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The mismatch response (MMR) is thought to be a neurophysiological measure

of novel auditory detection that could serve as a translational biomarker of

various neurological diseases. When recorded with electroencephalography (EEG) or

magnetoencephalography (MEG), the MMR is traditionally extracted by subtracting

the event-related potential/field (ERP/ERF) elicited in response to “deviant” sounds

that occur randomly within a train of repetitive “standard” sounds. However, there

are several problems with such a subtraction, which include increased noise and the

neural adaptation problem. On the basis of the original theory underlying MMR (i.e.,

the memory-comparison process), the MMR should be present only in deviant epochs.

Therefore, we proposed a novel method called weighted-BSST/k, which uses only the

deviant response to derive the MMR. Deviant concatenation and weight assignment

are the primary procedures of weighted-BSST/k, which maximize the benefits of

time-delayed correlation. We hypothesized that this novel weighted-BSST/k method

highlights responses related to the detection of the deviant stimulus and is more sensitive

than independent component analysis (ICA). To test this hypothesis and the validity and

efficacy of the weighted-BSST/k in comparison with ICA (infomax), we evaluated the

methods in 12 healthy adults. Auditory stimuli were presented at a constant rate of

2Hz. Frequency MMRs at a sensor level were obtained from the bilateral temporal lobes

with the subtraction approach at 96–276ms (the MMR time range), defined based on

spatio-temporal cluster permutation analysis. In the application of the weighted-BSST/k,

the deviant responses were given a constant weight using a rectangular window on the

MMR time range. The ERF elicited by the weighted deviant responses demonstrated one

or a few dominant components representing the MMR that fitted well with that of the

sensor space analysis using the conventional subtraction approach. In contrast, infomax

or weighted-infomax revealed many minor or pseudo components as constituents of the
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MMR. Our single-trial, contrast-free approach may assist in using the MMR in basic and

clinical research, and it opens a new and potentially useful way to analyze event-related

MEG/EEG data.

Keywords: mismatch response (MMR), blind source separation (BSS), magnetoencephalography (MEG), time-

delayed correlation, independent component analysis (ICA), T/k (fractional) type of decorrelation method,

weighted blind source separation, deviant concatenation

INTRODUCTION

The mismatch negativity component in electroencephalography
(EEG), and its magnetoencephalographic (MEG) counterpart
the mismatch field (or mismatch response, MMR), are event-
related responses (EPRs/ERFs) widely used to measure auditory
processing in cognitive neuroscience (1–6). The MMR is
recorded using an oddball paradigm, where the repeated
presentation of a stimulus (standard) is occasionally replaced
by a different stimulus (deviant). The MMR is then computed
as the difference between the deviant and standard responses.
This difference representing the MMR is typically found around
100–250ms after the onset of the deviant stimulus (7). Previous
studies have revealed a cortical network consisting mainly of
the bilateral temporal regions, but also the frontal and parietal
regions, which is involved in the generation of the MMR (8–
10). The prevailing view is that the MMR reflects the detection
of change in the auditory system that can be measured without
attention, although alternative interpretations exist (11–14).
The MMR has therefore been widely used to assess auditory
processing in children and clinical groups (10, 15, 16).

Originally, it was suggested that the occurrence of the
MMR relates to the presence of a short-term memory trace
where the memory-comparison process detects a discrepancy
between the neural representation of the regularity inherent in
the recent stimulation and the representation of the current
deviant stimulus (17). On the basis of this hypothesis, obtaining
a difference waveform by subtracting the standard response
from the deviant response is the only way to identify the
MMR. However, there are several problems associated with the
subtraction approach. First, the subtraction reduces the signal-
to-noise ratio (SNR) because the noise present in the standard
responses is added to the noise in the deviant responses. Second,
the neural adaptation process, especially with frequency MMR,
can affect the difference waveform. The auditory system has a
tonotopic organization from the cochlea through to the cortex
(18). Stimulus repetition leads to repeated initiation of patterns
of neural activity (e.g., the M100) that habituates as a function
of the repetition rate (19, 20). In the classic oddball protocol,
the neural response to standard stimuli is attenuated by these

Abbreviations: MMR, mismatch response; EEG, electroencephalography;

MEG, magnetoencephalography; DC, decorrelation method; ERP, event-related

potential; ERF, event-related field; BSS, blind source separation; SNR, signal-to-

noise ratio; ICA, independent component analysis; SOBI, second-order blind

identification; BSST/k, T/k (fractional) type of decorrelation method; SOA,

stimulus onset asynchrony; TSSS, temporal signal space separation method;

LU, left upper; RU, right upper; LL, left lower; RL, right lower; PCA, principal

component analysis; rmANOVA, repeated-measures analysis of variance.

repetition suppression effects. This suppression is greater for
the standard stimuli than for the less frequent deviant stimuli.
The adapted and non-adapted neural activity presents not only
different amplitudes, but also different temporal dynamics. Thus,
the subtraction approach does not simply reflect the MMR (i.e.,
a memory-based comparison) but also the differential adaptation
of neurons (13). Therefore, the study of the temporal dynamics
of the MMR might convey critical information regarding the
nature of the underlying neural generators. Hence, to effectively
reveal the MMR, another approach considering the temporal
information, instead of the subtraction approach, is desirable.

Each EEG electrode or MEG sensor records a linear
combination of signals from several sources (21). Multi-
channel EEG/MEG, which typically involves hundreds of
sensors, provides detailed spatio-temporal distribution patterns,
which obviously complicate the interpretation of signals and
topographies. Independent component analysis (ICA), which is a
blind source separation (BSS) method, is a stochastic method that
can be used to decompose such complex data into a set of spatio-
temporal components, each of which comprises a fixed spatial
distribution and an associated signal (22, 23). Each component
signal is a weighted sum of the sensor or electrode signals,
which in turn are weighted sums of the dynamics of the neural
sources (24). ICA/BSS can provide signal sources without any a
priori information about their occurrence in biological signals.
In general, the single-trial approach of ICA/BSS can utilize
temporal information, because the contraction of information
occurs during the averaging process of the ERP/ERF. A single
trial may contain all kinds of non-brain artifacts and spontaneous
EEG/MEG processes, whereas decomposing an average of all
trials not only minimizes the contributions of those neural
and artifactual processes that are not reliably time- and phase-
locked to experimental events but also removes event-related
brain dynamics among trials (25). As artifacts often exhibit
stereotypical patterns that differ from those of brain activity,
ICA/BSS can mostly be used to separate artifactual patterns (26–
28). In fact, ICA/BSS has been used to extract event-related
activities in only a handful of previous studies (29–33). Owing
to the components being computed based purely based on their
statistical independence, physiological perspectives are not taken
into account (28, 34). Considering that regional brain activities
substantially correlate with each other, an approach requiring
strong independence may not be the most fruitful (35–38).

An approach for refining ICA/BSS using time-delayed
correlation, or the decorrelation method (DC) has also been
considered (39). Time-delayed correlation takes account of
the characteristic time structure of the signals of interest,
including the periodicity and/ormorphology. Thus, time-delayed

Frontiers in Neurology | www.frontiersin.org 2 February 2022 | Volume 13 | Article 762497

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Matsubara et al. Weighted-BSS(T/k) Decomposing Mismatch Response

correlation measures the correlation between two signals, then
maximizes the correlation between components. For example,
several studies applied DC to second-order blind identification
(SOBI) to separate periodic signals, such as cardiac and
oscillatory brain activity, because periodic signals are well-
correlated with delayed signals and non-delayed original signals
(40, 41). As a result, well-correlated signals were extracted in
one (or a few) components. However, in SOBI, most approaches
examine the time structure of the target signals subjectively.
When parameters are highly specified, featured components
are more independent, and therefore target signals collapse
because of strong independence and the SOBI method becomes
equivalent to ICA (39–41).

In an attempt to develop solutions to address the limitations
of ICA and SOBI, we proposed a novel method of BSS called
the T/k (fractional) type of DC (BSST/k) (35–38). This method
shares the fundamental concept underlying DC such as SOBI but
is more focused on the periodicity of the target signal. The BSST/k

method is based on extracting time points (i.e., time-delayed
parameters) determined by the parameters T and k, which
represent periodicity concerning a fundamental and harmonics
(Supplementary Data (1) and Supplementary Figure 1). BSST/k

allows weak independence among the components. Setting time-
delayed parameters in this way results in highlighting the
characteristics of target ERFs that are periodically presented.
Previously, we demonstrated that somatosensory-evoked fields
in response to periodic electrical stimuli can be decomposed
into a few components using the BSST/k algorithm in 64
channel magnetometers of CTF (35–38). Using a generalization
of BSST/k, non-periodic interictal epileptiform discharges that
were assumed to originate in a single epileptogenic zone were
decomposed into one dominant component (42).

For the MMR paradigm, where deviant stimuli are presented
in random order, we proposed to use a modification of BSST/k,
which we termed weighted-BSST/k (43). In weighted-BSST/k,
we only used deviant responses that were concatenated into a
periodical arrangement. Then, deviant responses were assigned
a constant weight (rectangular window) on the specific time
interval that represents MMR (i.e., the MMR time range).
This is known as a window function in the time domain.
The MMR time range was defined in a data-driven manner
using sensor space subtraction (i.e., the reference standard).
Through these procedures, the correlation between MMR and
the responses outside of the MMR time range (e.g., the M100)
can be minimized; thus, weighted-BSST/k, which underlies
time-delayed correlation, can effectively extract the MMR. We
hypothesized that weighted-BSST/k would extract one or a few
dominant components that can discriminate the MMR from
background brain noise and other artifacts or other irrelevant
ERFs. As the first application in the cognitive neuroscience
of weighted-BSST/k using only deviant epochs, we aimed to
extract components that resemble the reference standard because
subtraction is currently the gold standard for identifying MMR.
We applied both BSST/k and infomax (ICA) separately to
the same weighted multi-channel MEG data (weighted-BSST/k

and weighted-infomax, respectively), and used the subtraction
approach (subtraction-BSST/k and subtraction-infomax) as a

more general approach to investigate how the single-trial
approach works, and then, statistically compared the similarity
of each component to the reference standard to test a further
hypothesis that BSST/k is more sensitive than infomax.

It was not our aim to use the subtraction-BSST/k/weighted-
BSST/k to separate independent MMR sources. Typically,
statistically independent components separated by preprocessing
with ICA are expected to be associated with one or two
dipolar sources (9, 23, 44, 45). We instead made a more
general assumption that a component extracted by subtraction-
BSST/k/weighted-BSST/k will relate to multiple sources or a
network of activity generating the MMR. In this sense, few
decomposed components are better than many, as long as they
represent the reference standard. Thus, the extraction of MMR in
a few components would simplify the interpretation of MMR in
regard to clinical and research applications.

MATERIALS AND METHODS

Participants
The participants in the experiment were 12 healthy adults
(aged 25.4–41.9 years, mean 33.7 years; six women). None of
the participants reported a history of head injury, neurological
disease, hearing problems, severe medical illness, or drug abuse.
The experiment was approved by the Ethics Committee of
Kyushu University.

Stimuli and Procedures
The paradigm consisted of auditory stimulus sequences
composed of standard stimuli with a probability of 80% and
deviant stimuli with a probability of 20%, which were delivered in
random order until at least 150 deviant stimuli were presented.
Tone bursts of 500Hz for standard stimuli and 550Hz for
deviant stimuli (10-ms rise and 20-ms fall) with a 100-ms
duration were delivered monaurally through plastic tubes
(length, 6m; inner diameter, 8mm). The hearing threshold was
determined for each ear of each subject, and stimuli generated
by a tone-burst-generator (Kyushu-Keisokuki, Fukuoka, Japan)
were delivered at intensities of 50 dB above the threshold (46).
The stimulus onset asynchrony (SOA) was 500ms, and the
presentation rate of the stimuli represented by fp was 2Hz.
Stimuli were delivered to each ear in separate runs, with masking
noises delivered to the contralateral ear to avoid cross-hearing
(47). Inversed stimuli (550Hz for standard and 500Hz for
deviant) were presented monaurally in separate runs. These
stimuli were counterbalanced. In the current study, only data
from right-ear stimulation and using 500-Hz standard/550-Hz
deviant stimuli were analyzed. Subjects were instructed to ignore
the auditory stimuli while they lay on the bed and watched a
silent movie (16).

Data Acquisition
MEGwas acquired using a 306-channel (204 planar gradiometers
and 102 magnetometers) whole-head system (Elekta-Neuromag,
Helsinki, Finland) in amagnetically shielded room. The sampling
rate was 1,000Hz, with a band-pass filter of 0.03–330Hz. EEG
was simultaneously recorded using 19 scalp electrodes according
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to the international 10–20 system, although the sparse EEG data
were not analyzed in the current study.

Data Analysis
Preliminary Process
The temporal signal space separation method (TSSS) using
MaxFilter 2.2.13 (Elekta-Neuromag, Helsinki, Finland) was
applied to the sensor level data with the default setting of an
inside expansion order of 8, an outside expansion order of
3, automatic optimization of both inside and outside bases, a
subspace correlation limit of 0.980, and a raw data buffer length
of 10 s (48, 49). Notch filters were applied to suppress power line
frequency and its harmonics (60, 100, 120, 180, 200, 240, and
300Hz). Data from the 204 planar gradiometers were used for
all subsequent analyses. Hereafter, all analysis steps are shown in
Figure 1 and summarized in Figure 2.

The Subtraction Approach
The conventional subtraction approach for sensor space analysis
was used as a reference (Figures 1A, 2A). Before averaging across
epochs, the data were low pass filtered at 30Hz and, epochs
exceeding 4,000 fT/cm on any planar gradiometer channel were
excluded from the average. Based on our experience, some ocular
artifacts leak into the good epochs. Therefore we took extra
care and visually inspected the data to remove eye movements.
However, the impact of this procedure was minimal because
the number of epochs removed for each subject was 0–1. Each
epoch contained a 600-ms time window ranging from 100ms
pre-stimulus to 500ms post-stimulus onset, with the stimuli
being periodically presented (SOA = 500ms or fp = 2Hz).
The MMR difference sensor waveform (i.e., xsub) was calculated
by subtracting the averaged deviant ERFs from the averaged
standard ERFs for each subject (Figures 1A, 2A);

xsub (n) : = xdev (n) − xstd(n), (1)

where x (n) represents the MEG sensor data at the discrete time,
n. x (n) reflects the averaged sensor waveform of x (n) across
epochs. xstd (n) and xdev(n) are averaged standard and deviant
responses, respectively.

Decomposition Process
The decompositionmethods of BSST/k and infomax were applied
separately to each subject’s sensor dataset, which contained 204
sensors. The sensor data were originally decomposed into a set of
spatio-temporal components;

x (n) = As (n) , (2)

where A is a mixing matrix, and s is a signal source. BSST/k

was applied;

x (n) = ADCsDC (n) , (3)

whereADC is amixingmatrix of BSST/k, and sDC is a signal source
of BSST/k. Hereafter, we refer to BSSq (q = 1, 2, 3, . . . , 204) as
a specific component obtained after the application of BSST/k.
We briefly describe the BSST/k method here; full details are

provided in previous studies (36, 38). As a preliminary step, we
conducted a sphering procedure to orthogonalize and normalize
the time-series data for input sensors. We then conducted an
iterative Givens rotation to minimize the absolute sum of off-
diagonal elements of the normalized correlation matrices at
the parameters. Specifically, the Jacobi-like algorithm proposed
by Cardoso and Souloumiac (50, 51) was used in the BSST/k

method to approximately solve the simultaneous diagonalization
problem at specific times. Regarding the period T = 1/fp with
sampling frequency fs, the time-delayed parameters τ can be
defined by:

BSST/k : τm = [fs/fp]/m, m = 1, 2, . . . , k. (4)

where [. . . ] rounds the value to the nearest integer. Here,T= 0.5 s
and fp = 2Hz, with the repetitive stimuli constantly presented at a
rate of 2Hz (subsection Stimuli and Procedures). We determined
k= 8 in a data-driven manner (36, 38) [Supplementary Data (1)

and Supplementary Figure 1]. These parameters gave τ (ms) as
500, 250, 166, 125, 100, 83, 71, and 62 according to Eq. (4).

For ICA, we used the infomax algorithm (25, 49), which was
implemented in MNE-python (52) using the default setting;

x(n) = AICAsICA(n), (5)

where AICA is the mixing matrix of infomax, and sICA is the
signal source of infomax. Hereafter, we refer to ICAq (q = 1, 2,
3, . . . , 204) as a specific component obtained after application
of infomax. The number of principal components from the
pre-whitening step that was passed to the ICA algorithm was
204, which corresponded with the number of sensor inputs.
Accordingly, we obtained 204 components with associated time
courses and spatial distributions.

Two Different Approaches (Subtraction and

Weighted)
After applying the decompositionmethods (BSST/k and infomax)
to the sensor space data, we obtained the MMR difference source
waveform (i.e., ssub; Figures 1B, 2B) in the same way as in
the subtraction approach for sensor space analysis [subsection
The Subtraction Approach; Eq. (1); Figures 1A, 2A], which
corresponds to the two decompositionmethods (i.e., subtraction-
BSST/k and subtraction-infomax; Figures 1B, 2B);

sDCsub (n) : = sDCdev (n) − sDCstd (n), (6)

sICAsub (n) : = sICAdev (n) − sICAstd (n), (7)

where sstd (n) and sdev (n) are the averaged source waveforms
across epochs (i.e., ERFs) elicited by the standard
and deviant stimulus, respectively, obtained from each
decomposition method.

The novel method, the weighted-BSST/k, is expected to be a
more sensitive approach of extracting the MMR. The basics of
the method lie in the periodical arrangements and assignments
of weights on the MMR time range. Although our BSST/k

method is expected to highlight periodic signals, the deviant
epochs occur randomly, not periodically. To obtain periodical
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FIGURE 1 | Analysis steps. (A) The conventional subtraction approach for sensor space analysis. Sensor data (x) consist of standard (std) and deviant (dev) epochs.

The MMR difference sensor waveform (xsub ) is calculated by subtracting the event-related field (ERF) to the standard (xstd ) stimulus from the ERF to the deviant (xdev )

stimulus. BSST/k , fractional type of decorrelation method; MMR, mismatch response; SOA, stimulus onset asynchrony; fp, presentation rate of stimuli. (B) The

subtraction approach with two decomposition methods (BSST/k or infomax). Data from 204 sensors (x) are decomposed into 204 components (s). The subtraction

approach is followed for each component; subtraction of the deviant ERF (sdev ) from the standard ERF (sstd ) makes the MMR difference source waveform (ssub ). Note

that deviant epochs occur randomly, not periodically. (C) Deviant epochs of sensor data are concatenated and new raw data are made (xdev ). This process makes

periodical arrangements of deviant epochs. (D) Sensor data (xϕ ) are assigned with a weight on the MMR time (from n1 to n2, highlighted in purple shadows) on xdev
using a window function. The window function is shown in the inset figure. (E) Data with 204 sensors assigned with a weight (xϕ ) are decomposed into 204

components (sϕ ) with two decomposition methods. In each component, the ERF of the deviant epochs assigned with a weight is obtained (sϕ ). The inverted black

arrows between A and B and between D and E represent the back-projection process in a group of several components.

arrangements, we concatenated the deviant epochs to form
new raw data (xdev (n); Figure 1C). To highlight the MMR
that was included in the deviant epochs, we then weighted
the MMR time range (around 100–250ms, from n1 to n2)
defined by the spatio-temporal cluster permutation (subsection
Spatio-Temporal Cluster Permutation to Define the MMR Time
Ranges and Sensors or the Reference Standard), with the weight
described by the window function of the rectangular window
(inset between Figures 1C,D);

xϕ(n) : = ϕ ∗ xdev (n) , (8)

where ϕ describes a window function and the ∗ reflects its repeat
operation. The segmentation of data (epoch number, mean 174.3
± 19.6 [standard deviation]) was multiplied by the window
function values. Equation (8) indicates,

{

xϕ (n) = 1 · xdev (n) , n1 ≤ m ≤ n2,
xϕ (n) = 0.2 · xdev (n) , m < n1, n2 < m,

(9)

where n =
(

Index of deviant epoch− 1
)

· SOA + m. Here, m
is the given time point within every deviant epoch. Equation
(8) indicates that this window function, Eq. (9), was applied

repeatedly (Figure 1D, purple shadow) to the concatenated
sensor data (xdev (n)). We then applied the BSST/k and infomax
methods separately to the weighted data (weighted-BSST/k and
weighted-infomax; Figure 1E);

xϕ (n) = A
ϕ
DCs

ϕ
DC(n), (10)

xϕ (n) = A
ϕ
ICAs

ϕ
ICA(n). (11)

Finally, after lowpass filtering (30Hz), we obtained the ERFs (i.e.,
sϕ ; Figures 1E, 2C). That is, s

ϕ
DC(n) and s

ϕ
ICA(n), elicited by the

weighted deviant stimulus, instead of subtraction.
Two assumptions underlie the successful decomposition of

the weighted-BSST/k. First, the MMR occurs in the MMR
time (n1 ≤ n ≤ n2) only in deviant epochs. Second,
exogenous/obligatory ERFs (e.g., the M100) highly correlate
with themselves in the non-MMR time (n < n1, n2 < n).
The offset response of the M100 often intrudes on the MMR
within the MMR time, which is one of the reasons why the
subtraction approach is necessary (53). To minimize the joint
M100 and MMR effect, a rectangular window in the non-MMR
time is used to keep the correlation of the offset and onset
of the M100 and extract these as distinct components from
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FIGURE 2 | Block diagram of the procedure for the subtraction (A,B) and weighted approaches (C) for each decomposition method (BSST/k or infomax). The main

analysis parts are shown in double squares. BSST/k , fractional type of decorrelation method; DC, decorrelation method; ERF, event-related field; ICA, independent

component analysis.

an MMR component using weighted-BSST/k, which underlies
time-delayed correlation. However, it is expected that weighted-
infomax, in contrast to weighted-BSST/k, does not decompose
the MMR effectively because infomax does not depend on
time structure.

Spatio-Temporal Cluster Permutation to Define the

MMR Time Ranges and Sensors or the Reference

Standard
Currently, the only way to identify MMR is via sensor-space
subtraction. We therefore used sensor-space subtraction as a
reference standard. A data-driven approach was used to find
significant MMR time ranges and sensors in all subjects. Among
the 12 subjects, two did not exhibit a prominent MMR during
the initial screening of the visual inspection of sensor space
subtraction (confirmed by three independent inspectors, TMat,
SK, and KK.) and were thus excluded from further analysis.

Individual MMR difference sensor waveforms, xsub, were tested
if they were different from 0 across the 10 subjects, with the
multiple comparison problem being addressed using a cluster-
level permutation test across space and time (54). We used 1,024
permutations, and the cluster-defining threshold was set at p =

0.01. Selected samples were clustered based on both spatial and
temporal adjacency (i.e., spatio-temporal cluster permutation).
Our motivation to use the spatio-temporal cluster permutation
method was to verify the empirical knowledge that MMR occurs
around 100–250ms in the bilateral front-temporal sensors (7,
17) in a data-driven manner in our cohort of 10 subjects.
Figure 3A demonstrates the results of the spatio-temporal cluster
permutation. Six clusters (less than the critical alpha level of
0.05) were found. Among these six clusters, two (#1 and #2)
contained temporal and/or frontal sensors within approximately
100–250ms; one (#1) contained 20 left temporal sensors at 96–
276ms and the other (#2) contained 24 right front-temporal
sensors at 105–266ms. Thus, we defined the MMR time range
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FIGURE 3 | Sensor space waveform. (A) The results of the spatio-temporal cluster permutation analysis. Six significant spatial and temporal clusters are shown in

white circles within the averaged t-statistics (absolute value) and in orange shading within the averaged waveforms, respectively. Blue lines, standard; green lines,

deviant; red lines, difference. (B) Grand-averaged ERFs elicited by standard (xstd ) and deviant (xdev ) stimuli and the MMR difference sensor waveform (xsub) from 10

subjects. The MMR time is indicated by the purple line in the standard and deviant ERFs and by the blue shading in the MMR difference sensor waveform. The red

and pink lines in the MMR difference sensor waveform represent the MMR sensors from the left and right clusters, respectively. The topographical map represents the

peak activity in the bilateral temporal and right frontal sensors (white circles). The onset of the M100 (arrows) is outside of the MMR time range, whereas the offset of

the M100 (textured arrows) is included in the MMR time range seen in standard and deviant responses.

as 96–276ms (n1 = 96, n2 = 276) and the MMR sensors as
these 44 sensors. The reference standard was defined individually
(Figure 2A);

xRef : = Fxsub(n), n1 ≤ n ≤ n2, (12)

where xRef ∈ R
L×(n2−n1) and F ∈ R

L×N is the matrix that
select L = 44 rows corresponding to the MMR sensors out
of xsub containing all N = 204 sensors. In other words, the
reference standard was the 44 MMR sensors selected from the
204 gradiometers within the MMR time.

We confirmed that the different setting of the cluster-defining
threshold (p = 0.005) gave the similar spatio-temporal clusters
(Supplementary Figure 2). This means that the clusters obtained
were robust.

Component Evaluation: Cosine Similarity
To investigate the resemblance of each component to the
reference standard individually, or goodness of fit, we measured
cosine similarity (C) as spatial similarity and morphology
similarity (M) as temporal similarity.
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Cosine similarity refers to the similarity between two column
vectors (42, 55);

Cosine similarity (C) : C
(

a(n), b
)

=

∣

∣

∣
â(n)T b̂

∣

∣

∣
, n1 ≤ n ≤ n2,

(13)

where â(n) = a(n)/ |a| is the normalized column vector
containing the spatial distribution of the reference standard

(xRef ), and b̂ = b/
∣

∣b
∣

∣ is a normalized column vector of A in
Eqs. (3, 5, 10, and 11). The symbol T is the transpose of â(n).
Because of its definition, 0 ≤ C

(

a (n) , b
)

≤ 1. In the following,
we used the maximum of C (Cmax) across the MMR time
range for the four methods (i.e., subtraction-BSST/k, subtraction-
infomax, weighted-BSST/k, and weighted-infomax), denoted by

CDC
max, C

ICA
max, C

DC_ϕ
max , and C

ICA_ϕ
max . Cmax represents how maximally

similar each component is to the reference standard in regard to
spatial information.

Component Evaluation: Back-Projection and

Morphology Similarity
Temporal similarity should include information about the
temporal correlation between each component and the
reference standard as well as the amplitude difference
between each component and the reference standard.
Because the components derived from BSST/k and infomax
(MDC (n) , MICA (n) , M

ϕ
DC (n) , and M

ϕ
ICA(n)) are differently

normalized, their ERFs cannot be directly compared according
to their amplitudes. Thus, each component was projected back
into the sensor space (back-projection) (56). Here, we assumed
a general situation for the sake of the following subsection
The Cumulative Back-Projection of Salient Components, the
cumulative back-projection. When a group of q components,
where Q= {q} is selected from 204 components,

x
q
# (n) = A

q
#s
q
#(n) (14)

provides back-projected data in the sensor space (inverted black
arrow between Figures 1A,B), where A

q
# ∈ R

204×q and s
q
#(n)

represents source vectors corresponding to Q. Here, the suffix
symbol # indicates DC or ICA. The same formula was applied to
the weighted data (inverted black arrow between Figures 1D,E).
The ERF was then computed using the subtraction or weighted
approach. For the subtraction approach, we applied

x#_sub
(

n, q
)

: = x#_dev
(

n, q
)

− x#_std
(

n, q
)

, (15)

where x#_std(n, q) and x#_dev(n, q) are ERFs in the sensor
space elicited by standard and deviant stimuli, respectively,
obtained from each decomposition method (DC or ICA). For
the weighted approach, x

ϕ
#

(

n, q
)

is the ERF obtained from each
decompositionmethod (DC or ICA). Then, corresponding to Eq.
(12), we applied

x#_sub(q) : = F x#_sub
(

n, q
)

, n1 ≤ n ≤ n2, (16)

x
ϕ
# (q) : = F x

ϕ
#

(

n, q
)

, n1 ≤ n ≤ n2, (17)

where x#_sub
(

q
)

and x
ϕ
# ∈ R

L×(n2− n1).

We investigated the correlation between one sensor and the
reference standard;

rl =
(Xl,Yl)

‖Xl‖ ‖Yl‖
, l = 1, 2, 3, . . . , 44. (18)

where (X, Y) is the inner product. Here, X is one row vector
(l) of the reference standard (xRef ), which corresponds to one
sensor, and Y is one row vector (l) of the same sensor of
Z, where Z(q) is defined as Eq. (16) or Eq. (17). Notably,
x#_sub

(

n, q
)

and x
ϕ
#

(

n, q
)

∈ R
L×SOA and Z(q) ∈ R

L×(n2−n1).
Equation (18) is the same formula as that for the Pearson
coefficient. Then,

Morphology similarity (M) : rl ‖Yl‖ =
(Xl,Yl)

‖Xl‖
l = 1, 2, 3, . . . , 44.

(19)

was applied to calculate morphology similarity (M), where M
is the comparison of the similarity of the waveforms between
the reference standard and back-projected waveforms regarding
the temporal correlation and amplitude in the given sensor.
Among the 44 MMR sensors, we took the maximum of M
(Mmax) across the MMR sensors for each method, denoted
by MDC

max, MICA
max, M

DC_ϕ
max , and M

ICA_ϕ
max . Mmax refers to how

maximally similar Q components are to the reference standard
regarding temporal information when back-projected into the
sensor space. Specifically, when one component was selected (q
= 1), Mmax represented the maximal temporal resemblance to
the reference standard when the corresponding component was
back-projected into the sensor space. Accordingly, the scatter
plot of Cmax and Mmax shows the relationship between the
spatial and temporal resemblance to the reference standard in
each component.

Z-Score and Principal Component Analysis for the

Component Distribution Pattern
Two-hundred and four components from each subject should
be divided into several groups; MMR-related components
(“salient component”) and non-MMR-related components
(“inconsequential component”). To classify components, each
Mmax and Cmax value derived from all components from all
methods (204 × 4 = 816) were individually standardized (i.e.,
z-scored). Thus, the scatter plot of z-scored Mmax and Cmax

reflected the component distribution pattern. For each method
(subtraction-BSST/k, subtraction-infomax, weighted-BSST/k,
and weighted-infomax), the component locations were classified
into four quadrants (left upper [LU]; right upper [RU]; left
lower [LL]; and right lower [RL]) by setting the z-score > 1.65
(90%) for both Mmax and Cmax, with right referring to high
Mmax and upper referring to high Cmax. “Salient components”
were defined individually in the LU, RU, and RL quadrants. A
component in the RU quadrant may be a “major component”
with a high contribution to the MMR, whereas a component
in the LU quadrant, which has low Mmax and high Cmax, is
considered a “minor component” of the MMR; most of these
components have either small amplitudes or low correlations
with the reference standard. A component in the RL quadrant
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TABLE 1 | Distribution patterns of the salient components.

Number of salient

components

(Z-score > 1.65)

Number of salient

components

(Z-score > 1.96)

Z-scored

Mmax of the

center

Z-scored Cmax

of the center

Slope of the first

PCA component

Variance of the first

PCA component

Subtraction-BSST/k (± SD) 16.7 ± 2.8

(range, 3–16)

12.9 ± 2.3

(2–9)

3.1 ± 1.4 0.6 ± 0.4 0.29 ± 0.2 0.84 ± 0.07

Weighted-BSST/k (± SD) 8.0 ± 4.4

(13–21)

5.3 ± 2.5

(10–17)

3.7 ± 1.4 1.6 ± 0.5 0.14 ± 0.1 0.94 ± 0.04

Subtraction-infomax (± SD) 36.0 ± 15.3

(16–37)

20.7 ± 8.2

(5–30)

0.8 ± 0.5 1.6 ± 0.7 −0.60 ± 0.4 0.84 ± 0.10

Weighted-infomax (± SD) 26.5 ± 7.5

(16–71)

15.0 ± 7.7

(10–33)

0.7 ± 0.5 1.6 ± 0.6 −0.60 ± 0.4 0.84 ± 0.10

BSST/k , T/k (fractional) type of decorrelation method; PCA, principal component analysis; SD, standard deviation.

may be a “pseudo-component” regarding the MMR, which
suggests that the temporal resemblance is high only in a limited
number of MMR sensors. This component may relate to a false
(or network) or partial generator of MMRs. A component in the
LL quadrant (“inconsequential component”) means irrelevant
regarding the MMR or is a component that is related to other
ERFs or artifacts.

With successful decomposition, it is expected that only a few
components will fall within the RU quadrant, and the rest of the
components will fall within the LU, RL, and LL quadrants near
the borderlines of coordinate origin. In contrast, unsuccessful
decomposition will provide a component distribution pattern
where no components fall within the RU quadrant, and all
components will fall near the LL quadrant. To investigate
the distribution pattern of the salient components, principal
component analysis (PCA) was applied to z-scored Mmax and
Cmax. Two individual PCA components were obtained, with
most of the variance being captured by the subspace of the first
PCA component (more than 84%; Table 1). The center of the
distribution of salient components, taken as the cross-point of
the first and second PCA components, and the slope of the first
PCA component were obtained.

If a z-score > 1.96 (95%) was set, the number of salient
components was small (Table 1), especially in the weighted-
BSST/k. PCA seemed unreliable when the input data were <5;
thus, a z-score > 1.65 (90%) was applied.

The Cumulative Back-Projection of Salient

Components
To investigate the contribution of each component to the MMR,
components were cumulatively projected back into sensor
space (subsection Component Evaluation: Back-Projection and
Morphology Similarity), and the spatio-temporal resemblance
was compared with the reference standard (subsections
Component Evaluation: Cosine Similarity and Component
Evaluation: Back-Projection and Morphology Similarity). It is
expected that the more components that contribute to the MMR
are cumulatively back-projected, the more the back-projected
sensors resemble the reference standard. The order of cumulation
was determined after sorting by the first PCA component axis
(Supplementary Figure 3). Salient components were selected

for cumulative back-projection because components below
thresholds (inconsequential components in the LL quadrant)
are expected to contribute little to the MMR. Corresponding to
Eq. (19), M was investigated for the cumulative back-projection.
The back-projected data in sensor space derived from more
than two components have a dynamic topography over time,
whereas those derived from one component have a fixed field
distribution. Thus, in the cumulative back-projection, M was
obtained for an average of 44 MMR sensors, notMmax;

Mave : = mean(M). (20)

Thus, Mave represents both spatial and temporal information
regarding the MMR, which reflects the average resemblance to
the reference standard. Corresponding to each method, Mave

becomesMDC
ave ,M

ICA
ave ,M

DC_ϕ
ave , andM

ICA_ ϕ
ave .

Relative Contribution
The contribution of a salient component to the MMR or
the reference standard is high if a prominent Mave increment
is observed when cumulatively reconstructing one salient
component. Thus, the contribution of each component to MMR
was defined as

Relative contribution (RC) :
Mave (c) − Mave (c− 1)

Mave

(

qall
) ,

c = 1, 2, . . . , #end. (21)

where qall means Q = {1, 2, 3, . . . , 204}, c represents an index
number of the salient component according to the sorted order
when cumulated (subsection The Cumulative Back-Projection of
Salient Components), and #end is the index number of the last
one. The denominator of Eq. (21) is Mave when q= qall in Eq.
(16), then

Z
(

qall
)

= F x#_sub
(

n, qall
)

, n1 ≤ n ≤ n2, (22)

= xRef ∈ R
L×(n2− n1).

Thus, the denominator of Eq. (21) represents Mave of the
reference standard. Corresponding to each method, RC becomes
RCDC, RCICA, RCDC_ϕ , and RCICA_ϕ .
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As it is expected thatRCwill decrease as c increases, we applied
the exponential function approximation to the plotted data in the
c-RC plane;

y = βe−αx, (23)

where x implies c, and y represents RC with coefficients α and β .

Statistics
To compare the component distribution patterns between
the four methods, a two-way repeated-measures analysis of
variance (rmANOVA) was used to analyze the center (z-scored
Mmax and z-scored Cmax, respectively), and slope of the first
PCA component with within-subjects factors of APPROACH
(subtraction vs. weighted) and DECOMPOSITION (BSST/k vs.
infomax). For the post hoc tests, multiple comparisons were
performed using paired t-tests with Bonferroni correction. The
significance level was set at p < 0.05.

We counted c, where the non-linear approximation reached
the 5% threshold. It was assumed that components above the 5%
threshold significantly contributed to the MMR and were defined
as “dominant components,” whereas those that did not meet the
threshold did not contribute to the MMR.

RESULTS

The analysis comprised four parts (Figure 2, double squares):
(i) defining the reference standard based on the spatio-
temporal cluster permutation from the sensor-space analysis;
(ii) qualitative evaluation of each component based on its
similarity to the reference standard; (iii) statistical assessment of
component distribution patterns with the z-scored scatter plot;
and (iv) the relative contribution of each component.

Spatio-Temporal Cluster Permutation and
Reference Standard
The results of the spatio-temporal cluster permutation are shown
in Figure 3A. Among the six clusters, Clusters #1 and #2 (20 left
temporal sensors at 96–276ms with the alpha level of p = 0.004,
24 right front-temporal sensors at 105–266ms with the alpha
level of p= 0.008) were consistent with the empirical findings. On
the other hand, Clusters #3, #4, and #6 contained the late latency
and with lower alpha levels of p = 0.01. The Cluster #5 was at
102–212ms mainly from parietal sensors with the alpha level of
p = 0.008. Therefore, Clusters #1 and #2 were selected to define
the reference standard (i.e., a selection of MMR sensors from 44
left temporal and right front-temporal sensors at an MMR time
range of 96–276 ms).

Figure 3B represents the grand-averaged ERFs elicited by
standard and deviant stimuli and the MMR difference sensor
waveforms in sensor space (xsub). As indicated by the results
of the cluster permutation (Figure 3A topographical map in
Clusters #1 and #2), prominent activity occurred in the bilateral
temporal and right frontal sensors at the peak latency (Figure 3B
topographical map). Note that the offset of the M100 was
included in the MMR time for both standard and deviant ERFs
(textured arrows in Figure 3B).

Qualitative Evaluation of Each Component
Figure 4 represents the results of the decomposition together
with the sensor space analysis of a representative subject (Subject
2). The resemblance of the reference standard (Figure 4A)
from this subject was compared with each component
from four methods (subtraction-BSST/k, weighted-BSST/k,
subtraction-infomax, and weighted-infomax, in Figure 4B(i-iv),
respectively). One component in the weighted-BSST/k was
discriminable with similar morphology [Figure 4B(ii) upper
panel, red line, BSS107] and topographical map [Figure 4B(ii)
right] to the reference standard of the peak time (Figure 4A,
140ms). When this component was back-projected into the
sensor space (Figure 5, red lines), the left and right temporal
sensors (dotted areas) within MMR sensors at MMR time
range closely represented the reference standard (blue lines).
Accordingly, the corresponding component had discriminable

M
DC_ϕ
max and C

DC_ϕ
max among other components in the scatter

plot [Figure 4B(ii) lower panel, red arrow]. Moreover,
this component showed a minor additional topographical
representation in the left temporal sensors, which corresponded
with the reference standard of 260ms. No components were
discriminable using the infomax methods [Figure 4B(iii,
iv)]. The subtraction-BSST/k [Figure 4B(i)] provided two
components (red and green arrows) that had a moderate value of
MDC

max and CDC
max.

Scatter plots of Mmax and Cmax for each component
are depicted for the four different methods for all subjects
(Figure 6A). While most of components had lower Mmax and
Cmax values in the four methods, in the weighted-BSST/k

[Figure 6A(ii)], one or a few components represented high

M
DC_ϕ
max and C

DC_ϕ
max values individually. The z-scored plot shows

the distribution of salient (MMR-related) and inconsequential
(non-MMR-related) components according to the quadrants
based on a 90% z-score (Figure 6B). The salient components
were mostly located in the RU quadrant (major) in the
weighted-BSST/k [Figure 6B(ii)], whereas in the subtraction-
BSST/k [Figure 6B(i)], they were equally distributed between
the RU (major) and RL (pseudo) quadrants. The two infomax
methods [Figure 6B(iii and iv)] had salient components mostly
in the LU (minor) or RL (pseudo) quadrants. Most components
are inconsequential components in all four methods (the
numbers of salient components are shown in Table 1).

Statistical Assessment of the Component
Distribution Pattern
The component distribution patterns of these salient components
(major, minor and pseudo) were further investigated using PCA.
The averaged center of the distribution of the salient components
and the first PCA component are superimposed on the z-scored
plots of salient components in Figure 7 (individual plots are
shown in Supplementary Figure 3). The average z-scoredMmax,
Cmax, and slope for the four methods were 3.1 ± 1.4, 0.6 ± 0.4,
and 0.29± 0.2, respectively, for subtraction-BSST/k [Figure 7(i)],
3.7 ± 1.4, 1.6 ± 0.5, and 0.14 ± 0.1, respectively, for weighted-
BSST/k [Figure 7(ii)], 0.8 ± 0.5, 1.6 ± 0.7, and −0.60 ± 0.4,
respectively, for subtraction-infomax [Figure 7(iii)], and 0.7 ±
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FIGURE 4 | Results from Subject 2. (A) Sensor space analysis using subtraction. Red and pink lines from MMR sensors (white circles) within the MMR time (purple

line) refer to the reference standard. Decomposition results are shown in (B) (i), (ii), (iii), and (iv) for subtraction-BSST/k , weighted-BSST/k , subtraction-infomax, and

weighted-infomax, respectively. Upper panels: source waveforms (ssub or s
ϕ ), lower panels: scatter plots of Mmax and Cmax for each component. The color map in the

scatter plot indicates the value of Cmax (from 0 to 1). In each decomposition result, three components are depicted in different colors (red, green, and yellow) with their

corresponding topographical maps. In the scatter plots, the arrows with the same color correspond to the components. These components were selected based on

the order of cumulation of the first three components (see subsection The Cumulative Back-Projection of Salient Components). Hereafter, the topographical map

takes an arbitrary unit due to matrix A in Eq. (2).

0.5, 1.6 ± 0.6, and −0.60 ± 0.4, respectively, for weighted-
infomax [Figure 7(iv); Table 1].

The rmANOVA results of the z-scored Mmax of the
center (Figure 8A) revealed a significant main effect of
DECOMPOSITION [F(1,9) = 76.9, p < 0.001], which
indicated that the z-scored Mmax in both BSST/k methods
was significantly larger than that in both infomax methods.
There was no significant interaction between APPROACH
and DECOMPOSITION [F(1,9) = 2.7, p = 0.1] or main
effect of APPROACH [F(1,9) = 0.9, p = 0.4]. These results
suggested that the salient components of both BSST/k

methods were located in the right quadrant, whereas
those of both infomax methods were located in the
left quadrant.

The rmANOVA results of the z-scored Cmax of the
center (Figure 8A) revealed a significant interaction between
APPROACH and DECOMPOSITION [F(1,9) = 60.4, p < 0.001]

and significant main effects of APPROACH [F(1,9) = 40.2, p
< 0.001] and DECOMPOSITION [F(1,9) = 9.7, p < 0.01]. The
post hoc analysis revealed that the z-scored Cmax of subtraction-
BSST/k was significantly lower than that of weighted-BSST/k

and those of both infomax methods (weighted-BSST/k, p <

0.0001; weighted-infomax, p < 0.0005; subtraction-infomax, p <

0.001). These results suggested that the salient components of the
weighted-BSST/k and both infomax methods were located at the
border between the upper and lower quadrants, whereas those of
the subtraction-BSST/k were located in the lower quadrant.

The rmANOVA results of the slope of the first PCA
component (Figure 8B) revealed a significant main effect of
DECOMPOSITION [F(1,9) = 65.5, p < 0.001], which indicated
that the slope in both BSST/k methods was significantly larger
than that in both infomax methods. There was no significant
interaction between APPROACH and DECOMPOSITION
[F(1,9) = 0.2, p = 0.6] and no main effect of APPROACH [F(1,9)
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FIGURE 5 | Back-projection of one component (q = 1, BSS107) from the weighted-BSST/k in Subject 2. The blue lines [xsub (n)] indicate the MMR difference sensor

waveform obtained using the conventional subtraction approach. The blue lines in the MMR sensors (bold black areas) within the MMR time range (blue shadows)

refer to the reference standard [xRef (n)]. After the back-projection of one component, the ERF was obtained [red lines, x
ϕ

DC

(

n, BSS107
)

]. The maximum of the

morphology similarity (Mmax) as the temporal resemblance of these two waveforms in each MMR sensor within the MMR time range were investigated. Two

representative right and left MMR sensors are shown (dotted area). n, discrete time.

= 2.4, p = 0.2]. These results indicated that the locations of the
salient components in both BSST/k methods had positive spatio-
temporal correlations regarding the MMR (i.e., the slope had
a positive value), whereas those of both infomax methods had
negative correlations (i.e., the slope had a negative value).

In conclusion, the distribution of the salient components

was mostly in the RU quadrant (major) with weighted-

BSST/k [Figures 6B(ii), 7(ii)], the RL quadrant (pseudo) with

subtraction-BSST/k [Figures 6B(i), 7(i)], and the LU (minor)

or RL (pseudo) quadrants with the two infomax methods
[Figures 6B(iii and iv), 7(iii and iv)]. Both BSST/k methods
[Figures 6B(i and ii), 7(i and ii)] showed positive spatio-temporal
correlations while both infomax methods showed negative
correlations [Figures 6B(iii and iv), 7(iii and iv)].

The Cumulative Back-Projection and
Relative Contribution
Figure 9 shows the results of Mave after cumulative back-
projection in a representative subject (Subject 2). The curvature
of the weighted-BSST/k [Figure 9(ii)] was steep in the first
component (c = 1, red arrow, corresponding to BSS107), which
suggested that in the weighted-BSST/k, only one component
contributed highly to the MMR. Note that this component
was a major component localized on the RU quadrant
[Figure 6B(ii)]. On a contrary, other components represent
a minimal increase in Mave [e.g., green and yellow arrows
from weighted-BSST/k in Figure 9(ii) or all three arrows
from two infomax methods in Figure 9(iii and iv)]. These
were either pseudo- or minor components (Figure 6B). In
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FIGURE 6 | Scatter plots of Mmax and Cmax for each component in the four methods for all subjects (A). Z-scored scatter plots represent the distribution pattern of

salient and inconsequential components (B). The four quadrants are divided by red dotted lines (z-score > 1.65 [90%]). Red, green and yellow arrows indicate the

corresponding components from Subject 2 in Figure 4.

addition, it is notable that the third component of subtraction-
infomax [Figure 9(iii), yellow arrow, corresponding to pseudo-
component in Figure 6B(iii)] negatively contributed to the
MMR. Moreover, the first component of subtraction-BSST/k

[Figure 9(i), red arrow] showed a mild increment in Mave,
which corresponds to this component being classified as a major
component in Figure 6B(i).

Supplementary Figure 4 shows the RC lines (upper panels)
together with their approximate lines (lower panels) in individual
subjects. In Subject 2, the approximate lines of the weighted-
BSST/k show that the first component (red arrow) represented a
contribution as high as 30%, whereas later components (green
and yellow arrows) provided much lower contributions. We
counted c, where the non-linear approximation reached the 5%
threshold (gray dotted lines; i.e., the dominant components).
The number of dominant components is shown in Table 2. In
the weighted-BSST/k, 1–3 components significantly contributed
to the MMR, except for one subject (Subject 5). In the
subtraction-BSST/k, 2–6 components contributed to the MMR.
The two infomax methods had few components that significantly
contributed to the MMR. These results indicated that one
or a few dominant components contributed to the MMR in
weighted-BSST/k, whereas no components represented the MMR
in infomax.

DISCUSSION

In the current multi-channel MEG study, we demonstrated
that our novel weighted-BSST/k method using only deviant
epochs (deviant concatenation) could extract an MMR confined
to one or a few dominant components (Figures 4, 6, 9,
Supplementary Figure 4, and Table 2). In the subtraction-
BSST/k/weighted-BSST/k, the salient components showed
positive spatio-temporal correlations with the MMR (Figures 7,
8, and Supplementary Figure 3). However, ICA decomposed
the MMR into an assembly of minor or pseudo components with
negative spatio-temporal correlations. Specifically, our method
avoids having to use the conventional subtraction approach to
reveal the MMR. Our method may help with the use of the MMR
in basic and clinical research.

The Conventional Subtraction Approach to
Reveal the MMR
The MMR has been widely used in many fields of human
neuroscience (10, 15, 16). Conventionally, the subtraction
approach was needed to extract the MMR from other auditory
ERP/ERF. However, there are several problems with such
a method, which include increased noise and the inability
to exclude neural adaptation. Several approaches have been
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FIGURE 7 | The averaged center of the distribution of the salient components and the slope of the first PCA component superimposed onto the z-scored plots of the

salient components. Red dotted lines indicate z-scores > 1.65 (90%). Error bars indicate standard errors (SE).

proposed to avoid the neural adaptation problem (53, 57);
however, all such approaches depend on subtraction. Our
novel approach avoids subtraction. In general, the MMR is a
relative component because a common response is included
in standard and deviant ERFs, and the MMR is then defined
as the difference waveform based on the original theory
underlying the MMR (i.e., the memory-comparison process).
The MMR should be present in deviant epochs but not in

standard epochs. Thus, only deviant epochs are needed for
its decomposition.

Periodical Arrangements and Weight
Assignments
We made two assumptions underlying the successful
decomposition of the weighted-BSST/k: (1) The MMR occurs
periodically within a specific time range (i.e., the MMR time
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FIGURE 8 | Z-scored Mmax of the center (A) (upper panel), z-scored Cmax of the center (A) (lower panel), and the slope of the first PCA component (B). Error bars

indicate standard errors. See Table 1 for each value. ** < 0.005.

range) and in the deviant epochs; (2) Exogenous/obligatory
ERFs highly correlate with themselves in the non-MMR time.
Originally, BSST/k was expected to highlight periodic signals
using T (35–38). The MMR time range (96–276ms) was defined
according to the spatio-temporal cluster permutation analysis,
which was assumed to reveal the statistically significant time
range in which the MMR occurs. Both the offset response of
the M100 and the MMR fall into this time range, whereas
the onset response of the M100 occurs outside of the time
range (Figure 3B). Assigning a weight to this time range may
minimize the joint M100 and MMR effect. The weighting
emphasizes the target response (i.e., the MMR) within the
window, whereas the response outside the window (i.e., the
onset of the M100) takes away the response (i.e., the offset
of the M100) if they are highly correlated. Analogous to the
subtraction approach (as subtraction separates such responses
by subtracting deviant responses from standard responses), the
weight assignment on a specific time range may differentiate
the MMR from other responses. Supplementary Data (2-1)

and Supplementary Figure 5 support our assumptions;
the assignment of the weight outside the M100 in the standard
epochs did not result in the extraction of remarkable components
that represent the M100 (Supplementary Figure 5B).

Significance of our Approach
We obtained four main findings. First, the weighted-BSST/k

decomposed one or a few components (< 3) that manifested
the MMR among the many components obtained from
multi-channel data (Figures 4, 6, 9, Supplementary Figure 4,

and Table 2). We refer to this decomposition result as
specification. Multi-channel recordings of electromagnetic
fields emerging from neural currents in the brain generate
large amounts of data (28). Thus, this specification makes
interpretation and comparisons among groups easier. Our
primary aimwas to extractMMR in a few dominant components.
The dominant component was the component that had the most
discriminable Mmax and Cmax, and thus, it contributed most
highly to the MMR (Figure 9, Supplementary Figure 4, and
Table 2). We do not assume that the dominant component
manifests a single MMR source; instead, it may represent
the network or a series of MMR sources (Figure 4). Other
irrelevant activities were redistributed among the remaining
components. Since our method (BSST/k) depends on the
theory that utilized correlations between components instead
of strong independence (i.e., ICA), it would result in extracting
components with keeping physiological correlation that may
represent several generators or network of MMR. If bitemporal
and frontal MMR sources are highly correlated, with a certain
delay, these sources should be extracted in a few components
using our time-delayed correlation method. Indeed, it is known
that these sources have separate temporal dynamics (58) but
interact with each other (59). In contrast, it is difficult to identify
any dominant components using ICA, where each extracted
component represents one or two dipolar sources. This is
discussed in the following section.

Second, the decomposed components revealed positive
spatio-temporal correlations regarding the MMR, and the center
of the distribution of the salient components was in the RU
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FIGURE 9 | The cumulative back-projection and result of Mave for the four methods in one subject (Subject 2). The order of cumulation is determined after sorting by

the first PCA component axis (Supplementary Figure 3). The number of components reconstructed depended on the number of salient components. Red, green

and yellow arrows indicate the corresponding components from Subject 2 in Figure 4.

(major) quadrant (Figures 6–8, Supplementary Figure 3, and
Table 1). According to Eq. (2), the decomposed component
contains the mixing matrix (spatial) and signal source
(temporal). A positive spatio-temporal correlation in the
decomposed component suggests that the component is
physiologically meaningful (9). In turn, with a positive spatio-
temporal correlation, a component that shows the most
similar morphology regarding the MMR also has the most
similar topography regarding the MMR. This relationship
is particularly important when targeting the response with
an unknown generator source. The temporal information
can be mutually applicable to the detection of the target,
without a priori knowledge of its precise generator. For
example, in Figure 4B(ii), if the MMR topography is unknown,
BSS107 can be selected as the MMR component based on its
discriminable amplitude.

Third, each component was obtained from individual data
and the results were statistically significant. This indicated that

weighted-BSST/k is generally applicable to individual subjects,
unlike group-ICA.

Fourth, a new cohort from subjects with low SNR in
the sensor-space analysis regarding MMR (subsection Spatio-
Temporal Cluster Permutation to Define the MMR Time
Ranges and Sensors or the Reference Standard) demonstrated
a few MMR-related components in weighted-BSST/k when the
same MMR time range was used for the weight assignment
[Supplementary Data (2-2) and Supplementary Figure 6]. This
MMR time range was independently determined in this cohort.
These results may indicate that the generous setting of the weight
time range can be available as long as the crucial time range
is covered.

Based on these results, the application of our approach
provides potential benefits that the sensor-space subtraction
method does not, despite its status as the current gold
standard for revealing MMR. Our single-trial, contrast-free
approach would minimize the effect of refractoriness and
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TABLE 2 | Numbers of dominant components.

Subject No. Subtraction-

BSST/k

Weighted-

BSST/k

Subtraction-

infomax

Weighted-infomax

Subject 1 5 2 None None

Subject 2 3 1 1 None

Subject 3 6 3 None None

Subject 4 2 2 None 1

Subject 5 3 None None None

Subject 6 3 1 2 None

Subject 7 4 2 None None

Subject 8 5 3 None None

Subject 9 4 1 None 1

Subject 10 4 3 None None

BSST/k , T/k (fractional) type of decorrelation method.

maximize the temporal information underlying the neural
mechanism of MMR. Our approach would therefore provide
a new approach toward investigating further insights into the
physiology of MMR.

Comparison With ICA
Both ICA methods (subtraction- and weighted-infomax)
consisted of a collection of minor or pseudo components
(Figures 4, 6, 9, Supplementary Figure 4, and Table 2). Most
components were located in the LU (minor) or RL (pseudo)
quadrants (Figures 6–8 and Table 1). The slope of the first
PCA component showed a negative spatio-temporal correlation
(Figures 7, 8, Supplementary Figure 3, and Table 1). There
were no dominant components that manifested the MMR in
either of the ICA methods (Table 2). The decomposition method
in ICA is based on stochastic properties and does not depend on
the time structure; thus, spatio-temporal dissociations may occur
(34). Several papers have reported successful decomposition
of the MMR using ICA (9, 25, 60–64); however, most results
were derived from oligo-channel recordings. When the number
of sensors/channels sensing the MMR is relatively small, the
MMR can be extracted by one or a few components. However,
such specification in multi-channel data is rarely shown in ICA
studies because a greater number of channels results in poorer
estimation accuracy of the components (25). If we assume
fewer numbers of sources (e.g., tens) but use larger numbers
(204) of sensors for ICA decomposition, the components of
interest will likely be (i) split into sub-components and (ii)
located where the SNR of each component is reduced. This is
consistent with our previous work where ICA decomposition
showed fragments of interictal epileptiform discharges from a
single epileptogenic zone (42). Furthermore, most ICA studies
are based on cluster analysis (e.g., group-ICA), not individual
analysis. Generalization of the application of ICA to the MMR
was not demonstrated in these studies.

Lastly, although subtraction-BSST/k follows the conventional
subtraction approach, it performed better than the two ICA
methods, especially the subtraction-infomax. The center of the
distribution of the salient components was in the RL quadrant
(pseudo), yet it maintained a positive spatio-temporal correlation

(Figures 6–8, Supplementary Figure 3, and Table 1). A possible
interpretation of these findings is that these components
may represent the partial generators of MMR sensors. The
difference between subtraction-BSST/k and subtraction-infomax
may explain the theoretical difference between BSST/k and
infomax (time-delayed correlation vs. strong independence). The
decomposition of the subtraction-BSST/k was less successful
than that of the weighted-BSST/k. There were more dominant
components (< 6; Table 2) in the subtraction-BSST/k than
there were in the weighted-BSST/k. From the viewpoint of
specification, fewer dominant components are desired. In
conclusion, both BSST/k methods, which use time structure,
performed well in extracting the MMR; however, the weighted
approach was the most sensitive.

Future Perspectives
The current study aimed to extract the MMR as a distinct
component using a combination of the periodical arrangement
and assignment of a weight. The specific effect of each
technique should be investigated in a future study, which
may help achieve a better understanding of the physiology of
the MMR.

Because there was no confidence in terms of source
localization of extracted components, although there are several
ICA and SOBI studies (9, 32, 41), this view may provide
potential benefits given that components may encompass several
sources or networks of MMR. This should be investigated in
future studies.

Our method is not dependent on the number of components.
Our motivation was not to apply dimension reduction to
maximize themulti-channel MEG data. However, the application
of our method to different numbers of sensors, different
MEG systems, or another type of sensor (magnetometer) is
an interesting but open question. Theoretically, our weighted
method can possibly be applied to any clinical neurophysiology
data to investigate ERFs, which include higher cognitive
functions where the elicitation of the target requires subtraction,
and the target is subject to a specific assumption about the
time window in which it occurs in multi-channel data. In a
paradigm where stimuli are jittered and thus are not periodic,
our weighted method will also be applicable by concatenating
the epochs.

LIMITATIONS

There are several methodological concerns to our study: (i) The
spatio-temporal cluster permutation provided several clusters
(Figure 3A); however, we did not select all of these. We selected
the most reliable clusters that covered 100–250ms and the
bitemporal sensors (7, 17) since the vast majority of EEG studies
of MMR generators confirmed these; however, the parietal
generator in the later latency (e.g., Figure 3A Clusters #5 and
#6) was suggested in several studies (9, 10) and should be
investigated in a future study. (ii) The SOA of the current study
was relatively short so that the brain response could return
to the baseline. This short time range may have concatenation
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artifacts when deviant concatenation. However, in the weighted-
BSST/k method, the amplitude outside of the window was 0.2
(Eq. 9). Therefore, concatenation artifacts, if any, should be
limited. (iii) The window function was set as a rectangular
window, which may cause a tingling effect. The selection of
a window function should be based on a hypothesis; in the
current study, we assumed that the crucial time range of MMR
is equally distributed at 96–276ms based on our data-driven
approach, even though this time range is not assumed to have a
unique significance. However, the non-rectangular window can
be used according to the hypothesis. Therefore, we uploaded
the source code of weighted-BSST/k to GitHub (https://github.
com/fractionalTypeBSS/BSSTk.git) to enable users to apply it
according to their hypothesis and select so that users can use
it based on their hypothesis to choose the window function
and time range. (iv) The sample size was relatively small
for fully describing the performance of our new approach.
However, generalization, as well as the validity of our approach,
is supported by our additional analysis in a separate cohort
[Supplementary Data (2-2) and Supplementary Figure 6].

CONCLUSIONS

We proposed a novel weighted method for extracting the
MMR from multi-channel MEG data. Compared with ICA, our
weighted-BSST/k method was more sensitive in highlighting the
MMR in one or a few dominant components with positive
spatio-temporal correlations. This new approachwhich used only
deviant epochs could replace or complement the conventional
subtraction approach. Our method may facilitate the use
of the MMR in basic and clinical research and provide a
novel approach to analyze complex event-related MEG and
EEG data.
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