
micromachines

Article

Locality-Based Cache Management and Warp Scheduling for
Reducing Cache Contention in GPU

Juan Fang * , Zelin Wei and Huijing Yang

����������
�������

Citation: Fang, J.; Wei, Z.; Yang, H.

Locality-Based Cache Management

and Warp Scheduling for Reducing

Cache Contention in GPU.

Micromachines 2021, 12, 1262.

https://doi.org/10.3390/mi12101262

Academic Editor: Liang He

Received: 29 August 2021

Accepted: 12 October 2021

Published: 17 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
weizelin@emails.bjut.edu.cn (Z.W.); yangkx@emails.bjut.edu.cn (H.Y.)
* Correspondence: fangjuan@bjut.edu.cn; Tel.: +86-139-1129-6256

Abstract: GPGPUs has gradually become a mainstream acceleration component in high-performance
computing. The long latency of memory operations is the bottleneck of GPU performance. In the
GPU, multiple threads are divided into one warp for scheduling and execution. The L1 data caches
have little capacity, while multiple warps share one small cache. That makes the cache suffer a
large amount of cache contention and pipeline stall. We propose Locality-Based Cache Management
(LCM), combined with the Locality-Based Warp Scheduling (LWS), to reduce cache contention and
improve GPU performance. Each load instruction can be divided into three types according to
locality: only used once as streaming data locality, accessed multiple times in the same warp as
intra-warp locality, and accessed in different warps as inter-warp data locality. According to the
locality of the load instruction, LWS applies cache bypass to the streaming locality request to improve
the cache utilization rate, extend inter-warp memory request coalescing to make full use of the
inter-warp locality, and combine with the LWS to alleviate cache contention. LCM and LWS can
effectively improve cache performance, thereby improving overall GPU performance. Through
experimental evaluation, our LCM and LWS can obtain an average performance improvement of
26% over baseline GPU.

Keywords: GPGPU; cache management; warp scheduling

1. Introduction

The general-purpose graphics processing unit (GPGPU) is one of the most mainstream
acceleration components in the field of throughput-oriented high-performance comput-
ing [1,2]. The high performance of GPGPU lies in its huge multi-threaded architecture. By
quickly switching the context between different threads, it can hide the long delay caused
by operations such as memory access. In addition, compared with the CPU, GPGPU has
more processing units to support its single instruction multi-thread execution model. That
is, all threads execute the same instruction on different data [3], which can provide better
performance improvements and multi-core CPU efficiency. In order to make a large number
of threads run efficiently, multiple consecutive threads are divided into a thread group,
called warp or wavefront [4]. Warp is the basic unit for task scheduling and execution.
CUDA [5] and OpenCL [6] make GPU-based general-purpose computing widely used in
many disciplines, such as image processing, pattern recognition, and neural networks.

The special multi-thread execution mode of GPUs determines that the memory access
efficiency plays a crucial role in the performance of the application. Since a large number of
threads may simultaneously issue memory access requests at the same time, if the design
of the storage hierarchy cannot effectively respond to this access pattern, causing these
memory access requests to flow to the off-chip DRAM, it will cause a large number of
threads to wait for data, thereby significantly reducing GPU computing effectiveness. If the
application’s memory access behavior cannot reasonably match the design of the on-chip
GPU storage hierarchy, and the potential data locality is not well used, GPU performance

Micromachines 2021, 12, 1262. https://doi.org/10.3390/mi12101262 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-4542-8727
https://doi.org/10.3390/mi12101262
https://doi.org/10.3390/mi12101262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12101262
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12101262?type=check_update&version=2

Micromachines 2021, 12, 1262 2 of 14

will be limited. Therefore, GPU memory analysis and optimization have become issues of
high concern in GPU performance optimization.

The main purpose of this paper is to improve GPU performance by reducing cache
contention. Cache contention refers to the case when two processing units try to update
the same cache lines. In the GPU data cache, the L1 data cache is especially significant for
reducing memory access latency and meet high bandwidth requirements. Due to the large
number of multi-threaded tasks in the GPU, the cache space required by the application
often exceeds the L1D capacity. For example, each streaming multiprocessor (SM) in
the Fermi and Kepler architecture supports 1536 threads and 2048 threads, respectively.
However, the capacity of the L1 data cache shared by these threads is only 16 KB or
48 KB [7].

In order to reduce memory access, the GPU integrates the memory coalescing unit
into the load/store unit (LDST unit), so that once instructions needing to access memory
are executed, many memory requests generated by a single warp would be coalesced into
a few memory transactions, improving the efficiency of memory access. However, it is
only when the memory requests from a single warp are regular, coalesced into several
cache blocks, that the memory coalescing effectively improves performance. Current
GPGPU applications always have irregular memory requests. The requests from the
same warp cannot always be coalesced. This non-coalesced memory access often leads
to memory divergence [8,9]. That is, in instruction related to memory operation, some
threads in the same warp return fast due to cache hits, while the other threads need to wait
a long time because of being missed in cache. All threads in the warp must wait for the
slowest memory access to complete because of the Single Instruction Multiple Data (SIMD)
execution model of GPU. SIMD units refer to hardware components that perform the same
operation on multiple data operands concurrently. The instructions that have coalesced
will also cause a lot of memory access, which will aggravate L1D contention, affecting the
performance [10,11]. This means the L1 data cache often becomes a performance bottleneck.

How to improve cache utilization and improve cache performance is the key to im-
proving the GPU processing power, improving the resource utilization rate, and optimizing
the system operating efficiency. This paper proposes a GPU cache management strategy
based on data locality features, combined with the warp scheduling strategy to improve
GPU performance. Each load instruction can be divided into three categories. According
to the locality characteristics of the load instruction, apply cache bypass to the streaming
locality request to improve the cache utilization rate; at the same time, simultaneously
make full use of the data locality between the warps through the inter-warp memory
request coalescing; combined with the locality-based warp scheduling to further alleviate
cache contention. By adopting different optimization strategies for different local charac-
teristics, the GPU cache management strategy based on data locality types can effectively
improve cache performance and alleviate pipeline congestion, thereby improving overall
GPU performance. The main contributions of our work are the following:

• This paper introduces the challenges encountered by massive memory accesses under
the massive multi-threaded architecture of GPGPU, and data cache plays a vital role
in it. We analyzed the cache contention in GPGPU applications, and we can take
advantage of the different locality characteristics.

• We propose Locality-Based Cache Management (LCM), combined with the Locality-
Based Warp Scheduling (LWS), to improve GPU performance. First, according to
the locality characteristics of the load instruction, improve the cache utilization by
bypassing the streaming data, and extended inter-warp memory request coalescing to
make full use of inter-warp data locality. LWS alleviates cache contention by applying
different warp scheduling strategies according to cache performance. By adopting
different optimization strategies for different locality characteristics, LCM and LWS
can effectively improve cache utilization.

Micromachines 2021, 12, 1262 3 of 14

• In the GPGPU system built by the GPGPU-Sim simulator, we evaluate the LCM and
LWS. The experimental results show that the LCM and LWS can improve system
performance.

The rest of this paper is organized as follows: Section 2 introduces the baseline GPU
architecture and memory coalescing and then analyzes GPU memory access inefficiency.
Section 3 describes the proposed Locality-Based Cache Management. Section 4 introduces
the proposed Locality-Based Warp Scheduling. Section 5 analyzes the experimental results.
Section 6 discusses the related work of cache management and warp scheduling. Finally,
Section 7 concludes the paper.

2. Related Work

Cache management and replacement schemes designed for CPUs are often not suitable
for GPUs [12,13] because they are not designed for large-scale multithreading of GPUs.
Among various GPU cache management strategies, cache bypass is an effective technique
to alleviate cache contention. Methods have been proposed for CPU [14,15]. The CPU’s
cache bypass strategy mainly uses the cache hit rate as a guide criterion for cache bypass,
which is usually used for the last level of cache. However, on the GPU [15–22], the model
based on the cache hit rate does not always perform well due to its unique architectural
characteristics, including a lot of parallelisms, resource congestion, and memory divergence.
A model-driven approach was developed by [23] which dynamically estimates the impact
of cache contention and resource congestion as a function of the number of warps/thread
blocks (TBs) to bypass the cache. Xie et al. [17] proposed a compiler-based method to
access or bypass the cache by analyzing reuse distance and memory traffic. [22] proposed a
locality-driven dynamic cache bypassing technique, which exploits the locality information
to adjust the cache behavior at run-time.

Memory request coalescing technology can provide more efficient memory access [24,25]
and improves GPU security [26]. For the GPU, the memory merge unit in the LDST unit is
designed to coalesce requests to access consecutive 128 B data in the memory. Described
in [24] is a compiler-based technique that better distributes the memory requests in time
by re-organizing the static instruction stream. Pei et al. [25] proposed an equidistant
memory access merging strategy, which merges memory access requests with long but
equal memory access distances to reduce memory access requests and NoC transmitted
data. The proposed memory access merging strategy can effectively reduce the number of
memory requests and save data transmission overhead, but it is not optimized for memory
access between warps and cannot make full use of the data locality between warps.

A lot of research on warp scheduler has been proposed. Rogers et al. [27] proposed
a divergence-aware warp scheduling strategy (DAWS), which introduced a predictor to
estimate the required capacity of L1 data cache to capture the warp locality in the loop
based on online information in the warp. Sethia et al. [28] proposed MASCAR, which
uses greedy scheduling techniques to detect memory saturation and limit the warp for
sending memory requests at a short period of time. In order to improve the latency
hiding ability, Do et al. [29] proposed a long-latency operation-based warp scheduler to
improve GPU performance. Liang et al. [30] proposed coordinated static and dynamic
cache bypassing. They also developed a bypass-aware warp scheduler to adaptively adjust
the scheduling policy based on the cache performance. Li et al. [31] proposed priority-
based cache allocation (PCAL) that provides preferential cache capacity to a subset of
high-priority threads while simultaneously allowing lower priority threads to execute
without contending for the cache, which is a codesign between the thread scheduler and
cache allocation scheme to avoid cache contention without underutilizing other resources.
However, the scheduling algorithm will destroy the locality to a certain extent and generate
more off-chip memory access.

The efficiency of the storage hierarchy is a key performance factor. Existing research
uses multiple methods to manage GPU cache to solve the problem of the GPU memory

Micromachines 2021, 12, 1262 4 of 14

subsystem and cache management efficiency. In addition to the above methods, there are
warp throttling [32] and memory scheduling strategy [33].

3. Background and Motivation
3.1. Baseline GPU Architecture

The baseline GPU architecture is composed of multiple SMs. The parallelism of GPUs
is achieved by multiple SMs. Figure 1 shows a diagram of typical GPGPU architecture.

Micromachines 2021, 12, x 4 of 15

scheduling algorithm will destroy the locality to a certain extent and generate more off-
chip memory access.

The efficiency of the storage hierarchy is a key performance factor. Existing research
uses multiple methods to manage GPU cache to solve the problem of the GPU memory
subsystem and cache management efficiency. In addition to the above methods, there are
warp throttling [32] and memory scheduling strategy [33].

3. Background and Motivation
3.1. Baseline GPU Architecture

The baseline GPU architecture is composed of multiple SMs. The parallelism of GPUs
is achieved by multiple SMs. Figure 1 shows a diagram of typical GPGPU architecture.

Streaming Processor n

Instruction Fetch

Warp Scheduler

Load/Store Unit
Memory Request

Coalescer

Local Cache
Constant

Texture

Shared/Data

Streaming Processor 2

Instruction Fetch

Warp Scheduler

Load/Store Unit
Memory Request

Coalescer

Local Cache
Constant

Texture

Shared/Data

Streaming Processor 1

Instruction Fetch

Warp Scheduler

Load/Store Unit
Memory Request

Coalescer

Local Cache
Constant

Texture

Shared/Data

…

Interconnection Network

L2 Cache L2 Cache L2 Cache
…

DRAM DRAM DRAM

Figure 1. Baseline GPU architecture.

GPUs execute threads with the SIMT execution model. Every 32 threads are gathered
into a warp. In general, each warp is a thread cluster composed of 32 threads and is the
smallest scheduling unit of GPGPU. In the absence of branches, threads in a warp access
different data and execute the same instructions. Performance can be significantly im-
proved by making threads from the same warp execute the same code path and access
neighboring addresses. The LDST unit is a functional unit responsible for load, store, and
memory barrier instructions. It simultaneously processes 32 threads of warp as a func-
tional unit.

The GPU memory hierarchy comprises register memory, L1 cache, shared L2 cache,
and off-chip dynamic random-access memory (DRAM). There is an L1 cache in each SM.
The L1 cache is private and accessed by the warps within the core. In contrast, the L2 cache
can be shared by all cores. Warp running on any SM can access the L2 cache. The core
interacts through the interconnection network. When the core sends a memory request to
L2 cache, the intermediate network sends it to different memory ports on the L2 cache
according to the address of the memory request and then accesses different cache blocks’
process data access. A GPU application will initiate one or more kernel functions to the

Figure 1. Baseline GPU architecture.

GPUs execute threads with the SIMT execution model. Every 32 threads are gathered
into a warp. In general, each warp is a thread cluster composed of 32 threads and is
the smallest scheduling unit of GPGPU. In the absence of branches, threads in a warp
access different data and execute the same instructions. Performance can be significantly
improved by making threads from the same warp execute the same code path and access
neighboring addresses. The LDST unit is a functional unit responsible for load, store,
and memory barrier instructions. It simultaneously processes 32 threads of warp as a
functional unit.

The GPU memory hierarchy comprises register memory, L1 cache, shared L2 cache,
and off-chip dynamic random-access memory (DRAM). There is an L1 cache in each SM.
The L1 cache is private and accessed by the warps within the core. In contrast, the L2 cache
can be shared by all cores. Warp running on any SM can access the L2 cache. The core
interacts through the interconnection network. When the core sends a memory request
to L2 cache, the intermediate network sends it to different memory ports on the L2 cache
according to the address of the memory request and then accesses different cache blocks’
process data access. A GPU application will initiate one or more kernel functions to the
GPU, and each kernel function will allocate one or more thread blocks co-operative thread
arrays (CTA) to each SM for execution.

3.2. Baseline Memory Coalescing

Global memory resides in the device memory and can be accessed through 32 B, 64 B,
or 128 B memory transactions. The memory transactions can only read or write 32 B, 64 B,

Micromachines 2021, 12, 1262 5 of 14

or 128 B device memory segments aligned to their size. Examples of aligned and unaligned
memory transactions are shown in Figure 2. The memory segment in Figure 2a is naturally
aligned, and a 128-byte transaction can be sent, while the memory segment in Figure 2b is
not, so that two 128-byte transactions will be sent.

Micromachines 2021, 12, x 5 of 15

GPU, and each kernel function will allocate one or more thread blocks co-operative thread
arrays (CTA) to each SM for execution.

3.2. Baseline Memory Coalescing
Global memory resides in the device memory and can be accessed through 32 B, 64

B, or 128 B memory transactions. The memory transactions can only read or write 32 B, 64
B, or 128 B device memory segments aligned to their size. Examples of aligned and una-
ligned memory transactions are shown in Figure 2. The memory segment in Figure 2a is
naturally aligned, and a 128-byte transaction can be sent, while the memory segment in
Figure 2b is not, so that two 128-byte transactions will be sent.

= 4 Bytes

Warp

A 128-byte
transaction

= 4 Bytes

Warp

Two 128-byte
transaction

(a) Aligned request

(b) Not aligned request
Figure 2. An example of baseline memory request coalescing.

When a warp accesses global memory, it coalesces the memory request of threads in
the warp into fewer memory transactions. The coalescing is based on the size of the word,
and the allocation of memory addresses in memory. For instance, the threads in a single
warp access a continuous 4-byte data, a 128-byte data request will be sent to DRAM in-
stead of 32 4-byte requests, which reduces the number of transactions between SIMT core
and DRAM, and reduces the workload of the interconnection network, memory parti-
tions, and DRAM.

Miss Information/Status Holding Registers (MSHR) store the address, size, type, and
other information about requests. Once the memory controller returns the data needed by
miss access, the information is used for re-execution. MSHR is also used to coalesce mul-
tiple requests for the same line to prevent the same request from being sent multiple times.

3.3. Memory Access Inefficiency
In the current GPU architecture, the cache capacity of the L1 data cache is not high.

Nevertheless, the SIMD architecture will generate a lot of memory requests in a short pe-
riod of time. Required memory capacity will even be 1 to 2 orders of magnitude larger
than the L1 data cache. This leads to severe cache contention. One of the reasons for cache
contention is the failure to make effective use of data locality. If you cannot distinguish
the reuse of the data, the data may be ejected from the cache before hit in the cache when
the application reuse distance is long. Data that will not be reused may occupy the cache,
causing cache pollution. The second reason is conflict in the cache. Thirty-two threads
executing concurrently in a warp may access the same cache set. The third reason is that
stall will be caused by the lack of other resources, such as MSHR resources.

Figure 2. An example of baseline memory request coalescing.

When a warp accesses global memory, it coalesces the memory request of threads
in the warp into fewer memory transactions. The coalescing is based on the size of the
word, and the allocation of memory addresses in memory. For instance, the threads in a
single warp access a continuous 4-byte data, a 128-byte data request will be sent to DRAM
instead of 32 4-byte requests, which reduces the number of transactions between SIMT core
and DRAM, and reduces the workload of the interconnection network, memory partitions,
and DRAM.

Miss Information/Status Holding Registers (MSHR) store the address, size, type, and
other information about requests. Once the memory controller returns the data needed by
miss access, the information is used for re-execution. MSHR is also used to coalesce multiple
requests for the same line to prevent the same request from being sent multiple times.

3.3. Memory Access Inefficiency

In the current GPU architecture, the cache capacity of the L1 data cache is not high.
Nevertheless, the SIMD architecture will generate a lot of memory requests in a short
period of time. Required memory capacity will even be 1 to 2 orders of magnitude larger
than the L1 data cache. This leads to severe cache contention. One of the reasons for cache
contention is the failure to make effective use of data locality. If you cannot distinguish
the reuse of the data, the data may be ejected from the cache before hit in the cache when
the application reuse distance is long. Data that will not be reused may occupy the cache,
causing cache pollution. The second reason is conflict in the cache. Thirty-two threads
executing concurrently in a warp may access the same cache set. The third reason is that
stall will be caused by the lack of other resources, such as MSHR resources.

In order to reduce cache contention, we experimentally observed the impact of in-
creasing the capacity and associativity of L1 data cache on performance. The experimental
results are shown in Figure 3. It can be seen from the experimental results that for some
applications, increasing the cache capacity and associativity cannot effectively improve

Micromachines 2021, 12, 1262 6 of 14

performance. Meanwhile, this will significantly increase the hardware cost, access latency,
and power consumption. Therefore, we consider reducing the contention of the cache and
improving the performance by making full use of data locality.

Micromachines 2021, 12, x 6 of 15

In order to reduce cache contention, we experimentally observed the impact of in-
creasing the capacity and associativity of L1 data cache on performance. The experimental
results are shown in Figure 3. It can be seen from the experimental results that for some
applications, increasing the cache capacity and associativity cannot effectively improve
performance. Meanwhile, this will significantly increase the hardware cost, access latency,
and power consumption. Therefore, we consider reducing the contention of the cache and
improving the performance by making full use of data locality.

Figure 3. Normalized IPC speedup of different cache capacity and associativity.

4. Locality-Based Cache Management
The overall architecture diagram of Locality-Based Cache Management is shown in

Figure 4. The gray components are the parts that are modified in this topic. Each load
instruction classifies data locality by reading the access count in the cache, adding a merge
queue between warps in the memory access merge unit, and making full use of the local
merge memory access between warps. The cache bypass component makes data that are
no longer reused bypass the cache, saving cache space. The warp scheduling strategy will
be discussed in Section 4.

Locality type
decision

Intra-warp
coalescer

Load
instructions

Cache bypass
logic

Intra-warp coalescer

Bypassed requests

Memory request
coalescer

…

L1 data cache

Access count Data

Memory access account

Access count Data

Figure 4. Overall diagram of Locality-Based Cache Management architecture.

4.1. Criteria of Locality Type Decision
Classified by each global load instruction, there are three types of locality that can be

exhibited by the data of load instruction: streaming locality, inter-warp locality, and intra-
warp locality. The data may show both intra-warp locality and inter-warp locality at the
same time.

Our classification method is like [34]. Streaming data refers to being used only once
by a single warp and is no longer reused after being inserted into the cache, resulting in a
waste of cache resources. Inter-warp locality referred to the data used by one warp and

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

LUD HS GE PTF LCK

IP
C

sp
ee

du
p

Benchmarks

4-way,16KB 4-way,256KB 64-way,256KB 64-way,4MB

Figure 3. Normalized IPC speedup of different cache capacity and associativity.

4. Locality-Based Cache Management

The overall architecture diagram of Locality-Based Cache Management is shown in
Figure 4. The gray components are the parts that are modified in this topic. Each load
instruction classifies data locality by reading the access count in the cache, adding a merge
queue between warps in the memory access merge unit, and making full use of the local
merge memory access between warps. The cache bypass component makes data that are
no longer reused bypass the cache, saving cache space. The warp scheduling strategy will
be discussed in Section 4.

Micromachines 2021, 12, x 6 of 15

In order to reduce cache contention, we experimentally observed the impact of in-
creasing the capacity and associativity of L1 data cache on performance. The experimental
results are shown in Figure 3. It can be seen from the experimental results that for some
applications, increasing the cache capacity and associativity cannot effectively improve
performance. Meanwhile, this will significantly increase the hardware cost, access latency,
and power consumption. Therefore, we consider reducing the contention of the cache and
improving the performance by making full use of data locality.

Figure 3. Normalized IPC speedup of different cache capacity and associativity.

4. Locality-Based Cache Management
The overall architecture diagram of Locality-Based Cache Management is shown in

Figure 4. The gray components are the parts that are modified in this topic. Each load
instruction classifies data locality by reading the access count in the cache, adding a merge
queue between warps in the memory access merge unit, and making full use of the local
merge memory access between warps. The cache bypass component makes data that are
no longer reused bypass the cache, saving cache space. The warp scheduling strategy will
be discussed in Section 4.

Locality type
decision

Intra-warp
coalescer

Load
instructions

Cache bypass
logic

Intra-warp coalescer

Bypassed requests

Memory request
coalescer

…

L1 data cache

Access count Data

Memory access account

Access count Data

Figure 4. Overall diagram of Locality-Based Cache Management architecture.

4.1. Criteria of Locality Type Decision
Classified by each global load instruction, there are three types of locality that can be

exhibited by the data of load instruction: streaming locality, inter-warp locality, and intra-
warp locality. The data may show both intra-warp locality and inter-warp locality at the
same time.

Our classification method is like [34]. Streaming data refers to being used only once
by a single warp and is no longer reused after being inserted into the cache, resulting in a
waste of cache resources. Inter-warp locality referred to the data used by one warp and

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

LUD HS GE PTF LCK

IP
C

sp
ee

du
p

Benchmarks

4-way,16KB 4-way,256KB 64-way,256KB 64-way,4MB

Figure 4. Overall diagram of Locality-Based Cache Management architecture.

4.1. Criteria of Locality Type Decision

Classified by each global load instruction, there are three types of locality that can
be exhibited by the data of load instruction: streaming locality, inter-warp locality, and
intra-warp locality. The data may show both intra-warp locality and inter-warp locality at
the same time.

Our classification method is like [34]. Streaming data refers to being used only once
by a single warp and is no longer reused after being inserted into the cache, resulting in a
waste of cache resources. Inter-warp locality referred to the data used by one warp and

Micromachines 2021, 12, 1262 7 of 14

accessed again by one or multiple other warps. If the data are used multiple times by a
single warp, the data locality is called inter-warp. A single load instruction can show both
inter- and intra-warp locality at the same time.

Before applying specific strategies to different types of data locality, first, decide the
load instructions’ locality types. The method to detect the locality type is based on the
access count of the same warp and the access count of requests from other warps. The
criteria of locality types are shown in Table 1. For example, if warp B accesses a cache line
accessed by warp A earlier, the total access count is 2, and the intra-warp access count of
warp A is 1. That is in line with the standard of inter-warp locality type. Then we can infer
that the cache line shows the locality of inter-warp.

Table 1. Criteria of locality type.

Type Intra-Warp Access Count Intra-Warp Access Count

Streaming 1 1
Inter-warp 1 ≤ Intra-warp access count < Total access count >1
Intra-warp 1 < Intra-warp access count ≤ Intra-warp access count >1

Every load instruction in a GPU application will tend to have a similar cache access
mode because threads of a single core execute the same code [34]. Therefore, we can detect
a warp in the global load instruction to classify the data locality of the load instruction. The
type of locality detected by the monitored warp is considered the same as the other warps.

The table records the instruction ID as each global load instruction begins to execute.
The instruction PC will be hashed to save the storage. When executing the instruction,
the total access count of the data and the access count of the detected warp are recorded
and updated synchronously. If the access request comes from the detected warp, the total
access count and the access count of the same warp are both set as one. If the request comes
from another warp, only the total access count is set as 1. When the same load instruction
generates an address conflict or the total number of accesses exceeds the threshold, the
current locality type is calculated, and the field of the invalid bit is set as 1. At that time, the
locality-specific strategy can be adopted. Then release the entry and wait for the update.
The locality type field consists of 2 bits, the first is set as 1 for the intra-warp locality, and
the other is set as 1 for the inter-warp locality. If it is detected as streaming data, the locality
type field is set as 00. In the L1 data cache, a field is needed to record the total access count
to initialize the total access count of the information table entry when the detected warp
accesses the data reaccessed by another warp. To save hardware overhead, we use the hash
value of the PC as the instruction ID. Entries of the locality type detection formation table
are shown in Figure 5.

Micromachines 2021, 12, x 7 of 15

accessed again by one or multiple other warps. If the data are used multiple times by a
single warp, the data locality is called inter-warp. A single load instruction can show both
inter- and intra-warp locality at the same time.

Before applying specific strategies to different types of data locality, first, decide the
load instructions’ locality types. The method to detect the locality type is based on the
access count of the same warp and the access count of requests from other warps. The
criteria of locality types are shown in Table 1. For example, if warp B accesses a cache line
accessed by warp A earlier, the total access count is 2, and the intra-warp access count of
warp A is 1. That is in line with the standard of inter-warp locality type. Then we can infer
that the cache line shows the locality of inter-warp.

Every load instruction in a GPU application will tend to have a similar cache access
mode because threads of a single core execute the same code [34]. Therefore, we can detect
a warp in the global load instruction to classify the data locality of the load instruction.
The type of locality detected by the monitored warp is considered the same as the other
warps.

Table 1. Criteria of locality type.

Type Intra-Warp Access Count Intra-Warp Access Count
Streaming 1 1

Inter-warp
1 ≤ Intra-warp access count <

Total access count >1

Intra-warp 1 < Intra-warp access count ≤
Intra-warp access count

>1

The table records the instruction ID as each global load instruction begins to execute.
The instruction PC will be hashed to save the storage. When executing the instruction, the
total access count of the data and the access count of the detected warp are recorded and
updated synchronously. If the access request comes from the detected warp, the total ac-
cess count and the access count of the same warp are both set as one. If the request comes
from another warp, only the total access count is set as 1. When the same load instruction
generates an address conflict or the total number of accesses exceeds the threshold, the
current locality type is calculated, and the field of the invalid bit is set as 1. At that time,
the locality-specific strategy can be adopted. Then release the entry and wait for the up-
date. The locality type field consists of 2 bits, the first is set as 1 for the intra-warp locality,
and the other is set as 1 for the inter-warp locality. If it is detected as streaming data, the
locality type field is set as 00. In the L1 data cache, a field is needed to record the total
access count to initialize the total access count of the information table entry when the
detected warp accesses the data reaccessed by another warp. To save hardware overhead,
we use the hash value of the PC as the instruction ID. Entries of the locality type detection
formation table are shown in Figure 5.

Instruction ID
(4 bit) Warp ID (6 bit) Total access count

(4 bit)
Intra-warp access

count (4 bit)
Locality

type (2 bit)
Invalid bit

(1 bit) Byte_addr

Figure 5. Entries of locality type detection formation table.

4.2. Inter-Warp Memory Request Coalescing
Inter-warp memory request coalescing has been considered effective in previous

work [35]. Our proposed inter-warp memory request coalescing is based on the detection
results of the locality type, and only coalesce requests that access to data exhibit inter-
warp locality, reducing the overhead of finding more opportunities to coalesce.

Figure 5. Entries of locality type detection formation table.

4.2. Inter-Warp Memory Request Coalescing

Inter-warp memory request coalescing has been considered effective in previous
work [35]. Our proposed inter-warp memory request coalescing is based on the detection
results of the locality type, and only coalesce requests that access to data exhibit inter-warp
locality, reducing the overhead of finding more opportunities to coalesce.

The baseline coalescing can only coalesce requests between threads of a single warp.
To find more coalesce opportunities and improve data utilization, the inter-warp memory
request coalesce is added, aiming to lookup requests issued by different warps and increase
the coalesce window of the requests of threads in different warps.

The inter-warp coalesce queue constitutes an inter-warp coalescing window, coa-
lescing requests from different warps. Requests from the intra-warp coalesce queue are

Micromachines 2021, 12, 1262 8 of 14

mapped to one of the multiple queues based on a subset of their addresses. When the
inter-warp coalescing queue receives a request, its cache line will match the cache line
already in the queue, coalescing requests from the same cache line.

Several tags in the inter-warp coalesce queue are used to record the request information
of a cache line. The warp ID, load instruction, and the mapping information in the cache
line were saved in each tag. Once the queue received a request, a lookup is performed on
the tag. Then the request will be inserted under the tag if matching. If there is no matching
entry, a new entry is assigned when idle. In this work, only two tags per queue are reserved
to reduce the number of tag lookups required and the times the memory request coalescer
attempts to insert into the same queue, reducing overhead.

The inter-warp coalesce queue takes temporal information as the priority and evicts
the requests that enter the queue first to ensure that requests will not stay in the queue for
too long and will not destroy the temporal locality of the warp.

4.3. Locality-Based Bypassing

Many resources are occupied when fetching streaming data into the cache, such as
cache lines and MSHR entries. However, streaming data will not be reused, so that the
above resources will be wasted. Furthermore, some other data with a good locality in
the application may be ejected from the cache. Cache bypass policy is a standard method
to deal with such problems. Therefore, the method of processing the detected streaming
data is the cache bypass policy. The locality-based bypassing directly provides data to
the computing core from the L2 cache and its related interconnection network to improve
resource utilization and reduce cache contention.

When the cache bypass component receives the request and reads the locality type as
streaming, it directly sends the request to the L2 cache. Otherwise, the request will be sent
to the L1 cache.

5. Locality-Based Warp Scheduling
5.1. Overview

The GTO scheduling strategy is now a commonly used warp scheduling strategy.
It prioritizes all warps on the GPU according to time. The oldest warp always has the
highest priority. This method can effectively retain data locality [8]. However, cache
contention and pipeline stall both have a huge impact on GPU performance. To obtain the
best performance, we introduced the locality type detection method mentioned in Section 3
and use different warp scheduling strategies for different locality types. Both consider
locality and ease cache contention.

As mentioned in Section 3.3, the cache bypass policy bypasses the L1 cache based on
the locality type. If the warp scheduler schedules many cached warps in a short time, it
may cause cache contention. On the other hand, if the warp scheduler schedules many
warps decided to bypass the cache when the cache is idle, it cannot fully utilize the data
locality. We can alleviate cache contention by modifying the priority of streaming data and
requests of other locality types at runtime based on performance. Therefore, we proposed
a locality-based warp scheduling policy. When the cache is busy, the bypassed warp is
preferentially scheduled to alleviate the pressure; when the cache is idle, the cached warp
is preferentially scheduled; otherwise, the default GTO scheduling policy is used.

5.2. Implementation

When the warp scheduler needs to decide the warp to be issued, first check its locality
type. If it is streaming data, it means it will be bypassed the cache. Then check if the cache
is busy or idle. In order to quantify the performance of the cache, we propose a Cache
Utilization Score (CUS) as a basis for judgment. As shown in Equation (1), the numerator
of CUS is the product of the number of cache hits and the L2 cache latency and represents

Micromachines 2021, 12, 1262 9 of 14

the speedup brought by cache hits. The denominator of CUS is the product of the number
of cache misses and the pipeline stall and represents the degree of cache contention.

CUS =
nhit·LatencyL2
nmiss·Stallnet

(1)

To keep a certain balance between cache contention and full use of the locality, when
the CUS is too high or too low, warp scheduling strategies need to be changed. When the
CUS value is greater than the threshold H, we consider that the cache is idle and has good
performance, and the cached warp can be scheduled faster to make full use of the cache.
When the CUS value is less than the threshold L, we think that the cache is contention and
busy; scheduling cached warp will increase the contention. Therefore, the bypassed warp
should be scheduled first to ease the pressure of the cache. If the CUS value is between the
threshold H and the threshold L, we believe that priority scheduling of cached warp or
bypassed warp will not make a big difference. Therefore, the default GTO warp scheduling
strategy is adopted.

The warp scheduler first checks whether the load instruction executed by the warp is
marked as streaming. Divide streaming warp into a group, and other warp into a group.
Then compare CUS with both thresholds. Similarly, if the CUS value is less than the
threshold H, the streaming warp group is set to a high priority group. If the CUS value is
greater than the threshold L, the other warp groups are set as high priority groups. Use
GTO scheduling strategies within the group. Otherwise, the GTO scheduling strategy is
used within the scope of the two groups.

We determined the values of threshold H and threshold L for better performance
through experiments. In the experimental setup of this paper, we set the threshold H and
threshold L to 1 and 0.2. Compared with the default GTO scheduling strategy, our LWS can
make full use of local type information at runtime, alleviate cache contention, and make
full use of the cache.

6. Evaluation
6.1. Methodology

We implemented our strategy in GPGPU-Sim version 3.2.3 [30] and evaluated it.
GPGPU-sim is a cycle-level GPGPU simulator, which is widely used in the research of GPU
architecture. The configuration we used is shown in Table 2 and is based on the GPU of
NVIDIA Kepler architecture, like GTX 780.

Table 2. GPGPU-sim baseline configuration.

Parameter Configuration

CUDA cores and SMs 192 per SM, 16 SMs, 876 MHz
SIMT width 32

Warps and CTAs 64 warps/SM, 16 CTAs/SM
Scheduler GTO scheduler, 2 per SM

Register file 256 KB
L1 data cache 16 KB, 4-way associative, 128 B/line, 4-way, LRU,64 MSHRs

L2 cache 1536 KB total, 16-way associative
DRAM GDDR5 1674 MHz, 6 channels, 8 banks per rank, burst length 8

The details of the benchmark we used are shown in Table 3, which is selected from
PolyBench [36] and Rodinia [37] benchmark suite.

Micromachines 2021, 12, 1262 10 of 14

Table 3. Information of benchmarks.

Abbr. Description Benchmark Suite

BFS Breadth-First Search Rodinia [29]
BP Backprop Rodinia [29]

CFD CFD Solver Rodinia [29]
COV Convolution PolyBench [28]
GE Gaussian Elimination PolyBench [28]

GRA GRA PolyBench [28]
LUD LU Decomposition Rodinia [29]
SRD Speckle Reducing Anisotropic Diffusion Rodinia [29]
PTF Particular Filter Rodinia [29]
NW Needleman-Wunsch Rodinia [29]
HS Hot Spot Rodinia [29]

LCT Leukocyte Rodinia [29]

6.2. Results
6.2.1. Speedup

Figure 6 shows our LCM and LWS IPC speedup over baseline GPU. We use the
instruction per cycle (IPC) executed as an evaluation indicator. We also tested the speedup
of combining separate cache bypass and inter-warp memory requests. PCAL shows the
performance of the PCAL mechanism proposed in [31]. We can infer from the Figure 6
that our LCM performance achieves an improvement of 23% on average. A separate
cache bypass strategy improves GPU performance by 19% on average, while inter-warp
memory request merge provides 9% speedup. Combined with LWS, our strategy can
provide an average speedup of 26%. Compared to PCAL, LCM and LWS provide 6% better
performance. PCAL reduces the amount of cache thrashing, while LCM and LWS shows
more speedup by reducing cache contention.

Micromachines 2021, 12, x 11 of 15

Figure 6. Speedup of LCM, LWS over baseline GPU.

By bypassing the streaming data, the cache bypass policy alleviates cache contention
while protecting other cache lines, providing more opportunities for data with a better
locality. Because streaming data is almost no longer reused or has a longer reuse distance,
the cache cannot be used effectively. The cache bypass policy has the best results for ap-
plications with high cache sensitivity, such as GRA and PTF, which provide up to 38%
performance improvement. Inter-warp memory request coalescer provides additional
memory consolidation opportunities for data with inter-warp locality over baseline coa-
lescer. As a result, performance has improved by an average of 9%. The LCM, which com-
bines the cache bypass strategy and inter-warp memory access merger, has shown better
performance than both separate policies.

Baseline GPU uses the default GTO warp scheduling strategy. LWS considers stream-
ing data that bypassed cache, which can further alleviate cache contention over the cache
bypass strategy. LCM combined with LWS, has achieved a total performance improve-
ment of 26%, and almost all applications can benefit from LWS. The experimental results
prove that our strategy is effective and can bring significant performance improvements.

6.2.2. L1 Cache Miss Rate
From Figure 7, we can see the reduction in the miss rate of LCM for the L1 data cache

compare to PCAL. From the result, we can see that the miss rate has decreased by an
average of 13%, and 4% better than PCAL. The cache bypass strategy effectively bypasses
L1 cache for requests with poor locality, enables cache lines to be reused more efficiently,
and protects data with high locality. Our strategy is mainly to reduce the cache miss rate
and reduce cache stall to improve performance. Memory access-intensive caches such as
COV mainly reduce cache stall to improve performance, so the optimization effect on
cache miss rate is not obvious.

1.20
1.26

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

IP
C

sp
ee

du
p

Benchmarks
Baseline Bypass Inter-warp coalescing LCM PCAL LCM+LWS

Figure 6. Speedup of LCM, LWS over baseline GPU.

By bypassing the streaming data, the cache bypass policy alleviates cache contention
while protecting other cache lines, providing more opportunities for data with a better

Micromachines 2021, 12, 1262 11 of 14

locality. Because streaming data is almost no longer reused or has a longer reuse distance,
the cache cannot be used effectively. The cache bypass policy has the best results for
applications with high cache sensitivity, such as GRA and PTF, which provide up to 38%
performance improvement. Inter-warp memory request coalescer provides additional
memory consolidation opportunities for data with inter-warp locality over baseline co-
alescer. As a result, performance has improved by an average of 9%. The LCM, which
combines the cache bypass strategy and inter-warp memory access merger, has shown
better performance than both separate policies.

Baseline GPU uses the default GTO warp scheduling strategy. LWS considers stream-
ing data that bypassed cache, which can further alleviate cache contention over the cache
bypass strategy. LCM combined with LWS, has achieved a total performance improvement
of 26%, and almost all applications can benefit from LWS. The experimental results prove
that our strategy is effective and can bring significant performance improvements.

6.2.2. L1 Cache Miss Rate

From Figure 7, we can see the reduction in the miss rate of LCM for the L1 data cache
compare to PCAL. From the result, we can see that the miss rate has decreased by an
average of 13%, and 4% better than PCAL. The cache bypass strategy effectively bypasses
L1 cache for requests with poor locality, enables cache lines to be reused more efficiently,
and protects data with high locality. Our strategy is mainly to reduce the cache miss rate
and reduce cache stall to improve performance. Memory access-intensive caches such as
COV mainly reduce cache stall to improve performance, so the optimization effect on cache
miss rate is not obvious.

Micromachines 2021, 12, x 12 of 15

Figure 7. Reduction in the miss rate of LCM for the L1 data cache.

6.2.3. Sensitivity to Cache Size
Figure 8 shows the performance speedup over different sizes of cache. For 16-KB, 32-

KB, and 48-KB caches, it achieves average speedups of 26%, 18%, and 11%, respectively.
From the experimental results, we can infer from the result that the larger the cache size,
the smaller the performance improvement. This is because an increase in the size of the
cache will alleviate cache contention, and it is less likely to reuse data that are not very
long away from the cache. However, for most applications, our LCM and LWS can im-
prove performance.

Figure 8. IPC speedup over different cache capacity.

6.3. Hardware Overhead
Table 4 shows the hardware overhead required to implement LCM and LWS. In ad-

dition to the tags mentioned in Chapter 2 and the third sheet, you also need to store infor-
mation for unfinished requests, so the MSHR metadata table is added. The total hardware
overhead is about 1.6 KB.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

BFS BP CFD COV GE GRA LUD SRD PTF NW HS LCT average

Im
pr

ov
em

en
t o

f L
1

ca
ch

e
m

iss
 ra

te

Benchmarks

PCAL LCM+LWS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BFS BP CFD COV GE GRA LUD SRD PTF NW HS LCT average

IP
C

sp
ee

du
p

Benchmarks

16KB (baseline) 32KB 48KB

Figure 7. Reduction in the miss rate of LCM for the L1 data cache.

6.2.3. Sensitivity to Cache Size

Figure 8 shows the performance speedup over different sizes of cache. For 16-KB,
32-KB, and 48-KB caches, it achieves average speedups of 26%, 18%, and 11%, respectively.
From the experimental results, we can infer from the result that the larger the cache size,
the smaller the performance improvement. This is because an increase in the size of
the cache will alleviate cache contention, and it is less likely to reuse data that are not
very long away from the cache. However, for most applications, our LCM and LWS can
improve performance.

Micromachines 2021, 12, 1262 12 of 14

Micromachines 2021, 12, x 12 of 15

Figure 7. Reduction in the miss rate of LCM for the L1 data cache.

6.2.3. Sensitivity to Cache Size
Figure 8 shows the performance speedup over different sizes of cache. For 16-KB, 32-

KB, and 48-KB caches, it achieves average speedups of 26%, 18%, and 11%, respectively.
From the experimental results, we can infer from the result that the larger the cache size,
the smaller the performance improvement. This is because an increase in the size of the
cache will alleviate cache contention, and it is less likely to reuse data that are not very
long away from the cache. However, for most applications, our LCM and LWS can im-
prove performance.

Figure 8. IPC speedup over different cache capacity.

6.3. Hardware Overhead
Table 4 shows the hardware overhead required to implement LCM and LWS. In ad-

dition to the tags mentioned in Chapter 2 and the third sheet, you also need to store infor-
mation for unfinished requests, so the MSHR metadata table is added. The total hardware
overhead is about 1.6 KB.

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

BFS BP CFD COV GE GRA LUD SRD PTF NW HS LCT average

Im
pr

ov
em

en
t o

f L
1

ca
ch

e
m

iss
 ra

te

Benchmarks

PCAL LCM+LWS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

BFS BP CFD COV GE GRA LUD SRD PTF NW HS LCT average

IP
C

sp
ee

du
p

Benchmarks

16KB (baseline) 32KB 48KB

Figure 8. IPC speedup over different cache capacity.

6.3. Hardware Overhead

Table 4 shows the hardware overhead required to implement LCM and LWS. In
addition to the tags mentioned in Chapter 2 and the third sheet, you also need to store
information for unfinished requests, so the MSHR metadata table is added. The total
hardware overhead is about 1.6 KB.

Table 4. Hardware overhead.

Extended in L1D 6 bits per tag, 128 lines
Locality information 21 bits per tag, 32 lines

Load alias table 32 bits per entry, 16 entries
Inter-warp coalescing queues 124 bits per tag, 64 lines

MSHR metadata table 23 bits per entry, 128 entries
CUS information 16 bits

Total 1606 Bytes

7. Conclusions

GPGPU has become the mainstream trend currently, and the memory system occupies
a very important position in it. The optimization of the cache management strategy also
plays an important role in the optimization of the overall performance. How to improve
the cache utilization and improve the cache performance is the key to improving the
GPU processing power, improving the resource utilization, and optimizing the system
operating efficiency. In order to reduce cache contention, we proposed Locality-Based
Cache Management and Locality-Based Warp Scheduling. LCM and LWS consider the
use of different types of locality and further optimizes the warp scheduling strategy. Each
load instruction classifies data locality by reading the access count in the cache, adding
several inter-warp coalesce queues, and making full use of the inter-warp locality. The cache
bypass policy makes data that are no longer reused bypass the cache to save cache resources.
LWS selectively schedules warps accessing streaming data or other warp according to the
cache and the busyness of the Internet. The experiment was implemented in an extended
GPGPU-Sim simulator. Experimental results show that the LCM and LWS we proposed can
effectively improve system performance, compared with the benchmark strategy, reduce
the L1 cache miss rate, and obtain an average performance improvement of 26%.

In the GPU, fast thread switching increases the difficulty of prefetching data. If the
data cannot be prefetched, it is likely to hurt performance. The next step can be to use the
most suitable prefetch strategy for different memory access characteristics, and improve
the accuracy and coverage of prefetching.

Micromachines 2021, 12, 1262 13 of 14

Author Contributions: Conceptualization, J.F. and Z.W.; methodology, Z.W.; software, Z.W.; valida-
tion, J.F., Z.W. and H.Y.; formal analysis, Z.W.; investigation, Z.W.; resources, Z.W.; data curation,
H.Y.; writing—original draft preparation, Z.W.; writing—review and editing, H.Y.; visualization,
Z.W.; supervision, Z.W.; project administration, Z.W.; funding acquisition, J.F. All authors have read
and agreed to the published version of the manuscript.

Funding: This work is supported by Beijing Natural Science Foundation (4192007); and the National
Natural Science Foundation of China (61202076).

Acknowledgments: This work is supported by Beijing Natural Science Foundation (4192007), and
supported by the National Natural Science Foundation of China (61202076), along with other gov-
ernment sponsors. The authors would like to thank the reviewers for their efforts and for providing
helpful suggestions that have led to several important improvements in our work. We would also
like to thank all teachers and students in our laboratory for helpful discussions.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Devi, J.; Kumar, J. The Computational Efficiency of Monte Carlo Breakage of Articles using Serial and Parallel Processing: A

Comparison. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 75–82. [CrossRef]
2. Cheng, L.; Li, T. Efficient data redistribution to speedup big data analytics in large systems. In Proceedings of the IEEE

International Conference on High Performance Computing, Bangkok, Thailand, 18–20 December 2017; pp. 91–100. [CrossRef]
3. Lindholm, E.; Nickolls, J.; Oberman, S.; Montrym, J. NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE Micro

2008, 28, 39–55. [CrossRef]
4. He, Y.; Zhang, Y.; Shen, F. Thread scheduling optimization of general purpose graphics processing unit: A survey. J. Comput.

2016, 39, 1733–1749. [CrossRef]
5. Cheng, J.; McKercher, T. Professional CUDA C Programming; Wrox: Clarksdale, MI, USA, 2014.
6. Du, P.; Weber, R.; Luszczek, P.; Tomov, S.; Peterson, G.; Dongarra, J. From CUDA to OpenCL: Towards a performance-portable

solution for multi-platform GPU programming. Parallel Comput. 2012, 38, 391–407. [CrossRef]
7. Zhao, C.; Wang, F.; Lin, Z.; Zhou, H.; Zheng, N. Selectively GPU cache bypassing for un-coalesced loads. In Proceedings of the

2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS), Wuhan, China, 13–16 December 2016;
pp. 908–915.

8. Burtscher, M.; Nasre, R.; Pingali, K. A quantitative study of irregular programs on GPUs. In Proceedings of the 2012 IEEE
International Symposium on Workload Characterization (IISWC), San Diego, CA, USA, 4–6 November 2012; pp. 141–151.

9. O’Neil, M.A.; Burtscher, M. Microarchitectural performance characterization of irregular GPU kernels. In Proceedings of the
2014 IEEE International Symposium on Workload Characterization (IISWC), Raleigh, NC, USA, 26–28 October 2014; pp. 130–139.

10. Fauzia, N.; Pouchet, L.-N.; Sadayappan, P. Characterizing and enhancing global memory data coalescing on GPUs. In Proceedings
of the 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), San Francisco, CA, USA,
7–11 February 2015; pp. 12–22.

11. Wu, B.; Zhao, Z.; Zhang, E.Z.; Jiang, Y.; Shen, X. Complexity analysis and algorithm design for reorganizing data to minimize
non-coalesced memory accesses on GPU. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Shenzhen, China, 23–27 February 2013; pp. 57–68. [CrossRef]

12. Jain, A.; Lin, C. Back to the future: Leveraging Belady’s algorithm for improved cache replacement. In Proceedings of the
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016;
pp. 78–89.

13. Teran, E.; Wang, Z.; Jiménez, D.A. Perceptron learning for reuse prediction. In Proceedings of the 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, 15–19 October 2016; pp. 1–12.

14. Lee, B.; Kim, K.; Chung, E.Y. Replacement policy adaptable miss curve estimation for efficient cache partitioning. IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 2017, 37, 445–457. [CrossRef]

15. Jia, W.; Shaw, K.A.; Martonosi, M. Characterizing and improving the use of demand-fetched caches in GPUs. In Proceedings of
the ACM International Conference on Supercomputing (ICS’12), Island of Kos, Greece, 7–12 June 2012; pp. 15–24. [CrossRef]

16. Dublish, S.; Nagarajan, V.; Topham, N. Cooperative Caching for GPUs. ACM Trans. Arch. Code Optim. 2016, 13, 1–25. [CrossRef]
17. Liang, Y.; Xie, X.; Sun, G.; Chen, D. An Efficient Compiler Framework for Cache Bypassing on GPUs. IEEE Trans. Comput. Des.

Integr. Circuits Syst. 2015, 34, 1. [CrossRef]
18. Jia, W.; Shaw, K.A.; Martonosi, M. MRPB: Memory request prioritization for massively parallel processors. In Proceedings

of the 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA), Orlando, FL, USA,
15–19 February 2014; pp. 272–283.

19. Fang, J.; Zhang, X.; Liu, S.; Chang, Z. Miss-aware LLC buffer management strategy based on heterogeneous multi-core. J.
Supercomput. 2019, 75, 4519–4528. [CrossRef]

http://doi.org/10.14569/IJACSA.2019.0101111
http://doi.org/10.1109/HiPC.2016.020
http://doi.org/10.1109/MM.2008.31
http://doi.org/10.11897/SP.J.1016.2016.01733
http://doi.org/10.1016/j.parco.2011.10.002
http://doi.org/10.1145/2517327.2442523
http://doi.org/10.1109/TCAD.2017.2712666
http://doi.org/10.1145/2304576.2304582
http://doi.org/10.1145/3001589
http://doi.org/10.1109/TCAD.2015.2424962
http://doi.org/10.1007/s11227-019-02763-3

Micromachines 2021, 12, 1262 14 of 14

20. Zheng, Z.; Wang, Z.; Lipasti, M. Adaptive Cache and Concurrency Allocation on GPGPUs. IEEE Comput. Arch. Lett. 2014, 14,
90–93. [CrossRef]

21. Li, C.; Song, S.L.; Dai, H.; Sidelnik, A.; Hari, S.K.S.; Zhou, H. Locality-Driven Dynamic GPU Cache Bypassing. In Proceedings of
the 29th ACM on International Conference on Supercomputing, Newport Beach, CA, USA, 8–11 June 2015; pp. 67–77.

22. Chen, X.; Wu, S.; Chang, L.-W.; Huang, W.-S.; Pearson, C.; Wang, Z.; Hwu, W.-M.W. Adaptive Cache Bypass and Insertion for
Many-core Accelerators. In Proceedings of the International Workshop on Engineering Simulations for Cyber-Physical Systems,
Dresden, Germany, 28 March 2014; p. 1.

23. Dai, H.; Li, C.; Zhou, H.; Gupta, S.; Kartsaklis, C.; Mantor, M. A model-driven approach to warp/thread-block level GPU cache
bypassing. In Proceedings of the 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 2–10 June
2016; pp. 1–6.

24. Gong, X.; Chen, Z.; Ziabari, A.K.; Ubal, R.; Kaeli, D. TwinKernels: An execution model to improve GPU hardware scheduling at
compile time. In Proceedings of the IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Austin,
TX, USA, 4–8 February 2017; pp. 39–49.

25. Pei, Y.; Yu, L.; Wu, M.; Chen, T.; Lou, X.; Zhang, T. Two Methods for Combining Original Memory Access Coalescing and
Equivalent Memory Access Coalescing on GPGPU. In Proceedings of the 2016 13th International Conference on Embedded
Software and Systems (ICESS), Chengdu, China, 13–14 August 2016; pp. 48–53.

26. Kadam, G.; Zhang, D.; Jog, A. BCoal: Bucketing-Based Memory Coalescing for Efficient and Secure GPUs. In Proceedings of the
2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), San Diego, CA, USA, 22–26 February
2020; pp. 570–581.

27. Rogers, T.G.; O’Connor, M.; Aamodt, T.M. Divergence-aware warp scheduling. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-46), Davis, CA, USA, 7–11 December 2013; pp. 99–110. [CrossRef]

28. Sethia, A.; Jamshidi, D.A.; Mahlke, S. Mascar: Speeding up GPU warps by reducing memory pitstops. In Proceedings of
the 2015 IEEE 21st International Symposium on High Performance Computer Architecture (HPCA), Burlingame, CA, USA,
7–11 February 2015; pp. 174–185.

29. Do, C.T.; Choi, H.J.; Chung, S.W.; Kim, C.H. A novel warp scheduling scheme considering long-latency operations for high-
performance GPUs. J. Supercomput. 2019, 76, 3043–3062. [CrossRef]

30. Liang, Y.; Xie, X.; Wang, Y.; Sun, G.; Wang, T. Optimizing Cache Bypassing and Warp Scheduling for GPUs. IEEE Trans. Comput.
Des. Integr. Circuits Syst. 2017, 37, 1560–1573. [CrossRef]

31. Li, D.; Rhu, M.; Johnson, D.R.; O’Connor, M.; Erez, M.; Burger, D.; Fussell, D.S.; Redder, S.W. Priority-based cache allocation
in throughput processors. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 89–100.

32. Kim, H.; Hong, S.; Lee, H.; Seo, E.; Han, H. Compiler-assisted GPU thread throttling for reduced cache contention. In Proceedings
of the 48th International Conference on Parallel Processing, Kyoto, Japan, 5–8 August 2019; pp. 1–10.

33. Fang, J.; Wang, M.; Wei, Z. A memory scheduling strategy for eliminating memory access interference in heterogeneous system. J.
Supercomput. 2020, 76, 3129–3154. [CrossRef]

34. Koo, G.; Oh, Y.; Ro, W.W.; Annavaram, M. Access Pattern-Aware Cache Management for Improving Data Utilization in GPU.
In Proceedings of the 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), Toronto, ON,
Canada, 28 June 2017; pp. 307–319. [CrossRef]

35. Kloosterman, J.; Beaumont, J.; Wollman, M.; Sethia, A.; Dreslinski, R.; Mudge, T.; Mahlke, S. WarpPool. In Proceedings of the 48th
International Symposium on Microarchitecture, Waikiki, HI, USA, 5–9 December 2015; pp. 433–444.

36. Grauer-Gray, S.; Xu, L.; Searles, R.; Ayalasomayajula, S.; Cavazos, J. Auto-tuning a high-level language targeted to GPU codes.
Innov. Parallel Comput. (InPar) 2012, 27, 1–10. [CrossRef]

37. Che, S.; Boyer, M.; Meng, J.; Tarjan, D.; Sheaffer, J.W.; Lee, S.-H.; Skadron, K. Rodinia: A benchmark suite for heterogeneous
computing. In Proceedings of the 2009 IEEE International Symposium on Workload Characterization (IISWC), Austin, TX, USA,
4–6 October 2009; pp. 44–54.

http://doi.org/10.1109/LCA.2014.2359882
http://doi.org/10.1145/2540708.2540718
http://doi.org/10.1007/s11227-019-03091-2
http://doi.org/10.1109/TCAD.2017.2764886
http://doi.org/10.1007/s11227-019-03135-7
http://doi.org/10.1145/3079856.3080239
http://doi.org/10.1109/InPar.2012.6339595

	Introduction
	Related Work
	Background and Motivation
	Baseline GPU Architecture
	Baseline Memory Coalescing
	Memory Access Inefficiency

	Locality-Based Cache Management
	Criteria of Locality Type Decision
	Inter-Warp Memory Request Coalescing
	Locality-Based Bypassing

	Locality-Based Warp Scheduling
	Overview
	Implementation

	Evaluation
	Methodology
	Results
	Speedup
	L1 Cache Miss Rate
	Sensitivity to Cache Size

	Hardware Overhead

	Conclusions
	References

