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ABSTRACT: Targeted therapy revolutionizes the treatment of non-small-cell lung cancer (NSCLC), harboring molecular change.
Epidermal growth factor receptor(EGFR) mutations play a crucial role in the development of NSCLC, serving as a pivotal factor in
its pathogenesis. We elucidated the mechanisms of resistance and potential therapeutic strategies in NSCLC resistant to the EGFR-
tyrosine kinase inhibitor (EGFR-TKI). This is achieved by identifying rare missense variants through whole exome sequencing
(WES). The goal is to enhance our understanding, identify biomarkers, and lay the groundwork for targeted interventions, thereby
offering hope for an improved NSCLC treatment landscape. We conducted WES analysis on 16 NSCLC samples with EGFR-TKI-
resistant NSCLC obtained from SRA-NCBI (PRJEB50602) to reveal genomic profiles within the EGFR-TKI. Our findings showed
that 48% of the variants were missense, and after filtering with the Ensembl variant effect predictor, 53 rare missense variants in 23
genes were identified as highly deleterious. Further examination using pathogenic tools like PredictSNP revealed 12 deleterious rare
missense variants in 7 genes: ZNF717, PSPH, ESRRA, SEMA3G, PTPN7, CAVIN4, and MYBBP1A. Molecular dynamics simulation
(MDS) suggested that the L385P variant alters the structural flexibility of ESRRA, potentially leading to unfolding of ERRα proteins.
This could impact their function and alter ERRα expression. These insights from MDS enhance our understanding of the structural
and dynamic consequences of the L385P ESRRA variant and provide valuable implications for subsequent therapeutic
considerations and targeted interventions.

1. INTRODUCTION
Lung cancer ranks as the second most frequently diagnosed
cancer and the primary cause of cancer-related deaths globally.
According to the Global Cancer Observatory (GLOBOCAN),
about 2.2 million (11.4%) people were newly diagnosed with
lung cancer in 2020, with 1.8 million (18%) deaths reported.1

As per the GLOBOCAN data for India in 2020, approximately
72,510 individuals, constituting 5.5% of the total, prevailing
new lung cancer diagnoses. The confirmed deaths associated
with lung cancer amounted to 66,279, representing 7.8% of all
cancer-related deaths. The five-year prevalence across all age
groups reached 80,817. Lung cancers are typically categorized
into two primary types: small-cell lung cancer and non-small-
cell lung cancer (NSCLC). NSCLC constitutes approximately
80−85% of all lung cancer cases and can be further classified

into lung adenocarcinoma, squamous cell carcinoma (SCC),
and large cell carcinoma. Patients with metastatic cancer have a
5 year survival rate of only 6%.2

The presence of oncogene drivers in NSCLC indicates the
existence of a distinct subgroup of patients who stand to gain
substantial benefits from targeted therapy, particularly in
advanced and metastatic stages. Individuals with actionable
gene mutations undergoing treatment with targeted agents
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exhibited a noteworthy enhancement in overall survival rates
and a reduced mortality risk compared to counterparts who did
not receive targeted treatment or lacked oncogene addiction.3

With the investigation into activating mutations within the
tyrosine kinase domain of epidermal growth receptor (EGFR),
there has been a burgeoning identification of activating
oncogenic alterations in NSCLC. These alterations include
ALK, ROS-1, BRAF, RET, MET, and ERBB2, each with
obvious implications for treatment choices and patient survival.
Notably, some of these alterations have received approvals for
NSCLC treatments from regulatory bodies such as the Food
and Drug Administration and the European Medicines
Agency.4 Despite the remarkable efficacy of these targeted
medications, all patients eventually experience disease
progression due to inherent or acquired resistance mecha-
nisms.5

The mutated EGFR typically indicates the tumor’s
susceptibility to tyrosine kinase inhibitors (TKIs). Regrettably,
tumor recurrence or the emergence of TKI resistance is a
common occurrence. Consequently, three generations of TKIs
have been developed in response to this challenge.6 Gefitinib
and erlotinib, the initial EFGR TKIs of the first generation,
have demonstrated remarkable efficacy in NSCLC patients
with EGFR exon 19 deletions/L858R mutations. Nevertheless,
primary TKI resistance is observed in approximately 10% of
NSCLC cases. Furthermore, nearly half of the patients treated
with EGFR-TKIs develop T790M mutations upon resistance
to TKI treatment.7,8 Second-generation EGFR-TKIs, including
afatinib, neratinib, and dacomitinib, demonstrate inhibitory
action against EGFR by forming covalent bonds with the
Cys797 residue, leading to irreversible kinase inhibition. These
TKIs have demonstrated increased anticancer efficacy
compared to first-generation TKIs. However, their effective-
ness is limited due to the frequent development of drug
resistance, particularly when targeting the T790M EGFR
mutation.9 Osimertinib, an irreversible third-generation oral
EGFR-TKI, exhibits potent and selective inhibition of EGFR
with exon 19 deletions/L858R mutations and EGFR T790M
resistance mutations. Clinical trials have demonstrated the
effectiveness of Osimertinib in individuals with NSCLC
possessing EGFR with exon 19 deletions/L858R and T790M
mutations, even those with central nervous system metastases.
It has demonstrated enhanced progression-free survival (PFS)
compared to other EGFR-TKIs like erlotinib or gefitinib.10

The emergence of acquired EGFR C797S, an on-target
resistance mechanism observed after exposure to irreversible
inhibitors, is frequently noted in 24% of patients receiving a
second-line or subsequent Osimertinib treatment. Acquired
mutation rates for PIK3CA, KRAS, and BRAF were typically in
line with the rates reported in the second-line Osimertinib
treatment.10−12 In addition to EGFR T790M, the reported
acquired resistance mechanisms, including MET amplification
and HER2 amplification, align with the resistance mechanisms
observed in response to first- and second-generation EGFR-
TKIs. Diverse resistance mechanisms emerged in patients
treated with Osimertinib.13,14 Understanding individual tumor
heterogeneity and the evolutionary pressures linked to different
therapies have proven highly valuable in shaping future
treatment strategies for patients with oncogene-addicted
NSCLC.15 The rapid, high-throughput, and precise nucleic
acid insights provided by next-generation sequencing have
significantly advanced our understanding of cancer biology and
expanded therapeutic possibilities.16 Whole exome sequencing

(WES) focuses on the protein-coding region of the genome,
allowing the identification of variants impacting protein. This
targeted approach, capturing key disease-causing mutations,
reduces sequencing costs, making exome sequencing a
clinically viable option for patient diagnostics.17

In light of the significant obstacle posed by drug resistance in
NSCLC, there is an urgent imperative to explore the disparities
of the EFGR-TKI resistance mechanisms and characterize the
genomic patterns of EGFR-TKI-resistant patients using WES.
Additionally, the aim is to identify the deleterious rare
missense variants in EGFR-TKI-resistant patients through in
silico pathogenicity assessment. Subsequently, molecular
dynamics simulations (MDSs) will study the structural and
functional impact of the identified deleterious variant.

2. MATERIALS AND METHODS
2.1. Data Collection and Preprocessing. We searched

the NCBI-SRA database for WES data sets of EGFR-mutated
TKI resistant NSCLC samples.18 From PRJEB50602, we
found the 16 pair-end FASTQ reads of WES data with EGFR-
mutated erlotinib TKI-resistant lung adenocarcinoma tissue
samples (Homo sapiens), which were processed from the
Illumina HiSeq 2500 platform.19 These raw reads were further
downloaded from the database using a sequence read archive
(SRA) toolkit.20 Supplementary Figure 1 depicts the entire
study workflow. The FASTQ files comprise raw reads
originating from millions of DNA fragments. The data were
refined employing filters to eliminate adaptor sequences,
unwanted contaminant sequences, and low-quality bases. The
trimmomatic tool accurately clips contaminant sequences and
low-base quality bases from the reads.21 The fundamental
quality of the raw sequence data was then checked using the
FastQC tool (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/).
2.2. Variant Calling, Filtering, and Annotation. The

sequence reads were aligned to the reference human genome
GRCH38 using the Burrows-Wheeler Aligner−Maximal Exact
Matches (BWA−MEM).22 This alignment resulted in a
sequence alignment/map file compressed to its binary
counterpart, a binary alignment/map (BAM) file using the
Samtools view. Subsequently, it sorted the BAM file using
Samtools sort. Samtools mpileup was then used to generate the
mpileup file from the sorted BAM file. Employing a BCFtools
call on the pileup file generated an output file in the variant call
format (VCF) to call the variants. The SAMtools variant caller
was employed in this study to identify single nucleotide
polymorphisms (SNPs) and insertions/deletions.23 Unlike
various aligners and variant callers, BWA-MEM and SAMtools
exhibited superior performance, particularly in Illumina data
sets. The mutations obtained were documented in VCF or
binary call format files, serving as inputs for subsequent
analyses, such as the annotation of variant effects on encoded
proteins. Functional annotations were performed against the
Ensembl database using the Ensembl variant effect predictor
(VEP).24 The VEP tool provided information on genes and
transcripts affected by the variants, their locations, coding
consequences, and additional insights from tools like SIFT,
PolyPhen-2, and gnomAD allele frequency (AF). The SIFT
tool predicts the impact of an amino acid substitution on
protein function. The prediction is based on the physicochem-
ical similarity of the alternative amino acids and sequence
homology. Each substitute receives a grade and a qualitative
assessment as either “tolerated (≥0.05)” or “deleterious
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(<0.05)”. The PolyPhen-2 tool estimates the impact of an
amino acid change on the structure and function of a protein
using sequence homology, Pfam annotations, 3D structures,
and several other databases. For each amino acid substitution,
PolyPhen-2 provides a qualitative prediction and a score such
as probably damaging (>0.908), possibly damaging (>0.446
and ≤0.908), benign (≤0.446), or unknown.
2.3. In Silico Evaluation of Rare Missense Variants.

The PredictSNP web server was used to characterize the
functional nonsynonymous single nucleotide polymorphisms
(nsSNPs). Compiled from three distinct data sets by rectifying
discrepancies, duplications, and previously used mutations, it
utilized a standard data set of over 43,000 mutations for
unbiased evaluation. Eight widely recognized prediction tools
were assessed: nsSNPAnalyzer, MAPP, PANTHER, PolyPhen-
1, PhD-SNP, PolyPhen-2, SIFT, and SNAP. The six top-
performing tools were integrated into a consensus classifier,
PredictSNP. This approach significantly improved prediction
accuracy and provided rapid results for all mutations,
demonstrating that consensus prediction offers a reliable and
robust alternative to individual tool predictions.25

2.4. Biophysical Characteristic, Evolutionary Con-
servation, and Protein Stability Analysis. A missense
substitution’s biological effects can be correctly predicted using
Align-GVGD, a biophysical characterization method that
integrates protein multiple sequence alignments with the
biophysical characteristics of amino acids. A GVGD assesses
trans-activity by evaluating Grantham variation (GV), which
quantifies biochemical diversity within amino acids, and
Grantham deviation (GD), indicating the biochemical gap of
the mutant amino acid from the observed one at a specific
position. The tool categorizes substitutions based on their GD
values, predicting their GD values as neutral, deleterious, or
unclassified. A GD of 0 (GV > 61.3 and 0 < GD ≤ 61.3) is
considered neutral. Conversely, the missense substitution is
deemed deleterious if GV = 0 and GD is greater than 0.26

Seven classes were established from them. C0 is probably
neutral or benign, and C15, C25, C35, C45, CSS, and C65 are
probably deleterious or pathogenic.27 This analysis provides
insights into the potential impact of missense substitutions on
the protein function.
The ConSurf online tool assessed the evolutionary

conservation of amino acid positions by assigning a rating
between 1 (indicating the most changeable position) and 9
(indicating the most conserved position) for each position.28

The assessment of protein stability was conducted through I-
Mutant2.0, a tool that anticipates the influence of amino acid
substitutions on protein stability, providing an ΔΔG value
(free energy change). The ΔΔG value represents the energy
difference between the folded and unfolded protein structures.
A positive ΔΔG value suggests that the mutation enhances
protein stability, while a negative value indicates decreased
stability.29 This analysis aids in identifying the potential
influence of amino acid changes on the overall stability of the
protein.
2.5. Prediction of Harmful Variants. We utilized the

MutPred tool to analyze the target protein sequence in the
FASTA format and predict the deleterious effects of rare
missense variants. The MutPred tool, designed for predicting
the impact of single-site mutations as disease-related or neutral
in humans, relies on protein structure, function, and evolution.
MutPred2 scores range between 0 and 1, with a higher score
indicating a greater propensity to be pathogenic. It employs a

random forest method, providing a “g” score for deleterious
substitutions and a “p” score for molecular mechanism
distribution.30

2.6. Molecular Dynamics and Simulation. The MDS
employed the CHARMM27 force field within the GROMACS
package version 2021.2.31,32 The crystal structure of the
estrogen-related receptor α (ESRRA or ERRα) protein (PDB
ID: 3K6P) and the wild-type (WT) protein structure was used,
with the water and ligand coordinates removed and filled
missing residues.33 Variant L385P protein structures were
generated from the WT structure using the mutate tool option
in the Swiss-Pdb viewer. The systems were solvated with a
cube-shaped container of TIP3P water molecules, and
neutralization was achieved by adding 48 Na+ and 39 Cl−
counterions with water molecules. The steepest descent energy
minimization was applied to each system following neutraliza-
tion until the maximum force dropped below 500 kJ mol−1
nm−1. Two position-restrained MDS (NVT and NPT) were
then conducted to equilibrate the ions and solvent surrounding
the proteins. The temperature and pressure of the systems
were controlled at 300 K and 1 bar, respectively, by using a
Parrinello−Rahman barostat and V-rescale thermostat. Sub-
sequently, each system underwent an unrestrained MDS (MD
production run) lasting 500 ns with the same parameters as
those of the previous simulations with positional constraints.
Hydrogen atom bonds were constrained with the LINCS
algorithm, and long-range electrostatic interactions were
managed using the particle mesh Ewald method.34,35 The
cutoff distances for Lennard-Jones and short-range and long-
range electrostatic interactions were uniformly set to 12 Å.
Integration of Newton’s equations of motion was performed
with a time step of 2 fs.
2.7. Trajectory Analysis and Visualization. Trajectory

analyses were conducted using the GROMACS package
2021.2. Several parameters, including root-mean-square
deviation (rmsd), root-mean-square fluctuation (RMSF), the
radius of gyration (Rg), solvent-accessible surface area (SASA),
and intramolecular hydrogen bonds (H-bonds), were evaluated
using specific GROMACS tools such as gmx rmsd, gmx rmsf,
gmx gyrate, gmx sasa, and gmx hbond. Principal component
analysis (PCA) was performed using gmx covar and gmx
anaeig. For free energy landscape (FEL) analysis, the all-atom
backbone of the protein was calculated. It utilized the gmx
sham of the GROMACS to compute the Gibbs free energy and
construct the FEL. The secondary structural element (SSE)
pattern was estimated using the (gmx dssp) DSSP program
within the GROMACS.

3. RESULTS
3.1. Exome Sequencing Screening the Rare Missense

Variants. The downloaded paired-end WES FASTA files of 16
NSCLC with EGFR-TKI erlotinib-resistant samples were
analyzed to identify rare missense variants. The Supplementary
Table 1 contains the details of the sample. We meticulously
evaluated the sequenced reads, both before and after the
trimming of low-quality reads using FastQC. Subsequently, we
aligned the reads to the GRCH38 reference genome using a
BWA-MEM aligner, achieving a consistent overall alignment
rate of 85% in each sample. We then executed indexing,
sorting, and variant calling operations using Samtools. The
resulting VCF file was then enhanced with annotations using
the VEP. The WES analysis found an average of 243464.4375
single nucleotide variations in the 16 NSCLC samples. We
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have identified an average of 101974.5 (41.8%) novel and
167066.9 (68.6%) existing genetic variants in 16 NSCLC with
EGFR-TKI erlotinib-resistant samples. Supplementary Table 2
contains each sample’s total variants, including novel and
existing variants in numbers and also mentioned in
percentages. The distribution of consequence variants in 16
NSCLC EGFR-TKI-resistant samples, on average, is presented
in Figure 1A. Similarly, the overall coding consequence variants
obtained from this study were averaged and shown in Figure
1B. Among these coding consequence variants, we screened
the missense variants with gnomAD AF less than 1%, SIFT as
deleterious (<0.05), and PolyPhen as probably damaging
(>0.908) in each sample to identify the deleterious missense
rare variants of EGFR-mutated TKI-resistant NSCLC patients.
We further prioritized and constructed the heatmap from the
obtained deleterious missense variant-encoded genes by
considering if the genes were present in more than or equal
to three samples, which were significantly missense rare
variant-enriched genes in these data. After prioritization, we
found 53 deleterious rare missense variants in 23 genes, as
illustrated in Figure 2. Detailed information on these genes and
their variants, along with the gnomAD AF values, SIFT, and
PolyPhen-2 scores, are provided in supplementary Table 3.
3.2. Prioritizing the Functional Rare Missense

Variants. We used the PredictSNP tool, which utilizes the
nsSNPAnalyzer, MAPP, PolyPhen-1, PhD-SNP, PolyPhen-2,
SIFT, SNAP, and PANTHER, to determine the deleterious
variants that can significantly alter the structure or function of
the proteins. Out of 53 rare variants, 12 variants in 7 genes
were deemed deleterious in 7 or 8 tools (Table 1). The
nsSNPAnalyzer tool showed unknown results for all the rare
variants. Align GVGD predicts the functional impact on
protein as deleterious in seven rare variants belonging to C65
(Table 2). Consurf predicted that six rare variants are located

in evolutionarily most conserved positions (score = 9) of the
proteins (Table 2). I-Mutant2.0 predicted that 11 rare variants
showed a decreased stability of the proteins upon substitutions,
whereas 1 rare variant (ESRRA L385P) showed increased
stability (Table 2). From our analysis, three rare variants were
found to be highly deleterious, which were further validated
using MutPred2. It predicts the pathogenicity of amino acid
substitutions and their molecular mechanisms. MutPred2
predicted that ESRRA “L385P” obtained a higher score
(0.961), which indicates a greater propensity to be pathogenic
than the others (Table 3).
3.3. MDS Trajectory Analysis. 3.3.1. rmsd and RMSF

Analyses. To investigate the impact of L385P mutation on the
molecular functions of ESRRA protein, MDS lasting 500 ns
were carried out for the ESRRA wild-type (WT) and L385P.
rmsd of the backbone atoms was generated to assess the
convergence of the MD trajectories. The rmsd plot revealed
that the WT and L385P ESRRA proteins reached stable
trajectories after 150 ns (Figure 3A). The rmsd mean and
standard deviation of the WT and L385P were 0.33 ± 0.04 and
0.28 ± 0.02 nm, respectively (Figure 3B). The graph indicates
that the L385P mutation has a lower rmsd than the WT,
suggesting a minimal difference in the average values. rmsd
analysis leads us to conclude that our simulation results are
consistent and reliable for further dynamic property analysis.
RMSF analysis was performed to examine the broad

overview of the protein’s flexible regions and to assess the
impact of L385P mutation on protein residue dynamics. We
observed reduced RMSF values around the R1 (285−300
residues) and R3 (400−410 residues) regions of L385P than
the WT, indicating that mutation reduced these regions’
flexibility. Subsequently, we found higher RMSF values around
the R2 (365−390 residue) region of L385P than in the WT,
suggesting that mutation increased the flexibility in this region

Figure 1. (A) Pie chart represents the average of 16 NSCLC samples. Consequence variant types that are involved in the overall NSCLC EGFR
resistance samples. (B) Pie chart represents the average of 16 NSCLC samples. Coding consequence variant distributions in percentage.
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of L385P (Figure 3C). The RMSF mean and standard
deviation of the WT and L385P were 0.14 ± 0.09 and 0.13 ±
0.08 nm, respectively (Figure 3D). However, the average
RMSF was slightly decreased in L385P, and the overall change
in the protein’s flexibility was insignificant upon the mutation.

3.3.2. Rg and SASA Analyses. The Rg provides insight into
the spatial arrangement of atoms around a central axis, with
more compact structures exhibiting lower Rg values and less
compact structures exhibiting higher Rg values. The Rg mean
and standard deviation of the WT and L385P were 1.73 ± 0.01
and 1.77 ± 0.01 nm, respectively (Figure 4A,B). In these cases,
the Rg value for L385P was higher, indicating that the protein
has a more expanded or open conformation. Rg suggests that
the L385P mutation caused an ESRRA protein to adopt a less
compact structure than the WT, suggesting increased flexibility
and less stability. The SASA computation involves assessing a
protein’s surface area that is accessible to the solvent and the
buried surface area that is not accessible. We investigated the
SASA of both the WT and L385P mutations of ESRRA to gain
insights into their conformational dynamics throughout the
simulation. The SASA mean and standard deviation of the WT
and L385P were 109.02 ± 2.13 and 111.50 ± 2.52 nm2,
respectively (Figure 4C,D). L385P exhibited a slightly higher
SASA value than the WT, confirming changes in the structure
and increased solvent accessibility of the surface residues.

3.3.3. Intramolecular H-Bond and PCA Analyses. The
stability of the protein’s dynamic system was notably

influenced by hydrogen bonds (H-bonds), which play a
significant role in determining the most stable conformation.
The intramolecular H-bond mean and standard deviation of
the WT and L385P were 150.68 ± 5.94 and 147.76 ± 6.62,
respectively (Figure 5A,B). The WT has more intramolecular
H-bonds than L385P, indicating that the WT is more stable or
has a conformation different from that of the mutant. This
conformation could potentially lead to differences in their
function. PCA was employed to comprehensively understand
dynamic properties based on MDS outcomes. The projection
of the first two eigenvectors (PC1 vs PC2) for the WT and
L385P forms was carried out to expose the movements of the
atoms. The resulting projection in phase space revealed that
L385P forms a different cluster than the WT, suggesting a
change in the conformational space upon mutation. The plot
in Figure 5C,D distinctly shows that L385P occupies a smaller
space in phase space, whereas the WT occupies a larger space.
This analysis sheds light on the dynamics and conformational
changes in the proteins during the simulation.

3.3.4. Rg vs SASA Using a Kernel Density Estimation Joint
Plot Analysis. Integrating analyses of both Rg and SASA offers
a comprehensive view of a biomolecule’s structural dynamics.
The relationship between the Rg and SASA for L385P and WT
ESRRA is graphically depicted by using a kernel density
estimation joint plot (Figure 6). The most densely occupied
conformations for the WT were identified at SASA 108 nm2

and Rg 1.73 nm, whereas for the L385P mutant, they were

Figure 2. Heatmap of 53 deleterious rare missense variants across 23 genes in the WES of 16 EGFR-TKI-resistant NSCLC patients. Each row
corresponds to a gene, and each column corresponds to the sample ID of NSCLC patients. Here, the gradient from darker blue to light blue
signifies the number of deleterious rare missense variants within a specific gene. Horizontal bar graphs display the percentage of genes containing
deleterious rare variants in the studied population. Vertical bar graphs depict the number of genes harboring deleterious rare variants within
individual patients.
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observed at SASA 111 nm2 and Rg 1.77 nm. The results
revealed that an elevation in the SASA, coupled with an
augmentation in the Rg, signifies the potential unfolding or
expansion of the molecule.

3.3.5. FEL and Secondary Structure Analyses. The Gibbs
free energy changes were assessed by analyzing the FEL
through two principal components for the WT and L385P to
explore the conformational behavior. The deeper shades of

Table 1. Prediction Derived from PredictSNP Encompasses 53 Rare Variants across 23 Genesa

gene symbol missense variant existing variation PredictSNP MAPP PhD-SNP Poly-Phen-1 Poly-Phen-2 SIFT SNAP PAN-THER

ZNF717 V22A* rs75138373 DEL DEL DEL DEL DEL DEL NEU DEL
V29M rs73117241 DEL NEU DEL DEL DEL DEL NEU DEL
L39V* rs879105149 DEL DEL DEL DEL DEL DEL NEU DEL
R350C rs1962893 NEU DEL NEU NEU NEU NEU DEL NEU
L410V* rs193921040 DEL DEL NEU DEL DEL DEL DEL DEL
T614I* rs796390112 DEL DEL NEU DEL DEL DEL DEL DEL
T837K* rs908906825 DEL DEL NEU DEL DEL DEL DEL DEL

PSPH R65H* rs200442078 DEL DEL DEL DEL DEL DEL DEL NEU
L68P* rs78067484 DEL DEL DEL DEL DEL DEL DEL NEU

ESRRA R376L rs201971362 NEU NEU DEL NEU NEU NEU NEU NEU
L385P* rs201072913 DEL DEL DEL DEL DEL DEL DEL UNK
L388F rs79204587 DEL DEL DEL DEL DEL DEL NEU UNK
R389C rs80310817 DEL DEL DEL DEL NEU DEL DEL UNK

CEL F80S rs371426439 DEL NEU NEU DEL DEL DEL DEL UNK
I485T rs77696629 NEU NEU NEU NEU NEU DEL NEU UNK

IL16 E459K rs200730945 DEL NEU DEL DEL DEL NEU UNK -NA-
COL6A5 D442V rs754422889 DEL -NA- DEL DEL DEL DEL DEL UNK

A581V rs201277707 DEL -NA- DEL NEU NEU DEL DEL UNK
R1180C rs543746446 DEL -NA- DEL DEL NEU DEL DEL UNK
T1884R rs553758826 DEL DEL DEL NEU DEL DEL DEL UNK

SEMA3G R169W* rs149481070 DEL DEL DEL DEL DEL DEL DEL DEL
P375S rs766164256 DEL NEU DEL DEL DEL DEL DEL UNK
K385S rs1271717265 NEU NEU NEU NEU NEU DEL NEU UNK

ACAD10 P448H rs370592166 DEL NEU DEL DEL DEL DEL NEU UNK
ARRDC4 R391Q rs575728067 NEU NEU DEL NEU DEL NEU NEU UNK
COL15A1 K1001R rs35544077 NEU -NA- NEU DEL DEL NEU NEU UNK

P1192S rs142838918 NEU NEU NEU NEU NEU NEU NEU UNK
SMPD4 F484V rs148027738 DEL DEL DEL NEU DEL DEL DEL NEU
CXCR1 F211L rs142076386 NEU DEL NEU NEU DEL DEL NEU UNK
PTPN7 G43D rs751583629 DEL NEU DEL DEL DEL DEL DEL UNK

R76C* rs372590798 DEL NEU DEL DEL DEL DEL DEL DEL
G160R rs753470838 NEU -NA- NEU NEU DEL DEL NEU UNK

DNMBP A250T rs368686292 DEL DEL DEL NEU DEL NEU DEL NEU
N1156S rs147671401 NEU NEU NEU NEU DEL DEL DEL NEU
R1256C rs1299200147 DEL NEU NEU DEL DEL DEL DEL DEL

DRC7 T815M rs115337501 DEL NEU NEU DEL DEL DEL NEU UNK
CAVIN4 H79L* rs775953195 DEL DEL DEL DEL DEL DEL DEL DEL

P228L rs144516649 NEU NEU NEU NEU DEL DEL NEU DEL
NLRX1 L679V rs200846476 DEL DEL NEU DEL DEL DEL NEU UNK
MYBBP1A R671W rs139356015 DEL NEU NEU DEL DEL DEL NEU DEL

L883M* rs375427927 DEL DEL NEU DEL DEL DEL DEL DEL
CGN R267C rs575514202 NEU NEU NEU NEU NEU DEL NEU UNK

D959Y rs769053104 DEL DEL NEU DEL DEL DEL NEU UNK
R1158C rs200436542 DEL DEL NEU DEL DEL DEL DEL UNK

ANKK1 T496N rs201207634 NEU NEU NEU NEU NEU DEL DEL NEU
SCART1 R184C rs377020560 DEL -NA- DEL DEL DEL DEL DEL UNK

G627S rs1057384230 DEL DEL DEL NEU DEL DEL DEL UNK
A835T rs1051072711 NEU DEL DEL NEU NEU NEU NEU UNK

ITLN2 A140V rs137860437 DEL DEL NEU DEL DEL DEL NEU UNK
P289L rs763748248 DEL DEL DEL NEU DEL DEL DEL UNK
D299Y rs1475168897 DEL DEL DEL DEL NEU DEL DEL UNK

IGSF10 Y2504C rs561757162 DEL DEL DEL DEL DEL DEL UNK -NA-
D2614N rs112889898 DEL DEL NEU DEL DEL DEL UNK -NA-

aDEL�Deleterious; NEU�Neutral; UNK�Unknown; NA�not available; missense variant marked with an asterisk (*) indicate predictions of
deleterious by seven or eight tools.
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blue in the plots indicate different conformational states with
lower energy levels. The WT exhibits single basins (deeper
shade of blue), indicating a more stable conformational state
with lower energy, while L385P exhibits two distinct basins,
indicating two different stable conformational states (Figure
7A,B). From this, we found that the WT has a dominant and
highly stable conformation, unlike the more diverse and
flexible conformational landscape with two stable states. The
SSE analysis involves calculating and characterizing several
structural elements based on the protein’s three-dimensional
structure, such as α-helices, β-sheets, turns, bends, and coil
regions. We employed the DSSP classification method to
determine the SSE for individual amino acids in both the
L385P mutant and WT ESRRA proteins. The temporal
evolution of these elements is illustrated in Figure 8. The
segment of residues 392-402 (S1 region) in the WT exhibits a
five-helix, undergoing a shift to turns and α-helix due to the
L385P mutation. The segment of residues 282-298 (S2 region)
in the WT exhibits β-sheets altered to bends and turns upon
the L385P mutation. The segment of residues 242-256 (S3
region) in the WT exhibits α-helix, altered to bends and turns
upon the L385P mutation. Overall, we found that the SSE
values of L385P and WT ESRRA proteins exhibited negligible
changes.

4. DISCUSSION
Mutations in the EGFR gene were recognized as oncogenic
drivers in lung cancer, significantly altering the diagnosis and
treatment. The EGFR mutations, found in about 10% of
Caucasian and up to 50% of Asian NSCLC patients, exhibit a
higher prevalence in women, nonsmokers, and those with

adenocarcinoma.36 In advanced NSCLC with EGFR muta-
tions, TKIs like erlotinib, gefitinib, and afatinib initially offer
prolonged PFS compared to chemotherapy but resistance
often emerges within a year. Osimertinib is a second-line
option for T790M-positive cases, and intercalated regimens
show extended survival. Accurately assessing a patient’s
likelihood of progressing on TKI therapy remains challenging
but is vital for personalized treatment and optional out-
comes.37 An earlier study found that EGFR mutant lung SCC
patients responded less favorably to EGFR-TKI treatment than
to EGFR mutant lung adenocarcinoma.
In lung SCC, the concurrent presence of EGFR mutations

along with mutations in the CREBBP, ZNF217, or Wnt
pathway was found to correlate negatively with PFS.38 An
earlier study suggests that the occurrence of the EGFR T790M
mutation in patients experiencing disease progression on TKIs
is probably higher than previously thought. This disease
progression is especially evident when considering mutations
happening at the AF. They found that Osimertinib treatment
proved advantageous for patients experiencing disease
progression with the low frequency of EGFR T790M
mutation.19 WES is a powerful tool that can be used to
identify deleterious rare missense variants. It involves the
targeted sequencing of exonic regions of all known protein-
coding genes.39 Our study is the first to examine the profiles of
deleterious rare variants in NSCLC patients with EGFR
mutations who have become resistant to erlotinib-TKI. We
initially acquired WES data of 16 NSCLC-TKI-resistant
samples from the SRA database. Subsequent analysis led to
the identification of 41.8% of novel variants and 68.6% of
existing variants in samples. Following this, we refined our
analysis by filtering for missense variants with an MAF of less
than 1%. We specifically focused on variants deemed
deleterious by the SIFT and PolyPhen-2 tools. This process
led to the identification of 53 rare deleterious variants across
23 genes. Subsequently, we subjected the 53 rare variants to
Insilco pathogenicity assessment tools including PredictSNP,
Align GVGD, Consurf, I-Mutant2.0, and Mutpred2. Pre-
dictSNP analysis resulted in 12 deleterious rare variants in 7
genes, namely ZNF717, PSPH, ESRRA, SEMA3G, PTPN7,
CAVIN4, and MYBBP1A. Interestingly, the Insilco pathoge-
nicity analysis of all the tools highlighted ESRRA L385P as
notably more deleterious than the other variants.

ZNF717, also known as OBI1, is a possible E3 ubiquitin
ligase that facilitates the initiation of replication by encouraging

Table 2. Summarizes Prediction Scores from Align GVGD, ConSurf, and I-Mutant2.0 Analyses, Specifically for Variants
Identified as Deleterious in PredictSNPa

gene symbol missense variant existing variation align GVGD ConSurf I-Mutant2.0 DDG (kcal/mol)

ZNF717 V22A rs75138373 class C55 8 −1.48
L39V rs879105149 class C25 9 −1.29
L410V rs193921040 class C25 7 −0.38
T614I* rs796390112 class C65 9 −1.07
T837K rs908906825 class C65 U −1.54

PSPH R65H rs200442078 class C25 9 −1.52
L68P rs78067484 class C65 6 −0.27

ESRRA L385P* rs201072913 class C65 9 0.08
SEMA3G R169W rs149481070 class C65 6 −0.01
PTPN7 R76C rs372590798 class C65 4 −0.98
CAVIN4 H79L* rs775953195 class C65 9 −0.69
MYBBP1A L883M rs375427927 class C0 9 −0.51

a“U” signifies uncertainty; missense variant belonging to class C65 with a ConSurf score of 9 are marked with an asterisk (*).

Table 3. Displays the Prediction Scores from MutPred2
Analysis for Variants ZNF717 (T614I), ESRRA (L385P),
and CAVIN4 (H79L)a

gene
symbol substitution

MutPred2
score remarks

ZN717 T614I 0.044 NA
ESRRA L385P 0.961 loss of helix (Pr = 0.29 | P = 0.01);

altered stability (Pr = 0.13 | P = 0.03)
CAVIN4 H79L 0.707 altered disordered interface

(Pr = 0.29 | P = 0.03); gain of helix
(Pr = 0.27 | P = 0.05); altered DNA
binding (Pr = 0.14 | P = 0.05)

aNA�not available.
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the firing of replication origins. Silencing OBI1 leads to
impaired replication origin firing.40 Moreover, ZNF717 plays a
crucial role in the osteogenic differentiation of mesenchymal
stem cells.41 Recently, variations in ZNF717 have been
identified in individuals diagnosed with lung adenocarcinoma,
familial lung cancer, colorectal cancer, and gastric cancer.42−45

Phosphoserine phosphatase (PSPH) plays a pivotal role as a
key enzyme in the L-serine synthesis pathway. PSPH
significantly influences patient prognosis and controls lung
cancer, cell invasion, and colony farming. Based on recent data,
using PSPH’s particular interaction and dephosphorylation
activity could result in novel therapeutic strategies for lung
cancer treatment.46

Semaphorin 3G (SEMA3G) is a type of class 3 secreted
semaphorins primarily found in endothelial cells.47 SEMA3G
has reportedly been implicated in inhibiting migration and
invasion in the case of glioma.48 According to research,
SEMA3G exhibits expression in organs rich in the vasculature,
with the lung demonstrating the highest expression levels,
followed by the kidney, heart, and ovary.49 SEMA3G is present
in the migratory path of GnRH neurons and is expressed
during the development of the pituitary gland. A mutated form
of SEMA3G modifies its binding properties to PlexinA
receptors both in computational and laboratory experiments,
reducing its impacts on the migration of immortalized GnRH
neurons.50

Protein tyrosine phosphate nonreceptor type 7 (PTPN7)
plays an anti-inflammatory role by inhibiting Erk1/2 and p38,
thereby reducing the pro-inflammatory cytokine tumor
necrosis factor production.51 Research indicates that PTPN7

expression correlates with immune features in breast cancer,
suggesting its potential as a predictive biomarker for
immunotherapy across various cancer types.52

The cavin4a gene produces cavin-4, also called the muscle-
restricted coiled-coil (MURC) protein, a member of the cavin
family. Cavin proteins play a crucial role in the structure and
function of caveolae, cellular membrane invaginations.53

CAVIN4 expression rises during muscle regeneration in
response to injury by activating the extracellular signal-
regulated kinase pathway.54 Cavin-4 is found in limited
amounts in various cell types, including embryonic fibroblasts,
where it can interact with Cavin-2. Cavin-1 and Cavin-2 play
dual roles in cancer, acting as tumor suppressors or promoters
depending on the cancer type and stage.55

MYB binding protein 1A (MYBBP1A or p10) is a
corepressor for various transcription factors engaged in
numerous physiological processes, thereby functioning as a
tumor suppressor with significant relevance to various aspects
of cell physiology crucial for tumorigenesis. MYBBP1A
undergoes frequent loss of heterozygosity (50%−80%) in
diverse cancers like breast, ovarian, astrocytomas, bladder,
medulloblastomas, osteosarcomas, leukemias, and lung cancers.
This loss indicates the likely presence of tumor suppressor
genes in this region.56 A prior study found that 24-mCAF
suppresses the activity of AKT and aurora B kinases, and Ser/
Thr kinases crucial for MYBBP1A regulation and significant
targets in NSCLC.57

ESRRA or ERRα, a nuclear receptor, is highly expressed in
metabolically active organs and functions as a transcription
factor. Its elevated expression is observed in various

Figure 3. (A) rmsd analysis compares the ESRRA WT and L385P mutation over 500 ns MDS, with time (ns) on the X-axis and rmsd values (nm)
on the Y-axis. (B) Box plot illustrates the rmsd analysis of the ESRRA WT and the L385P mutation, presenting key statistical measures such as the
mean, median, and standard deviation. (c) RMSF analysis of the ESRRA WT and L385P mutation throughout 500 ns MDS, with residue number
on the X-axis and RMSF values (nm) on the Y-axis. (D) Box plot illustrates the RMSF analysis of the ESRRA WT and the L385P mutation.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10229
ACS Omega 2024, 9, 16288−16302

16295

https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


malignancies. Silencing ESRRA hindered gastric cancer cell
proliferation, viability, migration, and invasion. ESRRA down-
regulation induced G2M cycle arrest by suppressing the
CDC25C/CDK1/CyclinB1 pathway through the regulation of
DSN1 expression, as demonstrated by flow cytometry and
western blot analysis.58 ERRα is typically expressed in the
lungs and activates nuclear genes without ligand binding, like
estrogen. In NSCLC, ERRα expression is notably elevated
compared with healthy individuals. The well-established fact is
that ERα and ERβ share 93% identity in the DNA-binding
domain and 60% identity in the ligand-binding domain. ERRα
enhances proliferation, invasion, and migration by suppressing
tumor suppressor proteins p53 and pRB. Additionally, ERRα
expedites the G2-M transition in cell division. The activation of
NSCLC metastasis is primarily facilitated by epithelial-to-
mesenchymal transition (EMT) and slug induction, a tran-
scription factor associated with EMT.59 In our investigation,
we discovered the ESRRA L385P mutation in 7 out of 16
(43.75%) EGFR-TKI-resistant cases of NSCLC, predomi-
nantly in males and individuals who harbored EGFR exon 19
deletions and showed resistance to TKI therapy.
MDS serves as a valuable tool in uncovering the structural

impact of mutations on proteins, elucidating alterations in
stability and interactions with other molecules. This capability
provides crucial insights into the molecular mechanisms
associated with genetic disease, offering a foundation for the
potential development of targeted therapeutic strategies.60 In
our investigation, we explored the changes in the L385P
ESRRA variant using MDS, closely examining its deviation
from the WT configuration under physiological conditions.

The simulations, extended over 500 ns, comprehensively
evaluated structural aspects including stability, flexibility,
hydrogen bonding, and solvation dynamics of the mutated
protein.
rmsd quantifies the average structural difference between a

set of backbone atoms, commonly applied to assess molecular
conformation changes from a reference structure. We obtained
a lower rmsd in L385P than in the WT, which indicates that
mutation reduced the ESRRA flexibility. RMSF measures
protein flexibility by calculating the average deviation of each
atom in a protein structure from its mean position throughout
an MDS. Following rmsd, L385P showed a slightly reduced
average RMSF compared to that of the WT, reflecting that this
mutation decreases the flexibility of the ESRRA protein. Rg is a
crucial parameter for characterizing the equilibrium conforma-
tion of a system, particularly in protein analysis. It reflects the
protein structure level of compression and indicates whether
the polypeptide chain is folded or unfolded.61 In our
observations, we noted that an elevation in the Rg value in
L385P indicates a decrease in protein compactness, which is
frequently linked to unfolding or conformational changes in
the protein structure. SASA measures an amino acid’s
interaction with its environment, including the solvent and
the protein environment.62 Variations in the SASA plot,
whether an increase or decrease, indicate alterations in the
involved amino acid residues, consequently influencing the
tertiary structure of a protein. The increased SASA value for
L385P indicates that the protein has been exposed to more
solvents, suggesting that the protein is more relaxed and
flexible. H-bonds are important in stabilizing proteins.63 L385P

Figure 4. (A) The Rg analysis compares the ESRRA WT and L385P mutation over 500 ns MDS, with time (ps) on the X-axis and Rg values (nm)
on the Y-axis. (B) Box plot illustrates the Rg analysis of the ESRRA WT and the L385P mutation, presenting key statistical measures such as the
mean, median, and standard deviation. (c) SASA analysis of the ESRRA WT and L385P mutation throughout 500 ns MDS, with time (ns) on the
X-axis and area values (nm2) on the Y-axis. (D) Box plot illustrates the SASA analysis of the ESRRA WT and the L385P mutation.
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Figure 5. (A) Intramolecular H-bond analysis compares the ESRRA WT and L385P mutation over 500 ns MDS, with time (ps) on the X-axis and
the number of H-bonds on the Y-axis. (B) Box plot illustrates the intramolecular H-bond analysis of the ESRRA WT and the L385P mutation,
presenting key statistical measures such as mean, median, and standard deviation. (C) PCA analysis of the ESRRA WT and L385P mutation, with
the PC1 (nm) on the X-axis and PC2 (nm) on the Y-axis. (D) PC1 and PC2 analyses of the ESRRA WT and L385P mutation throughout 500 ns of
MDS.

Figure 6. Kernel density estimation joint plot was utilized to depict the conformational dynamics of the (A) ESRRA WT and (B) L385P mutation
throughout the MDS. The X-axis represents Rg (nm), while the Y-axis illustrates the SASA (nm2).
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has lower average H-bonds than the WT, suggesting that this
mutation may result in a less compact and more flexible
ESRRA protein structure. PCA analysis of the protein
conformational space reveals that L385P occupies a smaller
phase space, implying a more limited conformational range.64

The WT explores a broader phase space, indicating a more
flexible conformational space. This analysis suggests that the
L385P mutation imposes restrictions or constraints on the
protein’s conformational dynamics compared to the WT. The
comparison between Rg and SASA results reveals that the
L385P mutation leads to an increase in SASA and a rise in Rg,
indicating potential unfolding or expansion of the molecule
(Figure 6). FEL analysis discovered that the WT exhibits a
predominant and exceptionally stable conformation, while the
L385P variant demonstrates a more varied and flexible
landscape with two stable states (Figure 7). The FEL analysis
revealed discrete energy minima corresponding to different
conformational states.65 The mutant L385P showed different
energy minima than the WT. According to the SSE analysis,66

L385P and the WT showed insignificant changes in the overall
structure despite minor deviations in the elements.
According to a recent study, resistant NSCLC cells treated

with gefitinib or Osimertinib had synchronized EGFR
reactivation and ERRα re-expression. Extended exposure to
TKIs (gefitinib or Osimertinib) induces the accumulation of
cholesterol in lipid fats in NSCLC. This accumulation creates a

platform for the interaction of EGFR and Src, leading to the
reactivation of the EGFR/Src/Erk signaling pathway. The level
of nuclear translocation of SP1 increases, enhancing ERRα
transcription by binding to its promoter. The re-expression of
ERRα protein contributes to a context of reactive oxygen
species detoxification, facilitating cell survival despite con-
tinuous exposure to EGFR-TKIs. Their findings also showed
that pharmacologically reducing cholesterol levels and
inhibiting ERRα restored resistant cells and in vivo xenograft
tumors.67 The identified L385P mutation in our investigation
resides within the ligand-binding domain of ERRα.68 This
mutation can potentially cause structural unfolding in ERRα
proteins, which may influence their function and lead to
changes in ERRα expression. Overall, our MDS study showed
that ESRRA L385P increased the flexibility or unfolding of the
protein structure compared with the WT. This in-depth MDS
analysis provides valuable insights into the potential functional
consequences of the L385P mutation in ESRRA, elucidating its
structural behavior and assisting in interpreting its biological
significance. The study’s limitations include the absence of
normal tissue samples for comparison, making it difficult to
determine if identified missense variants are tumor-specific.
Moreover, the exclusive focus on erlotinib-resistant cases may
lack clinical relevance, considering osimertinib as the standard
for EGFR mutant NSCLC. Caution is recommended in
interpreting the results, highlighting the necessity for future

Figure 7. Two-dimensional contour and the three-dimensional FEL for the (A) ESRRA WT and (B) L385P mutation based on 500 ns of MDS.
Color gradients graphically show the free energy values expressed in kJ/mol.
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studies with experimental validation, diverse samples, and
alignment with current clinical practices to enhance our
understanding of these identified missense variants.

5. CONCLUSIONS
Our study uncovered 53 deleterious rare missense variants
across 23 genes by employing WES in EGFR-TKI erlotinib-
resistant patients. These variants exhibited an MAF of less than
1% and were predicted to be deleterious according to the SIFT
and PolyPhen-2 tools. Further scrutinizing with pathogenic
tools such as PredictSNP, 12 rare missense variants were found
in 7 genes. Our data suggest that rare missense variants in the
ZNF717, PSPH, ESRRA, SEMA3G, PTPN7, CAVIN4, and
MYBBP1A genes have a substantial role in NSCLC, urging for
additional research even though the tumorigenic mechanism of
these variants is yet unknown. The target genes identified in
our study can serve as valuable biomarkers for detecting and
diagnosing NSCLC. Furthermore, Align GVGD, ConSurf, and
I-Mutant2.0 assessments indicated that the ESRRA L385P
mutation exhibited a higher degree of deleterious impact than
other mutations. The comprehensive insights gained from

MDS enhance our understanding of the structural and dynamic
consequences of the L385P ESRRA mutation, providing
valuable implications for subsequent therapeutic consider-
ations and targeted interventions.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.3c10229.

Overview of the study workflow, details of NSCLC with
EGFR-TKI-resistant samples obtained from the SRA-
NCBI database, total SNVs and variant distribution in
each sample, and heatmap illustrating 53 deleterious rare
missense variants across 23 genes in the WES of 16
NSCLC-resistant EGFR-TKI patients (PDF)

■ AUTHOR INFORMATION
Corresponding Author

George Priya C Doss − Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and

Figure 8. DSSP secondary structure analysis was conducted, tracking the evolution over simulation time for the trajectories of both the ESRRA (A)
WT and (B) L385P mutation. The color-coded representation assigns a specific secondary structure type to each residue as the simulation
progresses: White for the random coil, red for the β-sheet, black for the β-bridge, green for the bend, yellow for the turn, blue for the α-helix, purple
for the 5-helix, and gray for the 3-helix.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c10229
ACS Omega 2024, 9, 16288−16302

16299

https://pubs.acs.org/doi/10.1021/acsomega.3c10229?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.3c10229/suppl_file/ao3c10229_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="George+Priya+C+Doss"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c10229?fig=fig8&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c10229?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Technology, Vellore Institute of Technology, Vellore, Tamil
Nadu 632014, India; orcid.org/0000-0002-5971-8290;
Email: georgepriyadoss@vit.ac.in

Author
Ambritha Balasundaram − Laboratory of Integrative

Genomics, Department of Integrative Biology, School of
BioSciences and Technology, Vellore Institute of Technology,
Vellore, Tamil Nadu 632014, India

Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.3c10229

Author Contributions
A.B. and C.G.P.D. were involved in the study’s design. A.B. was
involved in the data collection and experimentation. A.B. was
involved in acquiring, analyzing, and interpreting the results.
A.B. drafted the manuscript. C.G.P.D. supervised the entire
study and was involved in study design, acquiring, analyzing,
and understanding the data, and critically reviewing the
manuscript. All authors edited and approved the submitted
version of the article.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
A.B. expresses gratitude to the Indian Council of Medical
Research (ICMR), India, for providing a Senior Research
Fellowship [BMI/11(05)/2022]. The authors would like to
take this opportunity to thank the management of Vellore
Institute of Technology (VIT), Vellore, India, for providing the
necessary facilities and encouragement to carry out this work.

■ REFERENCES
(1) Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.;
Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics
2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide
for 36 Cancers in 185 Countries. Ca-Cancer J. Clin. 2021, 71 (3),
209−249.
(2) Inamura, K. Lung Cancer: Understanding Its Molecular
Pathology and the 2015 WHO Classification. Front. Oncol. 2017, 7,
193.
(3) Kris, M. G.; Johnson, B. E.; Berry, L. D.; Kwiatkowski, D. J.;
Iafrate, A. J.; Wistuba, I. I.; Varella-Garcia, M.; Franklin, W. A.;
Aronson, S. L.; Su, P.-F.; Shyr, Y.; Camidge, D. R.; Sequist, L. V.;
Glisson, B. S.; Khuri, F. R.; Garon, E. B.; Pao, W.; Rudin, C.; Schiller,
J.; Haura, E. B.; Socinski, M.; Shirai, K.; Chen, H.; Giaccone, G.;
Ladanyi, M.; Kugler, K.; Minna, J. D.; Bunn, P. A. Using Multiplexed
Assays of Oncogenic Drivers in Lung Cancers to Select Targeted
Drugs. JAMA 2014, 311 (19), 1998−2006.
(4) Cagle, P. T.; Raparia, K.; Portier, B. P. Emerging Biomarkers in
Personalized Therapy of Lung Cancer. Adv. Exp. Med. Biol. 2016, 890,
25−36.
(5) Ellis, L. M.; Hicklin, D. J. Resistance to Targeted Therapies:
Refining Anticancer Therapy in the Era of Molecular Oncology. Clin.
Cancer Res. 2009, 15 (24), 7471−7478.
(6) Rodak, O.; Peris-Díaz, M. D.; Olbromski, M.; Podhorska-
Okołów, M.; Dzięgiel, P. Current Landscape of Non-Small Cell Lung
Cancer: Epidemiology, Histological Classification, Targeted Thera-
pies, and Immunotherapy. Cancers 2021, 13 (18), 4705.
(7) Giuliani, J.; Martelli, S.; Remo, A.; Bonetti, A. Primary TKI
Resistance in Advanced Non-Small Cell Lung Cancer with EGFR
Mutation: An Open Question. Tumori 2015, 101 (4), e115−e117.
(8) Riely, G. J.; Pao, W.; Pham, D.; Li, A. R.; Rizvi, N.;
Venkatraman, E. S.; Zakowski, M. F.; Kris, M. G.; Ladanyi, M.;
Miller, V. A. Clinical Course of Patients with Non-Small Cell Lung

Cancer and Epidermal Growth Factor Receptor Exon 19 and Exon 21
Mutations Treated with Gefitinib or Erlotinib. Clin. Cancer Res. 2006,
12 (3), 839−844.
(9) Guardiola, S.; Varese, M.; Sánchez-Navarro, M.; Giralt, E. A
Third Shot at EGFR: New Opportunities in Cancer Therapy. Trends
Pharmacol. Sci. 2019, 40 (12), 941−955.
(10) Chmielecki, J.; Gray, J. E.; Cheng, Y.; Ohe, Y.; Imamura, F.;
Cho, B. C.; Lin, M.-C.; Majem, M.; Shah, R.; Rukazenkov, Y.; Todd,
A.; Markovets, A.; Barrett, J. C.; Hartmaier, R. J.; Ramalingam, S. S.
Candidate Mechanisms of Acquired Resistance to First-Line
Osimertinib in EGFR-Mutated Advanced Non-Small Cell Lung
Cancer. Nat. Commun. 2023, 14 (1), 1070.
(11) Lin, C.-C.; Shih, J.-Y.; Yu, C.-J.; Ho, C.-C.; Liao, W.-Y.; Lee, J.-
H.; Tsai, T.-H.; Su, K.-Y.; Hsieh, M.-S.; Chang, Y.-L.; Bai, Y.-Y.;
Huang, D. D.-R.; Thress, K. S.; Yang, J. C.-H. Outcomes in Patients
with Non-Small-Cell Lung Cancer and Acquired Thr790Met
Mutation Treated with Osimertinib: A Genomic Study. Lancet Respir.
Med. 2018, 6 (2), 107−116.
(12) Oxnard, G. R.; Hu, Y.; Mileham, K. F.; Husain, H.; Costa, D.
B.; Tracy, P.; Feeney, N.; Sholl, L. M.; Dahlberg, S. E.; Redig, A. J.;
Kwiatkowski, D. J.; Rabin, M. S.; Paweletz, C. P.; Thress, K. S.; Jänne,
P. A. Assessment of Resistance Mechanisms and Clinical Implications
in Patients With EGFR T790M-Positive Lung Cancer and Acquired
Resistance to Osimertinib. JAMA Oncol. 2018, 4 (11), 1527−1534.
(13) Oxnard, G.; Hu, Y.; Mileham, K.; Tracy, P.; Feeney, N.; Sholl,
L.; Paweletz, C.; Thress, K.; Jänne, P. OA 09.02 Osimertinib
Resistance Mediated by Loss of EGFR T790M Is Associated with
Early Resistance and Competing Resistance Mechanisms. J. Thorac.
Oncol. 2017, 12 (11), S1767−S1768.
(14) van der–>Wekken, A.; Saber, A.; Hiltermann, T. J. N.; Kok, K.;
van den–>Berg, A.; Groen, H. J. M. Resistance Mechanisms after
Tyrosine Kinase Inhibitors Afatinib and Crizotinib in Non-Small Cell
Lung Cancer, a Review of the Literature. Crit. Rev. Oncol. Hematol.
2016, 100, 107−116.
(15) Passaro, A.; Jänne, P. A.; Mok, T.; Peters, S. Overcoming
Therapy Resistance in EGFR-Mutant Lung Cancer. Nat. Cancer 2021,
2 (4), 377−391.
(16) Nair, S. V.; Madhulaxmi; Thomas, G.; Ankathil, R. Next-
Generation Sequencing in Cancer. J. Maxillofac. Oral Surg. 2021, 20
(3), 340−344.
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