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Abstract

It is sometimes claimed that because the resolution and sensitivity of visual perception are better in the fovea than in the
periphery, peripheral vision cannot support the same kinds of colour and sharpness percepts as foveal vision. The fact that
a scene nevertheless seems colourful and sharp throughout the visual field then poses a puzzle. In this study, I use a de-
tailed model of human spatial vision to estimate the visibility of certain properties of natural scenes, including aspects of
colourfulness, sharpness, and blurriness, across the visual field. The model is constructed to reproduce basic aspects of hu-
man contrast and colour sensitivity over a range of retinal eccentricities. I apply the model to colourful, complex natural
scene images, and estimate the degree to which colour and edge information are present in the model’s representation of
the scenes. I find that, aside from the intrinsic drift in the spatial scale of the representation, there are not large qualitative
differences between foveal and peripheral representations of ‘colourfulness’ and ‘sharpness’.

Keywords: computational modeling; contents of consciousness; perception; psychophysics; peripheral vision; colour
perception

Introduction

When looking at a scene one may get the feeling that a visual
experience is colourful and sharp across the full extent of one’s
visual field. Even a savvy observer who knows about the higher
objective resolution of foveal vision, or about the regular, rapid,
and involuntary movement of the foveae from one part of the
scene to another, is likely to get this feeling. However, it is fre-
quently argued that this feeling is illusory. Such arguments—
which tend to be part of larger philosophical or theoretical
accounts of vision (Dennett 2005; Schwitzgebel 2008; Cohen
et al. 2016; Lau and Brown 2019)—are always claimed to be based
on physiological or psychophysical facts about visual percep-
tion: cone density declines with retinal eccentricity (Curcio et al.
1990), acuity declines even more rapidly and more severely for
colour than for achromatic targets (Anderson et al. 1991), con-
trast sensitivity is poorer peripherally than foveally for most
spatial targets (Robson and Graham 1981; Pointer and Hess
1989), and declines more severely for colour targets (Anderson
et al. 1991). Therefore, it is argued, however, it seems (or seems
to seem) to us, peripheral vision just cannot support the kinds
of colour or sharpness percepts supported by foveal vision, and

the only explanation for our subjective feelings is that they are
illusory.

In contradiction of this argument, the present study shows
that human spatial vision permits nearly invariant representa-
tion of colour and sharpness across the visual field. To demon-
strate this invariance, I use a detailed model of human spatial
vision. The model is constructed to reproduce known psycho-
physical patterns of human contrast perception. Importantly,
the main feature of the model that allows it to reproduce these
patterns is that its local scale of encoding varies across the ex-
tent of its visual field; apart from this variation in local scale,
the structure of the model is independent of visual field posi-
tion. The model is able to closely simulate the same facts that
have sometimes been deployed to make claims about degraded
peripheral visual experience: its contrast sensitivity and acuity
decline with eccentricity, and much more severely for colour
stimuli. The analyses that I carry out on the outputs of this
model are therefore based directly in the empirical observations
that have driven some of the misconceptions at issue.

When discussing properties like colourfulness and sharp-
ness, I take these to be properties intrinsic to an observer’s
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visual experience. Of course, physical stimuli—which are differ-
ent kinds of things than perceptual representations—can evoke
visual representations like colour or sharpness via sensitive
mechanisms of perception. It should be clear that, if colour and
sharpness are representations intrinsic to an observer, they do
not need to depend on exactly what stimulus evoked them; sen-
sitivity may vary from mechanism to mechanism, but still the
same perceptual representation can be evoked by different
stimuli. Evidence for the intrinsic nature of colour includes the
dissociation of stimulus properties from perceptual colour expe-
riences as in colour constancy (Gegenfurtner et al. 2015), light-
ness and brightness illusions (Adelson 2000), colour afterimages
and hallucinations (McCollough 1965), colour phosphenes
(Dobelle and Mladejovsky 1974; Grusser 1995), and colour in
dreams (Kahn et al. 1962). Evidence for a corresponding view of
sharpness includes similar dissociations, such as in blur adap-
tation aftereffects (Webster et al. 2002), hallucinatory percepts
with clear detail (Richards 1971), sharp-textured phosphenes
(Nebel 1957; Tyler 1978), and experience of clear percepts in
dreams (Rechtschaffen and Buchignani 1992).

Although the data on which the model is based are not from
what we would typically consider studies of consciousness,
readers should consider the following in interpreting the
results. When a subject in a routine psychophysics task, such as
a contrast-detection task, reports seeing a (retrospectively)
suprathreshold target by selecting the correct response alterna-
tive, we reasonably assume that the subject was conscious of
that target (violations of this assumption, known as blindsight,
are difficult to obtain in normal vision). In consciousness stud-
ies, this assumption is usually confirmed by collecting more de-
tailed responses, for example having subjects also indicate their
confidence in having just consciously experienced a target. It is
well-known that confidence is strongly correlated with sensitiv-
ity (Fleming and Lau 2014), so it would seem natural to concep-
tually link model sensitivity to conscious visibility, and the
results of the present study may be interpreted in light of this
link. However, visual experience involves more than just spatial
qualities: we also experience the perceptual organization of
these qualities (Peterson and Kimchi 2013), and we may recog-
nize them as grounding or constituting objects. Whether or not
we experience spatial qualities in the absence of perceptual or-
ganization or recognition is a matter of debate (Block 2007;
Schwitzgebel 2007; Simons 2007; Lau and Brown 2019), and can-
not be addressed by the current study; in either case, the results
of the present study are relevant to the visibility, if not the con-
scious experience, of spatial qualities.

Methods

The spatial vision model was implemented in MATLAB (code
available at https://osf.io/8xf9w/). Empirical data used to set
model parameters, or for other purposes (e.g. the perceived blur
analysis in Section Attention), was extracted from the original
study papers using the online WebPlotDigitizer tool (Rohatgi
2017).

Properties of spatial vision

Listed below are psychophysical properties directly relevant to
the question of colour/sharpness perception across the visual
field (some ‘exemplar’ references are provided for each, but all
of these properties have been observed in numerous studies).

i. Contrast sensitivity is relatively independent between the
three opponent chromatic axes (the three ‘colour chan-
nels’: luminance-contrast, blue-yellow contrast, and red-
green contrast). Put another way, interactions between
same-channel patterns are much stronger than interac-
tions between different-channel patterns (Krauskopf et al.

1982; Buchsbaum and Gottschalk 1983; Mullen and
Sankeralli 1999).

ii. Spatial frequency acuity (the spatial frequency fa at which
contrast sensitivity is ¼ 1, i.e. minimal) is inversely propor-
tional to eccentricity plus a constant (E2):fa ¼ f * E2/(E þ E2)
(Strasburger et al. 2011).

iii. Foveal acuity is better for achromatic targets than for
chromatic targets, and the proportionality constant E2 is
higher (acuity declines less with eccentricity for achro-
matic than for chromatic targets) (Noorlander et al. 1983;
Anderson et al. 1991, 2002).

iv. The high-spatial frequency decline in contrast sensitivity
at any eccentricity is exponential (Yang et al. 1995): S(f) �
n�f. This holds over all colour channels (Fig. 10).

v. Contrast sensitivity for a target of any spatial frequency
declines exponentially with eccentricity, with a steeper
exponent for higher spatial frequencies (Pointer and Hess
1989; Anderson et al. 1991): S(E) � n�E. This also holds over

all colour channels (Fig. 10).
vi. The visual system is low-pass and sensitivity across the

visual field converges for very low spatial frequencies
(Pointer and Hess 1989).

vii. Contrast sensitivity (as d’) for targets of increasing con-
trast follows an expansive/compressive power function
(threshold-vs-contrast functions are dipper-shaped)
(Nachmias and Sansbury 1974; Legge and Foley 1980).

viii. ‘Contrast constancy’: In the absence of other interactions,
contrast responses converge at high contrasts, for mecha-
nisms tuned to different spatial frequency, orientation,
and/or eccentricity (Georgeson and Sullivan 1975; Cannon
1985; Swanson and Wilson 1985; Chen et al. 2000).

ix. Sensitivity for a low-contrast target of one orientation is
strongly impaired by a high-contrast overlaid mask of very
different orientation (‘cross-orientation masking’), while a
high-contrast target is relatively unaffected by a lower-
contrast mask (Foley 1994).

x. The combined perceptual response to contrast over multi-
ple frequency bands is a high-p-norm (less-than optimal
combination: M� ¼ 4) (Cannon and Fullenkamp 1991).

Threshold over eccentricity and scale

Properties i-x are interrelated in various ways. Of particular im-
portance, ii., iv. and v. (regarding relation of sensitivity with
scale and eccentricity) are distinct aspects of the scale-
sensitivity of the visual system, and they are modelled
compactly:

t f ; E
� �

¼ t0 exp
f
f0

 !
Eþ E2

E2

� � !
L f ; E
� �

(1)

This expression is in terms of threshold contrast (t). Here,
the exponential term captures the high-frequency limb of the
sensitivity function, while L(f, e) captures the low-frequency pla-
teau, which I take to be independent of eccentricity (vi.):
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L f ; E
� �

¼ 1þ a

1þ f
�

f1

� �2 (2)

Regarding the high-frequency component of the function,
notice how the exponential declines of sensitivity with eccen-
tricity (E) and spatial frequency (f) are intertwined. There are
two constants: f0 captures the steepness of the decline in sensi-
tivity with increasing spatial frequency (decreasing scale) and
E2 captures the steepness of the decline in sensitivity with in-
creasing eccentricity. In the literature, these two parameters are
normally considered separately (see Watson 2018 for a recent
synthesis), but it is clear that they modify each other: if f0 is con-
sidered as constant, then E2 is effectively reduced as frequency
increases: the decline in sensitivity for some target (f) with ec-
centricity (E) becomes steeper for higher frequencies (Fig. 1A).
Conversely, if E2 is considered as constant, then f0 is effectively
reduced as eccentricity (E) increases, meaning that the decline
in threshold with frequency gets steeper (Fig. 1B).

This connection between the contrast sensitivity functions
for spatial frequency and eccentricity has an interesting conse-
quence for sensitivity across the visual field: it means that sen-
sitivity to some frequency F1 at some eccentricity E1 is usually
equal to sensitivity to a lower frequency F2 at a larger eccentric-
ity E2, and to a higher frequency F0 at some smaller eccentricity
E0. The extreme case of this is the acuity frequency: sensitivity
to this frequency is defined everywhere across the visual field
as a constant value (t¼ 1). There are, likewise, mechanisms
across the visual field with t ¼ 1=2, t ¼ 1=4, and so-on, with the
rule breaking down only at some very low (unknown) contrast.

Opponent colour channels

The three colour channels were implemented by transforming
RGB input images into the CIElab colour space, composed of a
luminance-contrast channel (Achr), a blue-yellow channel (B/
Y)1, and a red-green channel (R/G)—and using these as inputs to

the filter layer. The CIElab components are different from the
‘cone contrast’ components typically employed in colour psy-
chophysics, but they are close enough for present purposes
(McDermott and Webster 2012). CIElab is also widely available
in different code bases and is clearly documented in many sour-
ces, making the present results more easily replicable.

Filter structure

The model is framed in a rectangular array of visual field loca-
tions, with each location a 2d coordinate in degrees eccentricity
from a point of fixation. At each location a complement of filters
is assigned: filters tuned to each combination several spatial
scales, four orientations, and three colour contrasts. The filters
are created on a log-frequency/orientation domain (Equation 3).
The frequency profile is a Gaussian (Equation 4), and the orien-
tation profile is a raised cosine (Equation 5):

g f ; h
� �

¼ g f
� �
� g hð Þ (3)

g f
� �
¼ exp �

log2f � log2fpeak
� �2

2rf
2

 !
(4)

g hð Þ ¼
1
2

cos rh h� hpeak
� �	 


þ 1
� �

; if h� hpeak < rhp

0; if h� hpeak � rhp

8<
: (5)

Frequency bandwidths were fixed at 2rf ¼1.4 octaves for all
filters (Wilson et al. 1983). Orientation bandwidth was fixed at 45
degrees (rh ¼ 1=4p). In the space domain, these are quadrature fil-
ters, so they encode both amplitude and phase of content in
their pass band. The amplitude of each filter was adjusted so
that the linear response (dot-product) of the filter to a
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Figure 1. Two overarching properties of human contrast sensitivity. Contrast sensitivity declines with retinal eccentricity and with decreasing
scale. Black lines show the exponential relation of contrast sensitivity to eccentricity (left) and spatial frequency (right). An increase in either
parameter corresponds to decreased sensitivity. Dashed red lines show a more accurate model with a low-frequency plateau—only the lowest
spatial frequencies are meaningfully different.

1 This implementation of the B/Y channel ignores the fact that human
spectral sensitivity is far better for yellow spots than for blue spots
(Abramov & Gordon, 1977). The human visual system is not so simple

as to symmetrically encode blue and yellow, but the model is, so it
tends to underestimate yellow and overestimate blue contributions to
stimuli. A similar problem exists for the achromatic channel, in that
true human sensitivity to ‘dark’ spots is generally better than for
‘bright’ spots (Haun & Peli, 2013b; Whittle, 1992), while the model
makes these symmetrical. Psychophysically, green and red are rela-
tively more symmetric, though see point xxi in the appendix 1.
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full-contrast sinewave grating pattern at its preferred orienta-
tion and frequency would be unity (1.0), that is the linear re-
sponse of each filter was explicitly equated with the ‘contrast
energy’ (the phase-invariant Michelson contrast magnitude) of
a typical contrast sensitivity test stimulus.

The peak orientations of the filters, at every visual field loca-
tion and for each colour channel, were [0, 45, 90, 135] from verti-
cal. The peak frequencies depended on eccentricity and colour
channel. First, the contrast sensitivity function of Equation (1)
was fit to data sets for human sensitivity to achromatic (Pointer
and Hess 1989), red-green (Anderson et al. 1991), and blue-
yellow (Mullen and Kingdom 2002) contrast stimuli of variable
spatial frequency and eccentricity. Next, the ‘local scale’ of the
filters (Watson 1987) was set according to the objective acuity at
that eccentricity. The acuity frequency for each colour channel
as a function of eccentricity was derived by setting threshold t(f,
E) ¼ 1 and solving for spatial frequency f. The peak frequencies
(fpeak) of the filters for each channel at each eccentricity were
set to:

fpeak Eð Þ
n o

¼ f t ¼ 1;Eð Þ
3; 6; 12; 24f g (6)

That is, the peak frequency of the finest filter at each loca-
tion was 1/3 of the acuity limit expected by the pattern of con-
trast sensitivity, and the coarser filters were spaced 1, 2, and 3
octaves below the finest filter. The low-pass residual from these
filters was then inserted to capture the low-frequency plateau
of the sensitivity function. This close packing of the frequency
bands allowed the filter complement to scale flexibly with ec-
centricity, avoiding most cases where the coarsest filters might
be too large for the test image. For the chromatic filters, three
rather than four bandpass filters scales were used along with
the low-pass residual.

Suprathreshold sensitivity

The aspects of contrast sensitivity relating to suprathreshold
contrasts (vii, viii and x), and the capacity of the model to fit ar-
bitrary threshold levels (i.e. the shape of the psychometric func-
tion for contrast detection or discrimination) are all captured
with the Foley transducer (Stromeyer and Klein 1974; Legge and
Foley 1980; Foley 1994). This transducer defines the signal-noise
ratio (d’) as a nonlinear function of contrast, with parameters
that depend on the linear filter characteristics:

d0h ¼ Rmax
gchð Þpþq

zp þ
P

h gcð Þp
(7)

The variable c is the linear response of a spatial filter to the
stimulus. In the current study, p, q, and Rmax are fixed. The
threshold parameter z varies with eccentricity, frequency and
colour. The linear gain g of each filter is a partial parameter that
ordinarily would be at unity and distributed between Rmax and z

(Haun 2009); it was considered separately here as it can account
in a computationally convenient way for significant differences
in sensitivity between colour channels, allowing other parame-
ters to be fixed. The summation in the denominator is over
other orientations of same-location, same-frequency, same-
colour filters, thus capturing cross-orientation masking (ix). The
threshold for each filter is set by transforming the detection
threshold functions defined in Equations 1 and 2, assuming a
fixed experimental d’ value (d’¼2 was used in all simulations in
this study):

zp ¼ Rmax

d0h
thpþq � thp (8)

Equation 8 is just a rearrangement of Equation 7, ignoring
the cross-orientation terms (basic contrast sensitivity functions
are established without masks) and setting contrast equal to an
empirical threshold value.

Fitting model to data

First, data were subjected to a curve-fitting procedure to set the
free parameters of the CSF model (Equation 7), with starting
parameters suggested by the papers where the model compo-
nents were introduced (Yang et al. 1995; Geisler and Perry 1998;
Watson and Ahumada 2005). The nonlinear contrast response
parameters (Rmax, p, q) were fixed at the outset to standard val-
ues (Legge and Foley 1980; Haun and Peli 2013b). The target data
were drawn from the studies listed in Table 1. I did not fit B/Y
contrast sensitivity data for the final model, and instead scaled
the high-s.f. decline constant (f0) of the achromatic sensitivity
function (see Table 2), and decreased the linear gain, to obtain a
good fit to the B/Y acuity data.

The model was tested by exposing it to actual stimulus
images. Each individual filter was convolved with a stimulus,
yielding a set of linear measures of contrast at each image loca-
tion. These linear measures were fed into the response nonli-
nearity. Responses across scale were combined with a high p-
norm R ¼

P
f Rðf ÞM

� �1=M
, with M¼ 4; (Cannon and Fullenkamp

1991; Haun and Peli 2013b). The maximum response across the
remaining filter dimensions (orientation and colour) is the
‘cross-frequency response’ at each location, and it represents
the signal-noise ratio the observer has for making decisions in a
SDT task. I constructed achromatic and colour Gabor patch
stimuli of varying spatial frequency and centre eccentricity, to
(roughly) match the parameters of the exemplar experiments
(of Table 1). The contrast of each stimulus was adjusted itera-
tively (Newton’s method) to produce a peak cross-frequency re-
sponse equal to the ‘experimental’ d’¼2 (an unbiased yes/no
hit-rate of 84%)—this contrast was the model’s detection
threshold for the target stimulus.

Model thresholds are plotted in Fig. 3 against data from
Mullen (1991) and Pointer and Hess (1989). Also shown are acu-
ity estimates—these are obtained by extrapolating the contrast

Table 1. Data sets shown in Figure 3, used to fix the parameters of the contrast sensitivity model.

Data type Source

Achromatic contrast sensitivity by spatial frequency and eccentricity (Pointer and Hess 1989) Figs. 2, 3, and 12
Red/Green contrast sensitivity by spatial frequency and eccentricity (Mullen 1991) Figs. 3, 4
Achromatic and Red/Green acuity by eccentricity (Anderson et al. 1991) Fig. 5
Achromatic and Blue/Yellow acuity by eccentricity (Anderson et al. 2002) Fig. 3
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sensitivity curves to the spatial frequency where sensitivity ¼ 1.
In addition to these basic limits of contrast detection, the model
also captures suprathreshold aspects of contrast sensitivity.
Contrast discrimination (threshold-vs-contrast) functions
have the familiar ‘dipper’ shape, where increment thresholds
for just-detectable pedestals are smaller than the detection
threshold itself, while increment thresholds for suprathreshold
pedestals follow a compressive power function (Stevens’ law).
Cross-oriented masks elevate the dipper functions in the
expected way, though they are much more powerful masks
than they should be (since the cross-oriented inputs were not
realistically weighted).

In summary, the model generally comes very close to hu-
man performance. Whatever conclusions one might draw from
the empirical data should transfer well to the simulated data.
That is, if one believes (for example) that human colour or
sharpness representations must decline in quality due to the
observed pattern of contrast sensitivity, then the same belief
should apply to the representations of this model. Put another
way, the facts pertinent to claims about what a human observer
can and cannot experience at the level of contrast perception
are all effectively embodied by this model.

Application of the model to natural scenes

The central question in this study can be put this way: given
what we know about human contrast sensitivity, what can a
typical human observer see in a colourful natural scene? To an-
swer this question I used 100 colourful natural scene photos
(Fig. 4) as stimuli for the model. The scenes were all pulled from
the ‘Panorama’ section of the Wikipedia directory of featured
pictures (Various, 2019); these images are very high resolution,
minimally compressed, and full-colour, and they are of the
kinds of interesting vistas that might elicit naı̈ve claims about
the apparent vividness of a visual experience. The main selec-
tion criterion was that each image must have height and width
equal to or greater than 1536 pixels. Inputs to the model were
cropped to 1536 � 1536 pixels; if an image had least dimension

greater than 3072 pixels, it was cropped down to the nearest
multiple of 1536 and then resized down to 1536 � 1536. Some
subjective criteria were applied in selecting the scenes, includ-
ing that the central region of the scene should contain some
more ‘interesting’ content than just ground (or sea) and/or sky;
some content should be ‘near’, that is obviously telescopic
images were excluded; images should seem colourful (scenes
like pictures of the desert or of snowy mountains that seemed
effectively monochromatic were generally not included, though
some were); and a rough balance was sought between ‘natural’
and ‘artificial’ scenes (i.e. of scenes with and without obvious
human influence). The list of source images (URLs and photog-
rapher credits) is provided in the Appendix. I did not try to
match the ‘true’ visual angle of the scenes to the visual angle of
the model’s visual field—the necessarily information to recover
the true angle was not generally included with the images.

To ‘view’ the scenes, the model was given a 32� square visual
field (which would fit comfortably within the angle of view of
photographs not taken with wide-angle or long-focus lenses),
extending from 1� left of the fixation point to 31� right; and from
16� below to 16� above. The resolution of the field was 1536 �
1536 pixels. The model’s response (in the form of the maximum
cross-frequency response at each field location) to one stimulus
image is shown in Fig. 5. Right away we learn something about
natural scenes: they are composed of high contrasts, as far as
the visual system is concerned. Detection thresholds are rou-
tinely exceeded across the model visual field, as shown by the
very-high d’ values elicited across the scene. If we were doing
signal detection experiments with the image components evok-
ing these responses, an observer would respond perfectly (bar-
ring finger errors or attentional lapses) across thousands of
trials.

Results

Our original questions concern whether the content of natural
scene experiences is rightly characterized as ‘colourful’ and
‘sharp’ across the extent of the visual field. So, how do we eval-
uate these qualities? Colourfulness is the more straightforward
to address, so we start there.

Colourfulness

‘Colourfulness’ is an informal term, but in its informal usage it
is intended to imply either variegation (i.e. many distinct hues)
or vividness (i.e. the presence of a highly saturated colour) of
colours, or especially both. Here, I used the ‘hue-saturation-
value’ (HSV) representation of colour content to capture these
features (Smith 1978).

The ‘visible image’. HSV is a pixelwise representation of image
content, whereas the spatial vision model generates a high-
dimensional matrix of signal-noise ratios. However, it is
straightforward to translate the model’s response to an image
back into the form of a ‘visible image’, where we can make use
of HSV. To do this, we transform each filter’s signal-noise ratio
(d’) into the range [0,1], using this value to weight the positive
cosine phase of the filter, and adding all the weighted filters to
an output image. The appropriate transformation of d’ is the ‘ac-
curacy’ or ‘reliability’: the greatest difference between the yes/
no hit-rate and false-alarm rate:

Accuracy ¼ HR� FA ¼ U
R
2

� �
� U �R

2

� �
(9)

Table 2. Parameters of the contrast sensitivity model.

Value Description

t0 Achr 0.0051 Overall sensitivity function am-
plitude (adjusted by g)B/Y 0.0051

R/G 0.0082
E2 Achr 6.22 Eccentricity-scaling constant

B/Y 6.22
R/G 1.82

a Achr 5.26 Low-s.f. threshold weight
B/Y 5.26
R/G 2.53

f0 Achr 4.51 High-s.f. decline constants
B/Y 4.51/6
R/G 5.37

f1 Achr 0.32 Low-s.f. decline constant
B/Y 0.32
R/G 0.94

g Achr 2.5 Linear (filter) gain
B/Y 1
R/G 2

Rmax 30 Nonlinear gain
p 2 Low-c response exponent
q 0.4 High-c response exponent
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Here, U is the cumulative normal distribution function, R is
the d’ elicited by the stimulus. This procedure maps near-zero d’
to near-zero accuracy, and higher d’ to accuracy approaching
one. The visible image is then composed of content only to the
degree that it elicits psychophysically accurate responses. That
is, if a filter response is highly likely to have been elicited by a
stimulus (a hit), and highly unlikely to have been due to intrin-
sic noise (a false alarm), then its contrast is considered ‘visible’
and composes a part of the output image.

The reconstructed image is in CIElab coordinates, and is
transformed to HSV coordinates by chaining the MATLAB
lab2rgb and rgb2hsv functions.

Sampling across the visual field. An example of a ‘visible image’
is shown at the bottom of Fig. 5. The image seems similar to the
original, except for its reduced peripheral resolution. Its colour-
fulness does not seem reduced across the model field’s extent,
but the eye is the wrong judge here (the ‘double-pass problem’:
cf. Peli 1996). This is where we make use of the HSV representa-
tion, and sample hue variation and saturation across the field.
What is the right way to do this? A human observer making a
judgment about some image property across the visual field
must be using spatial attention, and it is known that the size of
the spatial attention ‘spotlight’ varies with eccentricity, with a
radius r following a pattern much like the scaling of acuity
(Intriligator and Cavanagh 2001):

r ¼ k0 1þ E�
E2

� �
þ kc (10)

Here, I followed Intriligator and Cavanaugh’s results
(Intriligator and Cavanagh 2001) and set k0 to 5 minutes of arc,
and E2 to 0.34 degrees eccentricity; but since this results in fo-
veal windows just a few pixels across (which would result in se-
vere undersampling at the fovea of local quality values for the
measures described below) a constant kc of 1 degree was added
at all eccentricities. This eccentricity-scaled sampling rule
reflects the attentional constraints on the spatial sampling

strategy of a human observer tasked with investigating the local
spatial distributions of some visual quality like colour.

One could argue that the scaled sampling rule is biased with
respect to the central research question, so the scaled rule was
compared with an unscaled sampling rule, fixing r at 3.75
degrees. This is the median (from 0 to 31 degrees eccentricity) of
the scaled sample window, and is about the size of the parafo-
veal region. (It is also the radius of the round window made by
touching the tips of my thumb and forefinger at a viewing dis-
tance of about 40 cm).

Colourfulness over eccentricity. With these sampling rules, we
assess colourfulness of model-visible images at each position
(in 1-degree steps) along the horizontal midline as shown in
Fig. 6. Two measures capture colourfulness at any sample posi-
tion: first, there is the distribution of saturations, with high sat-
uration quantiles reflecting the most colourful parts of the
sample; second, there is the hue entropy, which reflects the var-
iegation of a sample (how many different hues are encountered
there). Intuitively, the hue entropy should be computed for sat-
urations that produce visible colours—for this demonstration a
relatively low bar of 0.2 saturation was set, since a higher bar
tended to reduce sample sizes to zero for many scenes, even
near the fovea (very saturated colours in natural images are rel-
atively rare; Long et al. 2006). Saturation quantiles are self-
explanatory, and hue entropy (H) is defined as:

H ¼ �
X
hues

p huejsat > 0:2ð Þ log2p huejsat > 0:2ð Þ (11)

The distribution p(hue j sat>lim) was defined over 256 HSV
hue bins. Maximum entropy—an even distribution of hues
across the full range—would be H¼ 8 bits. Concentration of col-
our around particular hues appears as lower entropy.

Fig. 6C and D shows the upper quantiles of the saturation
distribution as a function of eccentricity for the different sam-
pling rules; Fig. 6E and F shows the hue entropy. For the scaled
rule, there is little dependence on eccentricity of the saturation
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trast sensitivity estimates for achromatic (left) and red/green (right) targets, for different target spatial frequencies (cycles per degree, cpd) and
retinal eccentricities (in degrees of visual angle, dva). The straight lines are regression fits to the log-CS human data, and are the same in both
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distribution. For the fixed rule, there is a gradual decline with
eccentricity in the saturation of the highest quantiles. The rela-
tionship between eccentricity and hue entropy is similarly
muted: entropy increases slightly with eccentricity for the
scaled rule (for the scaled rule the average increase in entropy is
about 0.01 bits per degree), and decreases slightly for the fixed
rule (on average losing about 0.04 bits per degree). Entropy is
generally around 4 bits in the investigated range.

Considering that the fixed-size sampling rule is unrealistic
and probably perceptually impossible, the slight declines in col-
ourfulness for that rule are not what we should expect a human
observer to report. At the same time, despite its relative ‘flatten-
ing’ by adding 1 degree of radius at each eccentricity, the
attention-scaled rule might impose too-rigid a frame to visual
field sampling: perhaps observers (especially expert observers)
are, with some effort, able to attend much smaller zones in the
periphery and much larger zones nearer the fovea, when they
are trying to ‘sample fairly’ across the visual field. So the scaled
rule might likewise overestimate the relationship in the oppo-
site direction. Left with a relationship somewhere in between a
slight increase and a slight decrease, it seems reasonable to de-
scribe the relationship between visible colourfulness and retinal
eccentricity as negligible.

Sharpness

There is no standard pixelwise measure of ‘sharpness’ analo-
gous to hue and saturation. What could be the response image
correlate of apparent sharpness? It is useful to define sharpness
negatively, as the absence of apparent blur: if a feature is seen

but does not appear blurry, then it appears sharp. The spatial
spread of ‘just detectable blur’ increases in proportion to eccen-
tricity in a similar way as acuity (Hess et al. 1989; Levi and Klein
1990; Wang and Ciuffreda 2005; Maiello et al. 2017). That is,
across the visual field, if the spatial spread of blur is less than
the acuity limit, a ‘blur percept’ will not be evoked; but if the
spread is larger, it will be. So, a simple model of sharpness
should capture whether or not content at some position in the
visual field (especially ‘feature’ content) extends all the way to
the acuity limit.

A measure applicable to the multiscale channel contrast
responses of our model can be derived from the ‘scale space’
notion of feature representation (Koenderink 1984; Witkin 1987;
Perona and Malik 1990; Georgeson et al. 2007). Fig. 7 uses this
concept to illustrate the distinction between physical sharpness
(e.g. ‘high resolution’) and perceived sharpness (‘perceptual
clarity’), and to explain how we can find a correlate of apparent
sharpness in the spatial vision model. These properties (physi-
cal and perceived sharpness) may often be conflated, but they
are just as distinct as, for example, reflectance spectrum and
perceived colour. The left two panels (A, C) show the scale-
space representation of a high-resolution edge: such an edge
exists, in physical terms, as a feature at a particular spatial re-
gion (on the x-axis) extending from coarse scales up to fine
scales. The right panels (B, D) show a low-resolution edge: this
edge exists as a feature that extends from coarse scales up to
only moderately fine scales. These are two physically different
features, but they do not determine perceptual qualities: per-
ceptual mechanisms also have to be taken into account. The
upper and lower panels contrast two different filter scales—a

Figure 4. Some of the images used as stimuli for the model.
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fine-scale ‘foveal’ filter set, and a coarse-scale ‘peripheral’ set.
The foveal filters distinguish between the two features in that
the lower-resolution edge does not elicit any response from the
smallest filters (Fig. 7B). So, the high-resolution edge elicits a
‘complete’ filter response, and the low-resolution edge elicits an
‘incomplete’ response. The peripheral filters do not distinguish
the two features: for this filter set, both edges elicit ‘complete’
responses.

The implication of the scale-space demonstration is that ‘ap-
parent sharpness’ is closely related to a complete filter re-
sponse, and is therefore distinct from the physical resolution of
a stimulus. This link between apparent sharpness (and blur)
and a cross-scale response has been proposed many times,
though always in different forms (e.g. Elder and Zucker 1996;
Wang and Simoncelli 2003; Georgeson et al. 2007), and usually in
reference to foveal perception (one exception is Anstis 1998).
Going by this way of thinking about apparent sharpness, we can
recruit the ‘response accuracy’ statistic of Equation (9) and de-
fine apparent sharpness as the cross-scale product of accuracies
at a given location:

FCh ¼
Y

f

Accuracy Rf ;h
� �

(12)

This ‘filter completeness’ measure (FC), approaches a value of 1
when all similarly oriented filters at some spatial position are
responding strongly, as would happen in the presence of an ori-
ented feature that is at least as finely resolved as the smallest filter.

Fig. 8 illustrates the application of this idea to the model
responses to natural cenes, taking filter completeness to be FCh

values greater than 0.96 (allowing that each of four filter
responses has accuracy �0.99)2. Here, I evaluate filter complete-
ness only for the luminance channel, since its smaller filter size
means that it must in any case be the driver of sharpness judg-
ments. The first panel (A) shows the visible luminance-contrast
image for a particular scene; the next panel (B) highlights the
regions of the image where the model response was ‘filter com-
plete’. Using the same two sampling rules as in the colourful-
ness analysis, the last panel (C) shows the average filter
completeness—the mean of FCh >0.96 within the sample re-
gion—as a function of (horizontal) eccentricity. This analysis is
insensitive to sampling rule, but there is a clear positive trend
with eccentricity of increasing filter completeness. Under the
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Stimulus Image
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16
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Peak local response (d’)

Figure 5. Top: Stimulus image exposed to the model. Middle: Model response image to the stimulus, collapsed across scale, orientation, and col-
our (using the M-norm for scale and winner-take-all for orientation and colour). Notice that most of the scene is taken up by very high d’ values
(shades of bright yellow): At these locations, content is easily visible. The colormap is batlow from Crameri (2020). Bottom: The ‘visible image’
according to the model response. This image is composed only of image contrasts that elicit ‘suprathreshold’ responses.

2 Why not tie apparent sharpness simply to the responsiveness of the
smallest filter at each position? There are some image features, espe-
cially fine-grained textures, that will not be judged as ‘sharp’ under
the FC metric, but would be if the metric were relaxed to extend only
over the finer (or finest) filter scales. However, the model would then
be inclined to judge features as sharp erroneously, such as when
white noise is added (as in (Kayargadde & Martens, 1996; Kurihara
et al., 2009)), even though adding white noise to edges in natural
scenes tends to reduce their apparent sharpness ((Kurihara et al.,
2009); perhaps as a consequence of ‘coarse-scale suppression’ as
reported in (Haun & Hansen, 2019; Haun & Peli, 2013b)). Considering
these issues, the broadband FC metric is the more conservative
choice: it should underestimate, rather than overestimate, apparent
sharpness.
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hypothesis that filter completeness underlies apparent sharp-
ness, the spatial vision model does not support the notion that
apparent sharpness should decline with eccentricity.

Apparent blur of visible content. Apparent sharpness does not
capture the whole story: if a feature does not appear sharp, then
it must appear blurry, and there is plenty of room for features to
appear more or less blurry depending on various circumstances.
Apparent blur, that is how blurry something appears to be (with
‘sharpness’ being the minimum of apparent blur), is usually
measured by perceptually matching the blur of one percept to
the blur of another. In a pair of studies especially relevant to the
central question of this study, Galvin et al. (1997, 1999) measured
apparent blur matches between foveal and peripheral stimulus
positions. They found that a blurred edge viewed peripherally
was subjectively matched to a less-blurred edge viewed foveally
(scattered symbols in Fig. 9C–G). They called this effect ‘sharp-
ness over-constancy’. They proposed that some mechanism cor-
rects for the lower resolution of peripheral vision. In their view,
peripheral stimuli appear sharper than they should: implicitly they
were taking ‘foveal appearance’ as the standard for how things
ought-to-look. The spatial vision model suggests a different in-
terpretation of their results. Fig. 9 replots data from Galvin et al’s
Experiment 1, along with perceived-blur matching functions

from the spatial vision model. ‘Apparent blur’ does not have
an easy implementation in the scale space model, so I
adapted the simple ‘response slope’ model of Elliott et al.
(2011) and Haun and Peli (2013a). In their model, apparent blur
is equated to the rate of decrease (m) of the perceptual re-
sponse (here R) as the log filter scale decreases (as log center
frequency f increases):

R f
� �
¼ m ln f

� �
þ b (12)

This model was originally designed to explain perceived blur
of a special class of stimuli (blurred by steepening the amplitude
spectrum slope; Elliott et al. 2011; Haun and Peli 2013a), and it
performs very badly (i.e. non-monotonically for increasing blur
levels) for gaussian-blurred stimuli. However, I found that adjust-
ing the slope term by the local response (the M¼ 4 norm R) yields
blur estimates that monotonically increase with stimulus blur
(Fig. 6a), so the ‘apparent blur’ term b is:

b ¼ m

R
(13)
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When there is similar response across filter scale (as would
be ideally evoked by the large edge stimuli of the Galvin et al.
study), b will be near zero—when response declines with in-
creasing filter scale, b will be negative. b can also run to positive
values (‘oversharpness’) when there is relatively more fine-
scale than coarse-scale content, as with a fine-grained texture.

This perceived-blur model (as with most or all others pro-
posed) has been tested only with foveal psychophysics data,
and it fits the matching Galvin data only roughly (Fig. 9C–G).
However, notice how it fails: held to a foveal standard, the spa-
tial vision model behaves as though peripheral content, espe-
cially at larger eccentricities, is perceived as even less blurry
than Galvin et al. found it to be (Fig. 9E–G). That is, rather than
sharpness over-constancy, there may be an under-constancy at
work in human peripheral vision. One possible culprit here is
crowding (Rosenholtz 2016): a subject’s relative inability to
judge the qualities of content in peripheral vision, despite the
psychophysical availability of the necessary information, might
contribute to judgments of apparent blur (does a crowded dis-
play feel more blurry?). Or, it could be that observers have some
natural knowledge that the objective resolution of peripheral vi-
sion is less than that of foveal vision, and they are injecting that
knowledge into their decisions about apparent peripheral blur.

Finally, the model of Equations 12 and 13 might simply be inad-
equate. At any rate, the spatial vision model does not predict
that peripheral stimuli should be judged as blurrier than foveal
stimuli, or indeed as blurrier than human observers themselves
tend to judge them.

Apparent blur and sharpness of natural scenes. The apparent
blur model of the previous section is straightforward to apply to
the natural scene contrast responses underlying the analyses in
previous sections. This analysis requires the obvious caveat
that, as shown in Fig. 9, the apparent blur model is a rough fit to
the one available data set (Galvin et al. 1997). Also, except for the
example of Fig. 9, the model has never been validated on local
image patches, only on ‘whole image’ statistics (Elliott et al.
2011; Haun and Peli 2013a). However, the model is not that far
off the Galvin et al. results—it closely matches data at smaller
eccentricities, and is at least monotonic with the psychophysi-
cal patterns.

Fig. 10 shows how the apparent blur parameter b, as evoked
by the scene images, varies with eccentricity: it does not vary
much at all, averaging a positive value at every eccentricity. If,
in viewing a panorama, normal human observers are compar-
ing some statistic like b across their visual fields, they should
find that the distribution of apparent blurs is not obviously
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Figure 7. The ‘scale space’ model of edge sharpness and blur. Two kinds of physical stimulus are illustrated: a high-resolution (physically sharp)
feature at left, and a low-resolution (physically blurred) feature at right. These are represented as lines indicating existence of content across a
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dependent on retinal position. In fact, if the intrinsic blur statis-
tic is anything like b, they should find that a typical scene (that
is, one viewed at optical infinity, as with most of our sample
scenes) does not contain much blur at all.

Attention

The target data on which the model is constructed and tested
were all collected under conditions where the stimulus was the
sole focus of the observer’s spatial attention. So, the findings
would seem to hold for, at a minimum, judgments about
attended colour and sharpness qualities. What happens to col-
ourfulness and sharpness when spatial attention is withdrawn
from a region of the visual field?

The effects of spatial attention are complex (involving shift-
ing tuning for individual neurons, changes to perceptual organi-
zation and recognition, and surprising phenomena like
inattentional blindness) and, in general, its mechanisms are
poorly understood. However, at the level of early spatial vision,
we have some idea of what is happening. Neural and psycho-
physical measures seem to agree that spatial attention corre-
sponds to enhancement of contrast response (Buracas and
Boynton 2007; Herrmann et al. 2009; Reynolds and Heeger 2009;
Bressler et al. 2013; Guo et al. 2020); so, withdrawal of spatial at-
tention means reduced contrast sensitivity, reduced perceived
contrast (but see Schneider and Komlos 2008), and attenuated
neural response. A crude implementation of this enhancement

(or of its withdrawal) in the model would be to vary the ampli-
tude (Rmax in Equation 9) of the contrast response function. If
the main model reflects the enhanced response state of an
attended region, we can implement the withdrawal of attention
by reducing Rmax. Reducing this parameter would mirror the
kinds of reductions seen in neural contrast response functions
(Luck et al. 1997; Gandhi et al. 1999; Buracas and Boynton 2007),
and would also reduce contrast sensitivity and perceived con-
trast judgments (assuming that perceived contrast is strongly
linked to contrast response magnitude) in similar ways to what
is observed psychophysically (Foley and Schwarz 1998; Carrasco
et al. 2000, 2004; Huang and Dobkins 2005; Carrasco and Barbot
2019).

I repeated the colourfulness and sharpness analyses using a
version of the model with Rmax reduced by 25% (Fig. 11A, Rmax ¼
22.5; this reduction is consistent with the magnitude of atten-
tional effect on fMRI BOLD response). This is a significant reduc-
tion that produces psychophysical effects in a similar range to
what has been observed in numerous studies, reducing sensi-
tivity by around 20% (Fig. 11B and C), depending on the default
sensitivity of each mechanism, but I did not try to fit the reduc-
tion to any particular data set (see Lee et al. 1997 and Carrasco
et al. 2000 for similar effects; many other effects of similar mag-
nitude are reviewed in Carrasco (2011).

Fig. 11 also compares the original perceptual quality meas-
ures of the ‘attended’ scenes with measures of the ‘unattended’
scenes. The changes to colourfulness are modest: unattended
regions have reduced saturation (99th percentile saturations, on
average, drop from 0.54 to 0.51; Fig. 11D) and slightly reduced
hue entropy (from 4.31 to 4.25 bits; Fig. 8E). The changes to
sharpness are larger (Fig. 11F): edge density (averaged over ec-
centricity) drops from around 0.27 to around 0.21, roughly pro-
portional to the change in response amplitude. Interestingly,
the apparent blur metric (b) increases slightly with inattention
(Fig. 11G)—while decreasing Rmax would reduce the slope esti-
mates underlying the blur metric, the normalizing factor, being
decreased by the same factor, over-compensates for the reduc-
tion. If we think that apparent blur should change similarly to
edge density, we can suppose that the visual system ‘knows’
about the inattentional reduction of Rmax, and takes this reduc-
tion into account by reducing R-based statistics by the same
proportion: basically, we multiply the original b by the reduction
factor. The dotted line in Fig. 11G shows this adjusted b is simi-
larly reduced to the reduction in edge density.

These attentional effects on visible qualities are not very
dramatic, but they are real. If the actual effects of withdrawing
attention on contrast sensitivity are larger than what is mod-
elled here, then the effects on perceptual qualities would be cor-
respondingly larger. Overall, this may support a weak version of
the so-called ‘refrigerator light illusion’ (Block 2001), which is
the notion that unattended properties of visual experience may
be somewhat different from attended properties—but that we
would not notice the difference, since whenever we check we
find the attended versions of those properties.

Why, if the contrast response (and sensitivity) is changed so
significantly, are visible qualities not more dramatically af-
fected? The answer is that saturated colours or sharp details are
evoked by high physical contrasts that yield (in the attended
case) very high signal-noise ratios; halving these ratios will gen-
erally still result in a suprathreshold response (e.g. going from
d’¼8 to 4). If halving the contrast response results in a large de-
cline in the accuracy of a feature, then the attended response
must already have been rather weak (e.g. from d’¼2 to 1). In
terms of accuracy (Equation 9), the reduction of contrast
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Figure 8. (A) The visible image of a scene’s luminance contrast. (B)
The regions of the scene where responses are filter complete (FCh

>0.96) are coloured cyan. Note how ‘sharp’ features are themselves
progressively larger in angular size, with increasing eccentricity
(from left to right). (C) The proportion of FCh >0.96 pixels (‘Edge den-
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scaled sampling rule. Dotted lines are for the fixed sampling rule
(they do not differ appreciably from the scaled rule). The average
was not taken for windows extending outside the model field.
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response magnitude only has meaningful consequences for fea-
tures whose attended response was in the range [0,�4].
Responses in this range already contribute only marginally to
colourfulness and sharpness (this is almost by-definition: of
course low contrasts do not contribute much to judgments of
sharp edges or vivid colour). The effects of attentional enhance-
ment of contrast response are on the faint and hard-to-see,
rather than on the vivid and easy-to-see.

Discussion

According to standard techniques for measuring human vision,
basic capacities of visual perception (sensitivity and resolution)
decline significantly with increasing retinal eccentricity. These
facts have led some to conclude that perceptual qualities must
therefore degrade with eccentricity. To the contrary, however,
the present study shows that, given the sensitivity and resolu-
tion of the normal human observer, one would expect percep-
tual qualities to be rather stable across the visual field (Fig. 12).
This demonstration requires only that we take an intrinsic per-
spective on spatial vision: that the visual system can only know
about what it can represent; it cannot know about what it can-
not represent. This idea was expressed particularly well by
Anstis in his 1998 paper on understanding peripheral acuity:

“Why does the whole visual field normally look equally sharp all

over, when there is clearly an enormous degradation of the visible

detail in peripheral vision? This is an ill-posed question. After all,

if our acuity were 1000 times better than it is, we could throw

away our microscopes, yet our ’limited’ foveal acuity which pre-

vents us from seeing bacteria with the naked eye never looks like

any kind of subjective blur! The same applies to our limited pe-

ripheral acuity. A channel cannot signal anything about stimuli to

which it is not tuned, so peripheral retinal channels must remain

silent in the presence—or absence—of high spatial frequencies to

which they are blind.” (Anstis 1998)

This way of understanding visual perception might seem
straightforward, but an ‘extrinsic’ perspective on vision may be
closer to the mainstream of cognitive science, since it fits well
with overarching theories of computation and information-
processing, and notions of veridicality and intentionality (some
distinct recent critiques of the extrinsic perspective include,
Lehky et al. 2013; Hoffman and Prakash 2014; Brette 2019). That
is, we tend to see perception—and perceptual experience, spe-
cifically—as a process involving an external signal, an internal
response or representation, and mechanisms linking the two.
Under this perspective, it may seem intuitive that, because
there are small image features that can be seen foveally but not
peripherally, peripheral vision is actually blurry in comparison
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Figure 9. (A) Stimuli used for the replication of Galvin et al (1997). Eleven levels of gaussian blur were applied to a monochrome vertical edge.
The stimuli are illustrated to scale: the image is 10.67 degrees wide. (B) The ‘apparent blur’ statistic b for a simple edge stimulus convolved
with a gaussian with the scale constant on the x-axis (scale constant is in minutes of arc, i.e. 1�/60). The apparent blur metric is explained in
the text. Each line is a Gaussian fit to the blur metric as a function of stimulus blur, for each of six stimulus eccentricities. (C-G) Apparent blur
matched between a fixed-blur peripheral stimulus and an adjustable-blur foveal stimulus. Model matches between the foveal and peripheral
blurs were computed numerically using the gaussian curves fitted in (B). Veridical matches would be on the main diagonal, and matches above
the main diagonal mean that the peripheral stimulus appears sharper (less blurry) than it would if it were viewed foveally. Symbols are data
from Galvin et al (1997)’s first experiment (replotted from their Figure 2). As eccentricity increases, the model becomes less accurate, over-esti-
mating perceived sharpness of peripheral content. The model judges peripheral edges to be even sharper than the human observers judged
them to be. Over the five test eccentricities f8.3, 16.7, 24, 32, ana 40g the average difference between model and data is small but consistently
negative: f0.2, �1.0, �1.1, �2.0, and �1.9g arcmin, respectively.
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to foveal vision. The fact that it does not seem this way then pro-
duces an excitingly counterintuitive thesis: that the visual field
does not really feel the way it seems to feel, and introspective

judgments about visual qualities are not to be trusted. However,
perceptual experience is, by most accounts, intrinsic to the ob-
server, and cannot involve the stimuli per se: if there are stimu-
lus properties that are not represented in experience, their
absence does not figure in the experience. Rather, the experi-
ence is entirely a matter of the structure of the representation.
Because the structure of edge representation in the periphery
and the fovea is similar, they may well be experienced in very
similar ways, despite the fact that they can be evoked by differ-
ent stimuli.

It has also been pointed out before that colour perception is
largely independent of retinal position, when targets are scaled
to match the local scale of the visual field (Noorlander et al.
1983; Block 2007; Tyler 2015; Haun et al. 2017). One counterargu-
ment to this is that objects in natural scenes, as opposed to
eccentricity-scaled experiment stimuli, do not change size
when they fall at different retinal eccentricities, and so the size
dependence of colour perception across the retina is not rele-
vant to natural vision (Van Gulick 2007; Burnston 2018).
However, natural scenes are scale invariant (Burton and
Moorhead 1987; Ruderman and Bialek 1994), meaning that, on
average, any location within a scene may contain spatial con-
tent at all scales. So, a neuron with a large colour-opponent re-
ceptive field in the periphery is as likely as one with a small
foveal receptive field to find a stimulus that excites it.

Caveats and conclusion

The spatial vision model I have used in this study is not unique.
There are many alternate formalisms for sensitivity across the
visual field (e.g. Watson and Ahumada 2016; Schütt and
Wichmann 2017; Watson 2018), sensitivity to different levels of
contrast (e.g. Lu and Dosher 1999), and colour vision. There are
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Figure 11. Simulating the effects of attention on visibility of colour and sharpness. (A) Attended (Rmax¼ 30) and unattended (Rmax¼ 22.5) contrast
response functions for a range of z-values (threshold parameters). (B) Unattended (solid line) contrast sensitivity is reduced relative to attended
(dashed line) sensitivity. The sensitivity curve here is for foveal luminance contrast before the linear gain parameter (gach). (C) Plotted as
threshold elevation, the difference between unattended and attended thresholds tends to around 20%. (D) There is some reduction of visible
saturation for the unattended condition. (E) Visible hue entropy is not affected by the attention manipulation. (F) Visible edge density is re-
duced in the unattended condition. (G) Apparent sharpness (positive values of the apparent blur metric) is increased by inattention. The thick
dotted line shows an adjusted metric that assumes knowledge of the inattentional reduction in response amplitude.
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Figure 10. (A) The ‘apparent blur’ measure over eccentricity for the
scene stimulus set. Unlike the simple edge stimuli of Figure 6, natu-
ral scenes typically evoke positive apparent blur scores, which we
may interpret as ‘apparent sharpness’. In general, regions of a natu-
ral scene at optical infinity (as in our stimulus set) will evoke these
positive scores; negative scores generally correspond to featureless
regions, usually sky, where most content is in a very low-frequency
gradient.
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also many alternate models of blur perception, only some of
which would be compatible with the contrast response model I
have presented (e.g. Field and Brady 1997). I selected the compo-
nents of this model for their simplicity and compatibility. The
important thing for my purposes is that these different models
are generally psychophysically equivalent. That is, I expect that
an alternate spatial vision model could be constructed, but as
long as it fits the psychophysical properties listed in points i-x
(Section Methods), the ensuing statistical analyses will be the
same. So, I do not believe that the results of this study are the
consequence of some peculiar modelling choices.

I hope the scope of these findings is clear. The familiar psy-
chophysical patterns of exponential decline in sensitivity with
eccentricity and spatial frequency, and the steeper decline for
chromatic channels, do not mean that peripheral vision is inca-
pable of representing colour or sharpness in the same way as
foveal vision. This is not to say that capacity for visual qualities
must be represented in the same way across the visual field. The
main analyses of colourfulness and sharpness are merely de-
scribing the informational relationship between the visual sys-
tem and complex scene stimuli. How the visual system uses
this information to form higher-level representations is a ques-
tion that could be addressed with the suprathreshold regime of
a model like what I have presented, but except for the perceived
blur model, I have not tried to do it in this study (for reasons de-
tailed in the Appendix, I expect the model would need more
work).

Even given that the visual system has the necessary informa-
tion for representing colourfulness and sharpness across the vi-
sual field, there are other processes that may interfere. Crowding
is an obvious difference between foveal and peripheral vision,
but it is unknown how crowding interacts with apparent colour-
fulness or sharpness. Attention is another obvious difference be-
tween the foveal and peripheral fields, since it naturally resides
at the foveal field, but this has already been addressed to some
extent (Section Sharpness): withdrawing attention from a region
of the visual field does not result in a collapse of our capacity to
represent colour and contrast. Rather, withdrawing attention
results in a modest decrement in that capacity. The phenome-
non of inattentional blindness, where unattended objects or fea-
tures (or their absence) go completely unnoticed, might have
little to do with the effects of attention on low-level visual per-
ception. Instead, the phenomenon might be more similar to inat-
tentional agnosia than blindness (Simons 2000; Koivisto and

Revonsuo 2008): just as an individual with object agnosia experi-
ences colours and textures without experiencing the object those
qualities compose (Farah 2004), we might routinely experience
the spatial qualities of an unattended peripherally viewed scene,
without recognizing what they compose. Given that the known
effects of attention on contrast perception are rather moderate, I
take this to be a simpler alternative than supposing that atten-
tion might be necessary, through the action of some as-yet un-
known mechanism, for the experience of colour (as considered
in e.g. Cohen et al. 2020). However, the present results are not evi-
dence against such a mechanism, and such a powerful ‘refrigera-
tor light phenomenon’ would be, by definition, very difficult to
test experimentally.

A goal of this study was to dispel the notion that peripheral
experience of colour and sharpness must be illusory because
the periphery is unable to support such percepts. Given the
results of the current study, is there still any sense in which the
qualities of peripheral vision might be thought of as illusory? I
think there certainly is. In one study (Balas and Sinha 2007), it
was found that observers judge rapidly presented scenes to be
in full-colour even when a significant portion of the scene area
is fully desaturated. If we take this result at face value, suppos-
ing that the local spatial structure of the scene actually became
colourful as a result of, for example, some top-down influence,
it is a proper visual illusion: the scene appears one way, even
though the stimulus would have been expected to elicit a differ-
ent appearance. The ‘uniformity illusion’ (Otten et al. 2017) is
similar, except with textures rather than colours: parts of the
display appear one way, though the stimulus is a very different
way. These are illusions in that the percept is at odds with the
stimulus (or with our expectations of how it should appear).
That the appearances are real, that they feel the way they seem
to, is well-within the capacities of the visual system. If ‘illusion’
is taken to mean that one believes one experiences something
that one cannot experience, then there is nothing obviously illu-
sory about the apparent colourfulness and clarity of a natural
scene that fills the visual field.

Supplementary Materials

Code implementing the spatial vision model, references to the
scene images used in this study, and other materials are found
online at https://osf.io/8xf9w/.

Supplementary data is available at NCONSC Journal online.
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Figure 12. A summary of the main results. Colour qualities and sharpness qualities, as assessed against contrast responses to colourful pano-
ramic scenes, do not differ dramatically between parafoveal and peripheral visual fields. The values here are the arithmetic means of values
below 5 degrees (for a ‘parafoveal’ measure) and above 15 degrees (for a ‘peripheral’ measure) for data shown in Figs. 6, 8, and 10.
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Appendix
Some notable spatial vision properties left out of the
model

These properties are perhaps pertinent to the question of colour
and sharpness percepts across the visual field, but they are left
out of the model in this paper. Many of these amount to aggre-
gations of contradictory interactions (i.e. of facilitation and sup-
pression), so we can think of them as ‘washing out’ (e.g. xii, xiii).
Others are factors that, by their omission, mean the model is
probably underestimating rather than overestimating sensitiv-
ity (e.g. xvii, xix, xx). And some are just too complex and would
not yield worthwhile returns on the questions at hand (e.g. xxi).
However, these are significant aspects of spatial vision psycho-
physics that touch on the questions at hand, and their inclusion
would improve the model, so their omission should be
acknowledged:

xi. The temporal aspect of contrast sensitivity is ignored. The
model’s sensitivity is effectively based on the typical 100–500
ms pulse-windowed targets in many traditional trial-based psy-
chophysics tasks (i.e. temporally broadband and generally low-
pass or low-frequency-biased). This can be reasonably linked
(as in Haun and Peli 2013b) to the typical duration of fixations
between saccades (Henderson 2003).
xii. Orientation anisotropies [oblique effects and horizontal
effects (Essock et al. 2009) and radial anisotropies (Westheimer
2003), and so on, of various types are small and ignored here.
xiii. Surround-modulation and other lateral-interaction effects
(Yu et al. 2003; Chen and Tyler 2008) are ignored.
xvi. Interactions between the colour channels (e.g. Kim and
Mullen 2016) are ignored.
xv. Contrast adaptation effects are ignored.
xvi. The low-spatial-frequency plateau in contrast sensitivity
has a form that I did not attempt to match closely.
xvii. Cross-orientation masking is dependent on stimulus
parameters and is usually weaker than self(same-orientation)-
masking (Foley 1994; Meese and Holmes 2007), but I set it to
have constant strength equivalent to the strength of a filter’s
self-masking, i.e. ¼1. Thus, the model always overestimates the
strength of cross-orientation masking.
xviii. Cross-frequency interactions are captured only by the
cross-frequency norm (Methods), ignoring specific patterns of
interaction that suggest that the visual system works to reduce
the representation of lower frequency content in the presence
of higher frequencies (Haun and Essock 2010; Haun and Peli
2013b).
xix. Contrast sensitivity is known to improve on virtually every
dimension when the scene’s luminance is increased, and natu-
ral scenes generally have far higher luminances than experi-
mental contrast displays; the current model is fixed to the low-
luminance, but still photopic, experimental context (so sensitiv-
ity may generally be underestimated by the model).
xx. Binocularity adds many complexities to spatial vision. The
contrast sensitivity data that the model is fitted to was all col-
lected monocularly; binocular sensitivity and discrimination is

18 | Haun

https://en.wikipedia.org/wiki/Wikipedia:Featured_pictures/Places/Panorama.Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Featured_pictures/Places/Panorama.Wikipedia
http://books.nips.cc/papers/files/nips16/NIPS2003_VB01.pdf
http://books.nips.cc/papers/files/nips16/NIPS2003_VB01.pdf


generally better than monocular (Campbell and Green 1965;
Legge 1984), so the estimates of sensitivity can generally be con-
sidered underestimates on this point.
xxi. When we look closely, colour perception across the visual
field has much more inhomogeneity across the visual field than
the model would suggest. For example, in many - but not all -
observers ‘green’ percepts are gradually attenuated towards the
periphery (Stromeyer et al. 1992), while R/G contrast sensitivity
paradoxically continues to follow the expected pattern. There

are also reports that colour stimuli can appear more saturated in
the periphery than at the fovea (e.g. Vanston and Crognale
2018). Also, in the fovea there are no S-cones and so foveal sen-
sitivity to blue spots is very poor (Wald 1967), although foveal
blue percepts still are possible (Magnussen et al. 2001). See also
footnote 1 in Section Filter Structure regarding asymmetries
within each colour channel; in my model, each colour is
encoded symmetrically with its opponent, which is a nontrivial
simplification.
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