ¼ 1; 2;⋯; p) is the test
statistic for the best k effects at the putative QTL in a genome scan.

Note thatTk; T
ðbÞ
k , and fk are specific to a scanning locus, e.g.,Tlk will

be used instead ofTk if the best k effects at the l-th of L scanning loci are
tested for QTL. Obviously, PðTlk , lkðaÞ; l ¼ 1; 2;⋯; LÞ$ 12a for
any k ¼ 1; 2;⋯; p under that null hypothesis of noQTL as lkðaÞ is the
genome-wide threshold at significance level a for the best k QTL
effects, and, therefore, if k0 is chosen purely by chance, we also have
PðTlk0 , lk0ðaÞ; l ¼ 1; 2;⋯; LÞ$ 12a: The best effects of a puta-
tive QTL are the remaining effects after trivial ones are excluded,
say, by forward selection, backward elimination, or stepwise selec-
tion. Backward elimination is often preferable as it usually has
a better performance than forward selection in our current situa-
tion, and is less computationally intensive than stepwise backward
selection. In (3), we can use a more stringent criterion than lkðaÞ
because fk can easily reach 1 when QTL effects are moderately
large, so that it is difficult to choose a desirable k0 in (4). For
example, we can replace lkðaÞ with lkðbÞ such that
PðTlk , lkðbÞ; l ¼ 1; 2;⋯; L; k ¼ 1; 2;⋯; pÞ$ 12a under the null
hypothesis of no QTL. The threshold lkðbÞvalues correct multi-
plicity in both l and k by adjusting the significance level from a to b
(generally a.b), which can be accomplished numerically. We
can further assume PðTl1 , l1ðbÞ; l ¼ 1; 2; . . . ; LÞ ¼ PðTl2 , l2ðbÞ;
l ¼ 1; 2; . . . ; LÞ ¼ . . . ¼ PðTlp , lpðbÞ; l ¼ 1; 2; . . . ; LÞ if we do not
give preference to any k ¼ 1; 2; . . . ; p: If k0 is not unique in (4),
which is often the case when fkvalues reach 1, the smallest k0 can
result in underestimation of the number of nontrivial effects,
whereas the largest can lead to overestimation. Therefore, we take
a trade-off to guard against a serious bias.

Steps 2–4 in the above procedure determine nontrivial effects, and
step 5 assumes trivial effects are zero and tests for QTL using model
(M2). We note that bootstrap samples generally produce a greater fk
than independent samples, that is, bootstrap fk overestimates the type I
error rate if there is no QTL, or the power if a QTL exists (see Supple-
mental Material, File S1, for more information). If we still regard fk an
estimate of power at a putative QTL, then the above procedure seeks k0
that maximizes (pseudo) statistical power at the putative QTL, which
we refer to as MBP.

Indv
TheMBPmethod excludes trivial QTL effects using bootstrap samples.
The number of nontrivial QTL effects, k0; is determined by an ensemble
of bootstrap samples rather than a single sample. Alternatively, we may
be tempted to exclude trivial QTL effects individually if the correspond-
ing test statistics are smaller than a cutoff, t. Specifically, we consider
the test statistics, Tlk, in model (M1) with hypotheses

H0 : blk ¼ 0  vs: H1 : blk 6¼ 0 (H3)

k ¼ 1; 2;⋯; p; and regard blk as trivial if Tlk , t: This subsequently
determines k0, and testing for QTL existence is then based on the best
k0 effects. Though simple yet intuitive, this unfortunately does not
work well. A large cutoff t can result in a great loss of power, espe-
cially if the number of QTL effects is relatively large, whereas a small t
may lead to inflated type I error rates, or little gain in power.

Ifweaimto identify associationsbetweenaputativeQTLandtraitsof
interest, we can directly test whether QTL effects on the traits are zero,
which in turn indicates QTL existence. It is intuitively reasonable to test
multiple QTL effects one at a time in a multiple-trait framework. There
are twooptions.One is to testaneffect givenall othereffects in themodel,
and the other is to test an effectwith all other effects being excluded from
the model. The former is somewhat similar to looking at the type III
sums of squares or the z-test statistics constructed from estimates and
their SE in multiple regression, which are usually reported in statistic
software applications. The latter is similar to single-trait analysis, but is
now under a multiple-trait framework. As seen in the Results section,
this will lead to a damage in power due to underfitting if the number of
QTL effects is .1. Therefore, this is not a good option, and will
not be taken for further consideration. The first option, denoted
Indv, will be referred to when we test QTL effects individually.
The hypotheses are those in (H3). To control the genome-wide type I
error rate at significance level a, the threshold tðaÞ should be such
that Pðmaxl¼1;2;...;L;  k¼1;2;...;pTlk . tðaÞ�¼ P½Tlk . tðaÞ; l ¼ 1; 2; . . . ; L;
  k ¼ 1; 2; . . . ; pÞ#a where Tlk is assumed to be the LRT statistic for
testing the effect, blk in model (M1), of a putative QTL at the l-th
scanning locus on the k-th trait, given the effects of the putative QTL
on all other traits, that is, tðaÞ is adjusted for multiplicity in both
traits and scanning loci.

Seq
Again, assume we are interested in QTL-trait associations, which, in
turn, indicates QTL existence. In statistics, it is not rare to test multiple
effects one after another until a significant effect is disclosed. However,
selection bias can be induced if the process sequentially searches for, and
removes, the least significant effect among all the remaining effects. We
may choose to ignore, or take into account, selection bias when we
determine significance thresholds. In case selection bias is ignored,
a simple way is to use a single threshold with Bonferroni correction,
which is basically the BICdmethod we present next, and is stringent for
the least significant QTL effects. We will not consider this option, but
instead can refer to the BICd method for its performance in terms of
power. To take selection bias into account, we can estimate thresholds
through the permutation test, where the permuted data are analyzed in
the same way as the original data (i.e., the data that we permute). The
significance threshold can be adjusted for multiplicity in the same way
for MBP and Indv. We denote this method by Seq.

BICd

Model selection is a useful tool in multiple-QTL mapping, in either
a Frequentist (Kao et al. 1999; Broman and Speed 2002; Arends et al.
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2010;Wang et al. 2011) or a Bayesian (Yi et al. 2003) framework.While
modern model selection techniques such as shrinkage methodology
have appealing applications in genetic analysis (Whittaker et al. 2000;
Xu 2003; Wang et al. 2005), the traditional backward elimination and
stepwise selection approaches are still favored for their simplicity and
interpretability. Broman and Speed (2002) recommends backward
elimination along with BICd for multiple-QTL mapping. BICd is dif-
ferent from the well-known BIC only in the penalty, and Broman and
Speed (2002) suggest a penalty that is associated with the genome-wide
threshold rather than the sample size. In our current situation of mul-
tiple-trait analysis, we consider BICd, and obtain a penalty as follows if
we are interested in QTL-trait associations.

1. Permute the genotype data;
2. Select the best effect for the permuted data by one-step forward

selection starting from the model without QTL effects;
3. Repeat 1) and 2) for 1000 (say) times, and take the ð12aÞ quan-

tile, tðaÞ; of the test statistics adjusted for multiplicity in scanning
loci for the best effect.

The hypotheses in (2) are

H0 : blt ¼ 0  for  all  t ¼ 1; 2;⋯; p;
H1 : blk 6¼ 0; and  blt ¼ 0  for  all  t 2 f1; 2;⋯; pgnfkg (H4)

k ¼ 1; 2;⋯; p: The threshold tðaÞ in (3) is such that
Pðmaxl¼1;2;...;L;k¼1;2;...;pTlk . tðaÞÞ ¼ PðTlk . tðaÞ;   l ¼ 1; 2; . . . ; L;
  k ¼ 1; 2; . . . ; pÞ#a, where Tlk is the statistic that tests hypotheses
(H4) in the permuted data. This penalty is expected to control the
type I error rate at the genome-wide significance level, a, if forward
selection is performed for QTL identification, and, as seen in the Results
section, works reasonably well if backward elimination is implemented.

Test individual QTL effects after a QTL is identified
TheMBP is expected to reasonably control the type I error rate forQTL
identification at a nominal significance level; however, it does not nec-
essarily control the type I error rate for a QTL effect at the nominal
significance level. As a matter of fact, k0 tends to overestimate the
number of QTL effects. Overfitting is not necessarily a bad thing. First,
MBP aims to remove some trivial effects to improve power, rather than
estimate the number of nonzero QTL effects. Second, as shown in the
Results section, overestimation of the number of QTL effects does not
damage power as much as underestimation, though it may not lead to
an optimal power. To test individual QTL effects at a controlled type I
error rate, a, we can proceed with the following testing procedure
(denoted idv).

1. Calculate the test statistic, say x2; for a QTL effect given all other
effects;

2. Claim the QTL effect is not zero if x2 . x2
vð12a=k0Þ, where y is

the degrees of freedom and k0 is the number of nontrivial QTL
effects.

Here, we assume LRT for ease of description, and its asymptotic
x2-distribution. We also assume the trivial effects, which are determined
by MBP, are not statistically significantly different from zero, and thus
excluded from testing in (2). Denote the trivial set by �K: The hypotheses are

H0 : blt ¼ 0  for  all  t ¼ 1; 2;⋯; p;
H1 : blk 6¼ 0; and  blt ¼ 0  for  all  t 2 �K

(H5)

k 2 1; 2;⋯; p n�K:gf The multiplicity in k is corrected by the Bonferroni
procedure in (2). As a matter of fact, inclusion of trivial effects does

not appreciably promote power, but potentially contributes false
positives. To sum up, we can combine MBP and idv to test QTL-trait
associations as follows.

1. Test whether a locus is a QTL by the MBP procedure;
2. If the locus is a QTL, go with the above procedure, idv, to test

whether a QTL effect is zero.

Denote this two step-procedure by MBP+idv. Since MBP+idv is based
on MBP, identified individual QTL effects will not result in a greater
genome-wide type I error rate for QTL detection. Similarly, we can
combine any of the other methods with idv to test individual QTL
effects, as demonstrated in the Results section.

Resampling
Unlike in simulations, where we can generate independent data sets, we
typically have only one set of data in an application.While we canmake
inference just from one set of real data, modern statistical methodology,
such as bagging, often takes advantage of an ensemble, e.g., (nonpara-
metric) bootstrap samples, to improve accuracy and reduce uncer-
tainty. In this regard, Valdar et al. (2009) proposes model averaging
for QTL mapping. Resampling techniques have a wide range of appli-
cations, e.g., assessment of sample statistics, such as variance, hypoth-
esis testing, and model validation. The most common resampling
methods include permutation (Fisher 1935), bootstrapping (Efron
1979), and subsampling. Subsampling draws a subset of the data with-
out replacement. Jackknife is such a resampling method, and, like
bootstrap, is usually used to assess variance and bias of an estimate.
While the conventional jackknife takes delete-1 samples, Shao andWu
(1989) propose delete-d jackknife for sample statistics, such as median,
for which the delete-1 jackknife estimate is not consistent.

InMBP,weuse resampling, bootstrapping, todetermine the number
of nontrivial QTL effects. We now consider resampling for comparing
methods, in terms of both power and making inference in real data
applications. Suppose we have B subsamples, and, for the b-th sub-
sample, SðbÞ ¼ max1# l# LS

ðbÞ
l , where SðbÞl is the test statistic at the l-th

scanning locus, and zðaÞ is the threshold at genome-wide significance
level a. Define p̂ ¼ P

1# b#B ISðbÞ . zðaÞ=B where ISðbÞ . zðaÞ ¼ 1 if
SðbÞ . zðaÞ or 0 otherwise. The statistic p̂ can be used to test whether
there is QTL. If the subsamples are replaced by independent replicate
samples, p̂ estimates the type I error rate or statistical power, and
asymptotically follows a normal distribution if B is reasonably large.
However, subsamples are not independent, and p̂ is not asymptotically
normal (see File S1). The distribution of p̂ can be estimated by using
simulations. The subsamples may be jackknife samples, whereas boot-
strap does not seem to be a good choice in our current situation (see File
S1, Table S1, and Figure S5). For convenience, we call p̂ pseudo type I
error rate or pseudo power, or simply relative frequency.We note that p̂
is positively related to p-values; however, we cannot estimate p-values
sufficiently accurately by a limited number of simulations to disclose
the advantage of a method over another in terms of power. The above p̂
can also be defined at scanning locus l as p̂l ¼

P
1# b#B ISðbÞl . zðaÞ=B:

Depending on the context, p̂ or p̂l may be relevant to, say, the best k0
QTL effects.

Gene transcript data and simulation settings
Simulation studies areoftenused tocheckan ideaorvalidate amethod in
scientific research, andmaybe essential if there is a lackof theory. Proper
settings are crucially important in simulation studies. While it is easy to
set up simulations if there are only two traits, it will be hard to come up
with a suitable variance–covariance structure of traits when the number
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of the traits is relatively large. Therefore, we considered the expression
trait (e-trait) data that we analyzed in Cheng et al. (2013). Briefly,
211 RILs were derived from two parental inbredA. thaliana accessions,
Bayreuth-0 (Bay-0) and Shahdara (Sha), by selfing (Loudet et al. 2002;
West et al. 2007), and their gene transcripts (“E-TABM-126” in
the ArrayExpress database) were generated by Affymetrix microarray
technology (Kliebenstein et al. 2006). We chose the transcripts of
16 genes from a pathway as phenotypic data. The genotypic data con-
sisted of 95 markers (West et al. 2006) across five chromosomes, with
the maximum genetic distance between two adjacent markers being
10.944 cM, the minimum 2.224 cM, and the median 4.771 cM. This
data are suited for demonstration of multiple-trait methodology. The
sample correlations between the e-traits range from 0.02 to 0.96, with
a median 0.66. In addition, the known locations of the genes allow us to
roughly verify the results of real data analysis.

The data were analyzed in Cheng et al. (2013) using both single-trait
and multiple-trait approaches, and several QTL were identified. Single-
trait analysis indicated that QTL at markers 3, 10, 37, and 78 were
possibly associated with one trait, whereas QTL at markers 27 and
89 seemed to influence multiple traits. In this study, we chose one
marker from each of the five chromosomes, and used their genotypic
data directly (coded as 0.5 or 20:5 if the genotype was AA or aa,
respectively). These five selected markers were 3, 27, 46, 65, and
89. (Markers 46 and 65 were located near the middle of chromo-
somes 3 and 4, respectively.) In simulations, phenotypic data
were generated as follows. We fitted a multivariate multiple re-
gression model with the responses being the 16 e-traits, and
predictors being the five chosen marker variables. Denote the
estimated intercepts b̂0 ¼ ðb̂01; b̂02; . . . ; b̂0;16Þ; the estimated
effects b̂l ¼ ðb̂l1; b̂l2; . . . ; b̂l;16Þ, corresponding to marker l
(l ¼ 3; 27; 46; 65; 89), and the estimated residual variance-covariance
Ŝ ¼ ðŝijÞ16·16: Let glk ¼ b̂lk=3 if jb̂lkj=

ffiffiffiffiffiffiffi
ŝkk

p
$ 0:45, or 0 otherwise.

The resulting gl ¼ ðgl1; gl2; . . . ; gl;16Þ had 1, 11, 0, 3, or 7 nonzero
elements for l ¼ 3; 27, 46, 65, or 89. We redefined g46;k ¼ b̂27;k=3 (i.e.,
there was no truncation). Then, g46 had 16 nonzero elements. We then
generated the i-th phenotypic observation yi ¼ b̂0 þ ei whenwe looked
at type I error rates or yi ¼ b̂0 þ

P
l2f3;27;46;65;89g xijgl þ ei when we

compared methods for statistical power, where ei �i:i:d Nð0; ŜÞ and xij

was the coded genotype of the i-th individual at marker l. In the power
study, the variation in a simulated trait explained by a QTL ranged from
0.20 to 5.9% (excluding zero effects; Figure S1).

Note that we truncated b̂ values in order to have different numbers
of nonzero effects (NZE), and scaled them so that the estimated power
would not be too large (e.g., nearly 100%) or too small (e.g., nearly 0%),
to disguise the differences among themethods that we compared. There
is no room (or need) for improvement on power that is nearly 100%,
whereas, if power is too low, even an increase of 15% (say) in power
may not be disclosed, or may prove to be significant, by a limited
number of simulations. Moreover, it is not common in QTL analysis
of quantitative traits that QTL effects are so large that they can be
identified in nearly all similar experiments. As it was not easy to simulate
reasonable QTL effects and correlation structure, we took advantage of
the variance–covariance structure in the data, and used the e-traits as
a starting point for generating phenotypic data in our simulation studies.

Data availability
As stated above, the gene transcript data can be obtained from the
ArrayExpress database (query ID “E-TABM-126”) and the genetic
marker data was published in West et al. 2006. File S1 in Cheng
et al. (2013) provides information about the 16 genes, and a genetic
map of the 95 markers. Both genetic marker data and phenotypic
data are also accessible from the webpage of the Borevitz laboratory
at the Australian National University https://borevitzlab.anu.edu.
au/resources/association-studies/.

RESULTS

The number of QTL effects and statistical power
AQTLmayormay not influence all traits of interest.However, themost
common practice of multiple-trait mapping does not make this dis-
tinction.For instance, themultivariate simple regressionmodel,which is
often used in multiple-trait analysis, has parameters representing QTL
effects on all of the response components. The power for QTL detection
may not be optimal if only a small portion of the traits are influenced by
the QTL. Figure 1 demonstrates this point (refer to simulation settings
for power study) by showing the power for various numbers of the

Figure 1 Estimated statistical power for identifying
five simulated QTL at genome-wide significance
level a ¼ 0:05 using various numbers of the best
QTL effects, or exactly all the NZE (shaded area).
The numbers of nonzero QTL effects at markers 3,
27, 46, 65, and 89 are 1, 11, 16, 3, and 7,
respectively.
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“best” QTL effects, which are selected by the backward elimination
procedure, and for only NZE to be fitted in the model to identify
a putative QTL. NZE is the most powerful, but, in real applications,
it is unfortunately impossible to know exactly if a scanning locus is
a QTL, or which traits are associated with a QTL. In all the other cases
where model selection is involved, an optimal power is achieved when
the number of the best QTL effects is near the number of NZE. The
power decreases at marker 3, where the QTL has an effect only on one
trait, as the number of the best QTL effects increases. At the other
markers, the gain in power is negligible or null (markers 27 and 89),
or somewhat negative (marker 65) after the number of selected best
effects reaches the number of true NZEs. We note that underfitting
QTL effects generally damages the power for QTL detection, while
overfitting may result in a lower power. As in other statistical applica-
tions, power is a primary concern in QTL mapping studies. It is there-
fore worth exploring methodology for removing trivial QTL effects to
potentially gain power for QTL identification.

Simulation results
We conducted 250 simulations to estimate type I error rates or statis-
tical power. In each simulation, significance thresholds were estimated
via the permutation test (Churchill and Doerge 1994), with 1200 per-
mutations of the genotypic data, and 250 bootstrap samples were taken
to determine the number of the best (i.e., nontrivial) QTL effects. The
genome-wide significance level was 0.05 when we compared different
methods in terms of type I error rates and statistical power. We
expected the estimated type I error rates to be comparable, and fall
by�0.05 for all methods, so as to not only avoid report excessive false
positives but also assure a fair comparison of different methods. When
we looked at the power of a method, we primarily compared with the
case where all the effects of a putative QTL were included in the model
and tested together (denoted by All), unless we clearly state otherwise.
We used the LRT statistics as stated in the Materials and Methods
section.

Table 1 displays the estimated genome-wide type I error rates. As
expected, all of them were reasonably around the nominal significance

level 0.05. Figure 2 shows the estimated statistical power at each
scanning locus at genome-wide significance level 0.05. Estimated
power was basically the same for both MBP and All at markers that
were relatively far away from any of markers 3, 27, 46, 65, and
89 where QTL were simulated, and that were near marker 46 where
QTL had effects on all of the 16 traits. Otherwise, MBP tended to
be more powerful than All. The estimated power for MBP was larger
by 14.4% at marker 3, where only one QTL effect was simulated,
by up to 5.6% near marker 65, where three QTL effects were sim-
ulated, and by 2.8% near marker 89, where seven QTL effects were
simulated.

We now compare Indv, Seq, and BICd with All for QTL detection,
though the comparison is more relevant to QTL-trait associations. Indv
was less powerful thanAll, especially at markers 3, 27, 65, and 89.While
we might blame overfitting at marker 3, or underfitting at markers
27 and 89, it had little power to identify QTL at marker 65, whose
contribution to heritability was small (see Figure 2). Interestingly, its
power at marker 46, where none of the QTL effects were zero, was still
lower than that of a joint test of all effects. This indicates that all NZEs
are best tested together. Seq was more powerful than All at marker 3
but less powerful in other regions. This may be partially related to the
problem of underfitting or overfitting. Actually, there are many ways to
determine thresholds for Seq such that each can control the genome-
wide type I error rate, but lead to a different result that reflects a trade-
off between underfitting and overfitting in different situations. BICd

was the most powerful at marker 3, where there was only one QTL
effect, but was the least powerful when the number of QTL effects was
intermediate or large (and lots of QTL effects were relatively small), as
BICd can cause serious underfitting.

Indv, Seq, and BICd tested scanning loci for QTL by imposing
a penalty, or cutoff, on the contributions of individual QTL effects to
the test statistic. However, Seq and BICd could not appropriately tell if
a QTL was associated with a trait (see Figure S2). Actually, Seq yielded
excessive false positives of QTL-trait associations. To derive QTL-trait
associations, we need to proceed with further hypothesis testing, e.g.,
use the previously proposed method, idv after All, MBP, Seq, or BICd.
Indv does not need further testing to provide adequate information
about QTL-trait associations because the control of the genome-wide
type I error rate for QTL identification is based on identification of
individuals QTL-trait associations, and the multiplicity in QTL effects
is already accounted for. Figure 3 displays the relative frequency that
marker 3, 27, 46, 65, or 89 was identified as a QTL underlying individ-
ual traits by usingMBP+idv, Indv, Seq+idv, or BICd+idv. There was no
longer any concern about excessive false positives. The advantage of

n Table 1 Genome-wide type I error rate and its SE estimated
from 250 simulations for five methods All, MBP, Indv, Seq, and BICd

All MBP Indv Seq BICd

0.048 (0.014) 0.056 (0.015) 0.036 (0.012) 0.04 (0.012) 0.06 (0.015)

Figure 2 Relative frequency
over 250 simulations that a marker
was identified as a QTL by five
methods: All, MBP, Indv, Seq, and
BICd at genome-wide significance
level 0.05. Five chromosomes are
indicated by light-gray colored
shading.
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MBP+idv over Indv, Seq+idv, or BICd+idv was striking in terms of
power.

Figure 4 displays the difference in the relative frequencies that
a scanning locus was identified as a QTL for individual traits by using
MBP+idv and All+idv. The gain by usingMBP over All was apparent at
markers 3, 27, and 89. There were 16QTL effects atmarker 46, so it was
not of much help to remove trivial effects. QTL at marker 65 explained
little variation in the traits, and, consequently, the difference was
negligible.

In the above simulation study, we preselected five markers and
estimated their effects b̂l ¼ ðb̂l1; b̂l2; . . . ; b̂j;16Þ; l ¼ 3; 27; 46; 65; 89;
and then adjusted b̂l values to generate QTL.We performed additional
simulations to further validate ourmethods. The settings were the same
as above except (1) the scale was 1/4; (2) the scale was 1/2; or (3) the
scale was still 1/3 but the sign of b̂lk was randomly assigned. Results
supported the above conclusions, e.g., there were no excessive false

positives of QTL-trait associations even when simulated QTL were iden-
tified over nearly 100% of the simulations (Figure S6, B2). We further
simulated two traits with various configurations for QTL effects and
correlation structures. Results again supported our proposed method
(see details in File S1, Tables S2, S3, S4 and S5 and Figures S6, S7 and S8).

Real data example
We applied the above methods to the e-trait data. Genome-wide
significance thresholds were estimated via the permutation test with
1200 permutations of the genotypic data. Each of the 211 jackknife
samples of the e-trait data, for which we took 250 bootstrap samples to
derive the number of the best QTL effects, was analyzed by using All,
BMP, Indv, Seq, and BICd and the relative frequency—proportion of
the jackknife samples that a scanning locus was identified as a QTL—
was obtained for each of the methods (Figure S3). The relative fre-
quency reached 1 in a significant portion of the genome due to large

Figure 3 Relative frequency over 250 simulations that a scanning locus was identified as a QTL for each trait by using (A) MBP+idv, (B) Indv, (C)
Seq+idv, and (D) BICd+idv. The horizontal dotted line represents 0:05þ 1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05· ð120:05Þ=250p � 0:0727:
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QTL effects. This disguised the advantage of one method over another.
However, the benefit of using BMP over All was apparent when we
looked at individual QTL-trait associations: the relative frequency
that a scanning locus was identified byMBP+idv as a QTL underling
a trait was greater (by up to 55.9%) in many regions (Figure S4). The
relative frequency obtained from jackknife samples is not the sta-
tistical power, but can indicate whether a method is more powerful
than another.

Figure 5 displays the relative frequency, zeroed if ,0.25 (which
should control the type I error rate of QTL under 0.05; see File S1
for more information), over 211 jackknife samples of the e-trait data
that a scanning locus was identified by MBP+idv as a QTL for individ-
ual traits at genome-wide significance level 0.05. This provides useful
information for the study of cis-acting and trans-acting elements, and
potentially identify new genes in addition to the existing network of the
16 genes, about which we will not go into detail as it is not the focus of
this article.

DISCUSSION
Multiple-trait analysis has longbeenadvocated forQTLmapping, but its
application is somewhat limited due to several possible reasons. First,
multiple-trait analysis may not be as computationally easy as single-
trait analysis, e.g., when mixed-effect models are fitted. Second,
a main motivation for multiple-trait analysis is a potential gain in
power for QTL detection, i.e., multiple-trait analysis potentially has
a higher statistical power than single-trait analysis by taking advan-
tage of the residual correlation structure among the traits. Unfor-
tunately, multiple-trait analysis is not always more powerful but
depends on QTL effects, and the correlation structure among the
traits (Korol et al. 1995; Jiang and Zeng 1995; Wu et al. 1999).
Inclusion of a trait in multiple-trait analysis may not be justified
in terms of power for QTL detection, as the presence of other traits
can greatly reduce its unique information about the QTL. To over-
come this limitation, Cheng et al. (2013) proposed a variable selec-
tion approach, i.e., to choose a subset of traits for multiple-trait
analysis in such a way that any trait in the subset is not redundant

given the others, and demonstrated that the proposed method
achieves a higher power. Third, multiple-trait analysis in applica-
tions usually relies on multivariate regression models, or models of
this type, and does not readily provide information on QTL-trait
associations to facilitate biological interpretation.

Statistical power is a primary concern with respect to hypothesis
testing in statistical applications. Thiswork exploits the potential gain in
statistical power frommultiple-trait analysis. Complementary to Cheng
et al. (2013), it deals with how to select QTL effects given a number of
traits of interest all being included in multiple-trait analysis. The MBP
method we proposed first determines the number of nontrivial effects
of a putative QTL, and then fits the best QTL effects in the model such
that additional effects will contribute little to, or even have an adverse
impact on, QTL detection. The gain of MBP in power tends to increase
as the proportion of trivial effects of a putative QTL increases. The
proposed method is expected to be generally applicable. On one
hand, it is not typical that a QTL will influence all traits of interest.
On the other hand, we may intentionally add traits that are closely
correlated with a trait of interest, but is not associated with a QTL
underlying the trait of interest, to increase power for detecting the
QTL (Cheng et al. 2013). In such cases, a statistical model that
associates a QTL with all traits is not parsimonious, and, conse-
quently, has a suboptimal power to identify the QTL. As another
aim of this work, we addressed how to derive QTL-trait associations,
as it is desirable to know which traits are influenced by a QTL, and
which are not. We proposed a two-step procedure, MBP+idv, for
this purpose. First, we test by MBP if a scanning locus is a QTL.
Second, we test which traits are associated with a QTL. The second
step uses information about the number of nontrivial QTL effects
from the first step, such that it can adjust to get less stringent signif-
icance thresholds for multiple testing. As a result, MBP+idv is able to
further improve statistical power for testing QTL-trait associations,
in addition to the gain from MBP. We validated our methods by
theoretical reasoning, simulations, and real data.

MBP searches amodel space that contains the fullmodel for All (i.e.,
all QTL effect parameters are included in the model), and judges a QTL

Figure 4 Difference in the relative frequencies over
250 simulations that a scanning locus was identified
as a QTL for traits T1, T2, . . . ; T16, by using MBP
+idv and All+idv.
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effect based on its contribution to the test statistic for All. Therefore, all
that matters is how much a QTL effect contributes given other QTL
effects. The performance of MBP relies on how well trivial QTL effects
are excluded. A hard cut-off leads to either overfitting or underfitting,
and thus does not work well for a general situation where QTL effects
and the number of QTL effects can be either relatively large or small. In
contrast, an ensemble of bootstrap samples provides adaptive selection
criteria. Nonetheless, MBP overestimates QTL effects. This guards
against underfitting, which can greatly hurt power but may not ulti-
mately improve power due to overfitting. How to best exclude trivial
QTL effects is an open question. As a shortcoming, MBP is computa-
tionally intensive, which can be a problem if the number of scanning
loci is large. It is desirable to develop a method that is less computa-
tionally intensive.

We also explored a few other intuitivemethods: Indv, Seq, and BICd.
These can be a natural choice when we are interested in QTL-trait
associations in applications. There are many ways to choose thresholds
and penalties for Seq and BICd. For instance, penalties can be adapted
to the number of the best QTL effects in the model by using corre-
sponding significance thresholds rather than a fixed penalty in BICd.
This will improve power if the number of nontrivial QTL effects is
relatively large, but, as a trade-off, reduce power otherwise. We note
that inference about QTL-trait associations based on Seq and BICd can
be unsatisfactory (Figure S2, C and D). As mentioned previously,
underfitting of QTL effects can be more problematic than overfitting,
especially when model selection is involved. BICd with a fixed penalty
generally leads to underfitting since small QTL effects can be excluded

easily by the stringent penalty. This, however, is not always in line with
our expectation. Our simulation study provides an example that a scan-
ning locus contributes little or no variation to a trait can be more
frequently identified as a QTL for the trait (Figure S2D). An explana-
tion for such insensible results would be that the test statistic depends
not only on QTL effects and correlation structure, but also on what
NZEs should be excluded from the model, which leads to a certain
amount of bias.

Lastly, we described our method using quantitative traits, RILs, and
linear models, but the principles and methodology should apply to
qualitative traits, othermapping populations, and othermodels, such as
linear mixed-effect models, which are now popular in genome-wide
association studies.

The analysis was performed by using R package “qtlmt,” which is
intended for multiple-trait multiple-QTL analysis (currently suitable
for backcross and RIL populations) and is available on R CRAN
(https://cran.r-project.org/web/packages/qtlmt/index.html). R code
for this study is available from the webpage of the Borevitz laboratory
at the Australian National University.
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Figure 5 Relative frequency over 211 jackknife samples of the e-trait data that a scanning locus was identified by MBP+idv as a QTL for individual
traits at genome-wide significance level 0.05. Relative frequency was zeroed if it was ,0.25. The 16 genes are given as the labels on the vertical
axis, and their approximate locations are indicated on the horizontal axis.
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