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Chromosomal copy number changes are frequently associated with harmful consequences and are thought of as an underlying
mechanism for the development of diseases. However, changes in copy number are observed during development and occur dur-
ing normal biological processes. In this review, we highlight the causes and consequences of copy number changes in normal
physiologic processes as well as cover their associations with cancer and acquired drug resistance. We discuss the permanent and
transient nature of copy number gains and relate these observations to a new mechanism driving transient site-specific copy
gains (TSSGs). Finally, we discuss implications of TSSGs in generating intratumoral heterogeneity and tumor evolution and how
TSSGs can influence the therapeutic response in cancer.

It was long thought that the DNA sequences of healthy individ-
uals were 99.9% identical to each other (1). However, genome-

wide sequencing efforts in individuals from multiple ethnicities
have revealed more variations in the genetic architecture than
were previously appreciated (2–4).

These genomic alterations have been termed structural vari-
ants, which are further classified as microscopic or submicrosco-
pic, depending on the amount of DNA involved (5). The micro-
scopic variations have historically been identified through
chromosome banding techniques (6) and comprise at least 500 kb
of DNA (7). Examples of these variants are whole-chromosome
gain or loss (referred to as aneuploidy [7, 8]), translocation
(change in location of a chromosomal segment [9]), deletion (de-
letion of a DNA segment relative to the rest of the chromosome
[10]), duplication (a chromosomal segment occurs in two or
more copies per haploid genome [11]), and inversion (reversal in
orientation of a DNA segment compared to the rest of the chro-
mosome [12, 13]). A schematic of structural variants resulting in
copy number changes is shown in Fig. 1. With the development
of more sophisticated tools, such as array-based comparative
genomic hybridization (GGH) arrays (14–16), smaller variants
(submicroscopic alterations) in the size range of 1 to 500 kb can be
detected (5). Genome sequencing has further revealed small inser-
tions and deletions (indels) spanning from 1 to 10,000 bp across
the human genome which could cause considerable variability in
the human population (17, 18).

The most common variant identified under submicroscopic
alterations is copy number variation (CNV). CNV is defined as a
genomic segment of more than 1 kb present at a variable copy
number in comparison to a reference genome (19–22). The first
studies documenting the genome-wide presence of CNVs in the
normal human genome came from work in the laboratories of Lee
(23) and Wigler (24). These studies described more than 200
large-scale CNVs (LCVs; about 100 kb or greater) in normal indi-
viduals. These studies also paved the way for the creation of the
Database of Genomic Variants (DGV) in 2004, which catalogs all
the human CNVs and structural variations present in healthy in-
dividuals.

The sequencing efforts from the International HapMap Con-
sortium (25) and 1000 Genomes Project (26) have led to the iden-
tification and frequency determinations of novel CNVs in the hu-

man genome. CNVs are now known to contribute to 4.8% to 9.5%
of the variability in the human genome (27, 28), which is more
than what is accounted for by single nucleotide polymorphisms
(SNPs; accounting for 0.1% of the variations) (29). Recently, the
CNV map for the human genome was constructed (28), and it
documented all the small- and large-scale CNVs present in nor-
mal healthy individuals. CNVs can either have no phenotypic con-
sequences in individuals (4, 23, 24) or lead to adaptive benefits
that have been observed in a wide range of species (5).

One of the major challenges in the field is to distinguish benign
CNVs (events that do not lead to phenotypic consequences) from
pathogenic CNVs that underlie diseases (30). Pathogenic CNVs
are often associated with deleterious consequences because of an
imbalance in gene dosage (31) and/or aberrant chromosomal
structure (5, 7, 32, 33). Pathogenic CNVs have been associated
with several disorders, including the following: obesity (34), dia-
betes (35), developmental disorders (36), psychiatric diseases (37)
such as autism spectrum disorder (38), schizophrenia (39), and
Alzheimer’s disease (40, 41), and cancer (42–44). In this review,
we focus mainly on copy number alterations observed in cancer
and their functional implications.

CNVs can either be present in the germ line or can arise in
phenotypically normal tissues and organs, which are referred to as
somatic CNVs (45, 46). Instead of being randomly present in the
genome, CNVs are preferentially found to occur in regions that
are rich in low-copy-number repeats (segmental duplications)
(47–50), heterochromatic areas (e.g., telomeres and centro-
meres), and replication origins and palindromic regions (28).
There are several proposed mechanisms that underlie the genera-
tion of somatic CNVs: nonallelic homologous recombination
(NAHR), nonhomologous end joining (NHEJ), defects in DNA
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replication, and DNA damage response and repair pathways.
These mechanisms have been extensively discussed elsewhere;
therefore, we refer our readers to several reviews (32, 33, 51).

In this review, we explore the relationship between copy num-
ber changes and biological consequences, with a particular focus
on development and tissue homeostasis under physiological as
well as pathological conditions. This review focuses on these
relationships, especially in the context of cancer. We further
discuss a recently discovered process driving transient site-spe-
cific copy number gains (TSSGs) in cancer cells and its impli-
cations during adaptive responses such as stress and chemo-
therapeutic sensitivity.

COPY NUMBER CHANGES IN DEVELOPMENT AND
PHYSIOLOGY

Chromosomal copy number changes and the associated gene am-
plifications and losses are observed during development in both
lower and higher eukaryotes [reviewed in reference 7]. The
appearance of CNVs during normal biology suggests that copy
number changes can have important functional consequences.
A common hypothesis is that increased gene dosages during

development provide an advantage during selective pressures and
environmental conditions (7). Here, we discuss examples from
developmental biology and their relationships to functional im-
pact. We also highlight the relationship between somatic CNVs
and tissue homeostasis.

Several lower and higher eukaryotes use gene amplification to
respond to cellular signals (Fig. 2). Electron microscopy studies in
the early 1970s demonstrated that ribosomal genes are amplified
for the production of large amounts of ribosomes required during
early embryogenesis (52). Ribosomal DNA (rDNA) amplifica-
tions were observed during oocyte formation in amphibians such
as Xenopus leavis (53–55), insects such as water beetles (56), mol-
luscs (55), and in the macronuclear rDNA of Paramecium (57)
and Tetrahymena (58). Thus, such an increase in rDNA synthesis
to meet higher protein synthesis demands in different tissues
highlights gene amplification as a common principle in develop-
mental biology.

Besides rDNA, specific chromosomal regions identified as
“DNA puffs” are amplified and expressed to form structural pro-
teins required for cocoon formation in the salivary gland of sciarid
flies (59, 60). Amplification of the DNA puffs occurs in response
to the hormone ecdysone, which is required during larval devel-
opment (60). Another example of gene amplification triggered by
developmental signals can be observed during eggshell formation
in Drosophila melanogaster (61). Eggshells require amplification of
chorion genes in the follicle cells of the ovary, and these genes are
expressed late in differentiation (61, 62). The amplifications of
only specific chromosomal regions and genes and not the whole
genome highlight the specific response that can occur across or-
ganisms. These examples suggest the ability of cellular cues to
trigger these site-specific amplifications, which raises the question
about what molecular mechanisms underpin this selective ampli-
fication across species.

Examples of copy number variations have been reported in
various tissues in mammals. Using techniques such as spectral
karyotyping (SKY), fluorescence in situ hybdridization (FISH),
and single-cell sequencing approaches, various groups have re-
ported both small- and large-scale changes in chromosomal copy
numbers in mouse and human tissues, particularly in neurons,
liver cells, and skin fibroblasts (Fig. 2). For example, approxi-
mately 33% of the neuroblasts in the embryonic mouse brain and
20% of neurons in the adult mouse cerebral cortex showed aneu-
ploidy (63). The reduction in aneuploidy in the adult brain was
hypothesized to be due to a neuroblast programmed cell death
mechanism during brain development (64). Westra and col-
leagues also uncovered that 15 to 20% of neural progenitor cells
in both mouse and human cerebella exhibited aneuploidy (65)
(Fig. 2).

Additionally, high levels of subchromosomal CNVs (deletion
and duplication events) were observed in the human frontal cor-
tex neurons. Multiple copy number changes were noted within a
small set of neurons, suggesting that CNVs might be restricted to
either individual cells or specific neural lineages (66). These data
suggest that the generation of copy number changes is an impor-
tant process for achieving diversity in the neuronal populations
during central nervous system development. However, this possi-
bility has yet to be proven. It was reported that the transcripts
arising from CNVs in the mouse brain are more tightly regulated
than are other tissues such as lung, liver, heart, kidney, and testis
(67). It would be important to determine the rate of correlation

FIG 1 Types of copy number changes. (A) Representative examples of struc-
tural chromosomal alterations are shown, with a new sequence insertion (D),
deletion of region AB, and duplication of sequence B (ABB). The reference
chromosome is shown at the top. (B) Aneuploidy with whole chromosome
gain (the extra black chromosome) and loss (of black chromosome) are de-
picted with respect to a normal mitotic reference nucleus. (C) A part of a
chromosome (black) can be amplified or deleted (black), giving rise to seg-
mental aneuploidy. This is demonstrated here as involving rearrangement of
only one chromosome. A more likely scenario is an unbalanced translocation,
which is not shown in the figure. (D) Homogenously staining regions (HSR)
and double minutes (DMs) are chromosomal structures that are generated as
a consequence of gene amplification. HSRs are repeated units clustered at a
single chromosomal locus (red), and DMs are unstable circular extrachromo-
somal DNA structures lacking a centromere or a telomere. In addition to these
structures, amplicons can be present at a number of loci in the genome (not
shown).
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between CNVs and expression changes in the human brain and
whether there are underlying functional consequences of the af-
fected transcripts in generating neural diversity and plasticity.

Somatic CNVs are also observed in mammalian hepatocytes
and skin. A study by Duncan and colleagues suggested that ap-
proximately 50% of normal adult hepatocytes have changes in
chromosomal numbers (gains or losses) such that genetically di-
verse sets of cells are present in the liver (68, 69). However, single-
cell next-generation sequencing has reported a lower level of
aneuploidy (�5%) in cells of liver, skin, and human neurons (70).
The differences in the reported levels of aneuploidies could reflect
the different types of assays employed to follow copy number
changes (i.e., FISH and SKY versus single-cell sequencing, respec-
tively).

The genetic variation resulting from the changes in copy num-
ber could be a mechanism employed during tissue development in
order to achieve diversity in cell populations. Copy number vari-
ations may allow developing tissues to adapt to cellular and
growth requirements during tissue expansion and organ develop-
ment. Another advantage for the observed CNVs could be to
adapt to encountered metabolic or toxic challenges, especially by
hepatocytes (see the discussion in “Mammals,” below). By identi-
fying the regulatory features for regions undergoing CNV and the

affected genes in different tissues, we would be able to understand
tissue-specific gene expression and underlying diversity within tis-
sues.

COPY NUMBER CHANGES AS AN ADAPTIVE RESPONSE

Many studies in bacteria, yeast, and mammals have shown that
copy number changes can arise as a consequence of selection,
which may allow cells to exhibit an increased fitness and/or sur-
vival advantage. In this section, we discuss the relationship be-
tween different cellular conditions and the emergence of CNVs
from different species (Fig. 2).

Bacteria. Acquisition of antibiotic resistance can occur through
the uptake of foreign DNA harboring resistance genes through the
bacterial competence pathway (71). A recent study by Slager et al.
demonstrated that different species of bacteria could increase the
copy number of genes involved in the competence pathway (com
genes) in response to antibiotics causing replication stress (72).
These genes are located closer to the origin of replication (OriC),
and their amplification occurs through multiple origin firing
events at the OriC, which increases their copy number and tran-
scription rates. In Salmonella enterica serovar Typhimurium, gene
amplification aids in the development of antibiotic resistance. Ad-
aptation to the antibiotic cephalosporin occurred through ampli-

FIG 2 Copy number changes during normal development and physiological conditions. Representative copy number changes are shown for organisms and
specific tissues under different developmental and physiological conditions. Please refer to text for detailed descriptions and corresponding references.
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fication and increased gene dosage/expression of the �-lactamase
gene (blaTEM-1 [73]). The enzyme �-lactamase results in the hy-
drolysis of cephalosporin (74, 75), which results in a reduced drug
response.

These highlighted examples illustrate the impact selective pres-
sure can have on DNA amplification and gene expression in bac-
teria (Fig. 2). Additional examples have been observed and are
discussed in a review by Sandegren et al. (76). Taken together, the
existing data illustrate the relationship between input signals and
changes at distinct regions of the bacterial genome. In the future, it
will be interesting to know if this selection is based on fitness or the
result of targeted DNA replication in prokaryotes.

Yeast. Similar to bacteria, yeasts also exhibit changes in DNA
content based on selective pressure. For example, gene rearrange-
ments and copy number changes have been observed in Candida
albicans when it is passaged through a murine host (77). It has
been hypothesized that these changes in ploidy could generate the
genetic and phenotypic diversity required for adaptation in the
new host environment. Consistent with these observations, CNV
has been associated with antifungal drug resistance and adaptive
benefits (78, 79). For example, fluconazole treatment for C. albi-
cans infection results in the development of whole-chromosome
gains and aneuploidy (80). Upon CGH analyses for the copy num-
ber changes in 70 azole-resistant and -sensitive strains, Selmecki et
al. found increased levels of aneuploidy in resistant strains (50%)
compared to the sensitive ones (7.14%) (81, 82). Trisomies of
chromosome 5, including a segmental aneuploidy consisting of an
isochromosome (formed by the attachment of two left arms of
chromosome 5 around a single centromere), were also associated
with azole resistance. Gains of this isochromosome were associ-
ated with increased expression of genes involved in drug resistance
(82). Some of these genes encoded efflux pump proteins involved
in resistance: an ATP-binding cassette (ABC) transporter and a
multidrug resistance transporter (83). Other genes were ERG11 (a
target of fluconazole [84]) and TAC1 (a transcription factor that
upregulates ABC gene expression [82]). There is a need to identify
other structural variations and affected genes conferring a surviv-
al/adaptive advantage against antibiotics and whether these
changes are conserved across other fungal species.

Consistent with gene amplification conferring a selective ad-
vantage, Saccharomyces cerevisiae cells exposed to nutrient depri-
vation exhibited gene amplifications that provided a cellular ben-
efit (85). For example, glucose limitation in cultures resulted in
the amplification of genes encoding glucose transporters (HXT6
and HXT7), while sulfate limitation resulted in the amplification
of SUL1, a gene that encodes a high-affinity sulfate transporter
(Fig. 2). The question remains as to whether these physiological
input signals are able to drive selective DNA gains through a hard-
wired mechanism, as observed in mammalian cells (discussed in
“TSSGs, Tumor Heterogeneity, and Cancer Evolution,” below),
or are the result of random selection. Resolution of this issue could
have a profound impact on our understanding of cellular fitness
and responses to antibiotics.

Mammals. Mammals are no exception to selective pressures
promoting copy number changes or copy number alterations that
impact biological consequences. For example, the copy number of
the human salivary amylase gene AMY1, which encodes an en-
zyme that aids in the hydrolysis of starch, is increased in popula-
tions that have a higher starch content in their diets compared to
low-starch-consuming populations (86). The increased copy

number of AMY1 also correlated with increased salivary amylase
protein levels. This illustrates how diet-induced selective pres-
sures could influence copy number polymorphisms in mammals.
Other examples and the role of copy number polymorphisms in
human adaptation have been reviewed elsewhere (33, 87, 88).
While these studies are correlative and suggest that the environ-
ment impacts selection, they have yet to be shown to be causal.

Increased or decreased copy numbers of certain genes can pre-
dispose an individual to diseases. For example, susceptibility of
individuals to HIV/AIDS infection is increased in populations
with a decreased copy number of the chemokine gene CCL3L1.
This chemokine serves as a ligand for HIV coreceptor CCR5,
which inhibits viral entry by binding to CCR5. However, HIV-
resistant individuals show duplications of the CCL3L1 locus
(17q21.1) and increased CCL3L1 copies imparting resistance to
HIV infection (89). Other examples of CNVs promoting suscep-
tibility to diseases can be found with psoriasis (associated with a
copy number gain of the �-defensin gene [90, 91]), pancreatitis (a
copy number gain of PRSS1 [92]), and Crohn’s disease (a copy
number loss of HBD-2 [93]), among others (20, 94). The question
remains as to whether there are mechanisms that would allow
such changes to occur immediately in response to stimuli in the
population or whether they reflect some mutation that was se-
lected over time.

Somatic mosaicism for CNVs within tissues can provide an
adaptive response as well. CNVs within the liver can provide pro-
tection against tissue injury. Duncan et al. demonstrated in a
chronic liver injury model that selective gene loss could provide
resistance to liver injury (95). Deficiency of fumaryl acetoacetate
hydrolase (encoded by FAH; the enzyme is required in tyrosine
catabolism) causes a buildup of fatty acids and toxic metabolites
that result in liver failure, known as tyrosinemia. Conversely, de-
letion of the genes encoding enzymes that function upstream of
FAH (e.g., homogentisic acid dioxygenase [HGD]) is found to be
protective for tyrosinemia. Mice deficient for FAH and heterozy-
gous for a mutation in HGD can generate healthy normal hepato-
cytes. These injury-resistant, aneuploid hepatocytes (character-
ized by the loss of chromosome 16) are present in the liver and
undergo expansion only when the liver is exposed to injury, dem-
onstrating an adaptive response of cells to metabolic or toxic chal-
lenges.

Taken together, these few examples illustrate the CNVs present
within populations and individual tissues and how these are asso-
ciated with phenotypes. These data also emphasize the variations
in the genome and how the environment and selective pressures
can impact genetics. However, the question remains as to whether
these genetic events occur after random selection or are the result
of unidentified mechanisms that selectively alter the genetic land-
scape in response to external stimuli and, in turn, drive targeted de
novo genetic changes.

COPY NUMBER ALTERATIONS IN CANCER AND THEIR
IMPLICATIONS IN ACQUIRED DRUG RESISTANCE

Copy number alterations involving whole chromosomes and/or
specific chromosomal segments are frequently observed in cancer
(96, 97). Gains/amplifications of oncogenes and loss/deletion of
tumor suppressor genes have been historically found to be major
drivers of tumor development. For example, amplifications of
EGFR in gliomas (98), MYCN in neuroblastoma (99), MYC in
acute myeloid leukemia (100), and ERBB2 in breast (101), ovarian
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(102), and lung cancers (103) have been reported. Similarly, loss/
deletions in tumor suppressor genes such as PTEN (104), TP53
(105), and VHL (106) have been observed in a variety of tumors.
The dependence of tumors on specific oncogenes for their prolif-
eration and survival is referred to as oncogene addiction (107). By
targeting these oncogenes, tumor cell growth becomes limiting or
abrogated. For example, clinical success has been observed with
the ERBB2 antibody trastuzumab (Herceptin) in the treatment of
ERBB2-amplified breast cancer (108), crizotinib in the treatment
of MET-amplified non-small cell lung cancer (109), and the epi-
dermal growth factor receptor (EGFR) inhibitors gefitinib and
erlotinib (which blocks the catalytic activity of EGFR) in lung
cancer patients with EGFR mutations (110).

In addition to oncogene amplifications, copy number altera-
tions of different chromosomal regions have been observed in
cancer. A genome-wide analysis of copy number alterations in
cancer demonstrated a total of 76,000 gains and 55,000 losses
across the 3,131 cancer samples analyzed (96). A typical tumor
type is comprised of 17% amplifications and 16% deletions, com-
pared to less than 0.5% in normal samples (96). These data suggest
that somatic copy number alterations are a frequent feature in
cancer cells. Analyses across 17 tumor types demonstrated that
25% of the genome is affected by whole chromosome alterations
and 10% of the genome by short chromosomal changes (focal
events) in a typical tumor (96). Interestingly, the focally amplified
regions often harbor known oncogenes (e.g., MYC, CCND1,
EGFR, NKX2-1, and KRAS), while the focally deleted genomic loci
contain tumor suppressor genes (TP53, CDKN2A/B, and Rb1).
These observations suggest that the selective pressures associated
with tumorigenesis might influence targeted amplification or de-
letion of specific regions within tumor cells instead of occurring
randomly, which would be reminiscent of the observations seen in
bacteria and yeasts (Fig. 2).

Focal amplifications can also harbor oncogenes or prosurvival
genes that can influence drug responses. For example, �10% of
cancers have a focal amplification of chromosome 1q21.2 that
contains the antiapoptotic gene MCL1 (96). Another focally am-
plified antiapoptotic gene that is observed in cancer is BCL2L1 on
chromosome 20q11.21 (96). Both of these genes are important for
cell survival; hence, their amplification within tumors could con-
fer a distinct survival advantage. Consistent with this notion, Ber-
oukhim et al. demonstrated that increased expression of these
genes protected tumor cells from chemotherapy (96).

Chromosomal alterations in several distinct regions also influ-
ence pathogenesis in different tumor types. For example, in mul-
tiple myeloma (MM), disease progression is characterized partly
by the focal amplifications of a proximal region of chromosome
1q (chr 1q). Several studies have identified a region of 10 to 15 Mb
that corresponds to a chr 1q12-23 amplicon in MM. This region
contains a large number of genes with amplifications or deregu-
lated expression involved in myeloma pathogenesis, including
CKS1B (111, 112), MUC1 (113), MCL1 (114), PDZK1 (115),
IL-6R (116), BCL9 (117), and UBE2Q1 (118). The amplification of
a drug-resistant oncogene, CKS1B, and the proximal chr 1q21
region has been reported in �40% of newly diagnosed MM cases
and in 70% of patients with tumor relapse (119, 120). The gains
observed in CKS1B are in the range of one to three copies (111,
112). These focal amplifications are associated with poor progno-
sis and reduced response to cisplatin therapy (111) (Table 1).
Studies in cell cultures have further demonstrated that overex-

pression of CKS1B confers a reduced response to cancer chemo-
therapeutics (121). Similarly, amplification of the PDZK1 gene
within the chr 1q12-q22 region has been observed in primary cases
of MM, and the overexpression of PDZK1 in cells conferred resis-
tance to melphalan-, vincristine-, and cisplatin-induced cell
deaths (115) (Table 1).

Gene amplifications are associated with drug resistance in sev-
eral tumors (122–141) (Table 1). For example, ovarian cancer
patients with a chr 1q12-21 amplification are more resistant to
cisplatin treatment (142, 143). Amplifications of cyclin E1
(CCNE1) are present in 25% of high-grade serous ovarian cancers
and are associated with poor survival and impart resistance to
CDK2 inhibitors (144) (Table 1). In the case of non-small cell lung
cancer cells, an 11- to 13-fold-higher copy number of chr 7q21.12
was detected by CGH in an acquired paclitaxel-resistant lung can-
cer model (study NCI-H460/PTX250) compared with the paren-
tal cell line (study NCI-H460). Most of the genes within this re-
gion were also highly expressed, including a multidrug transporter
gene, MDR1/ABCB1 (131). These examples highlight how distinct
regions in the genome are focally amplified and relate to altered
patient outcome and cancer cell drug responses. Whether selective
chromosomal alterations and gene amplifications in cells result
from a stochastic process or occur in a directed manner in conse-
quence to therapeutic pressure is yet to be determined.

DNA AMPLIFICATION AND CANCER CHEMOTHERAPEUTIC
RESISTANCE

Gene amplification serves as a biochemical basis for drug resis-
tance in mammalian cells. This relationship to resistance was first
documented in seminal work by Hakala (145–147) and Fischer
(148) in the 1950s. They isolated highly resistant tumor cells under
the presence of increasing concentrations of the drug methotrex-
ate (MTX). MTX competitively inhibits the enzyme dihydrofolate
reductase (DHFR), which catalyzes the conversion of dihydrofo-
late to active tetrahydrofolate, which is required for the de novo

TABLE 1 Partial list of amplified genes that impact drug resistancea

Cancer type Therapeutic agent(s)
Gene(s) implicated in
resistance (reference[s])

Multiple myeloma Bortezomib, cisplatin CKS1B (111, 121, 126)
Melphalan, cisplatin, vincristine PDZK1 (115)
Dexamethasone FGFR3 (127)

Ovarian Cisplatin, CDK2 inhibitors CCNE1 (128, 142)
Paclitaxel MDR1 (129, 130)

Lung Gefitinib MET (123, 125)
Paclitaxel MDR1 (129, 130, 131)
Crizotinib ALK, KIT (132)

Breast Trastuzumab MET (133), IQGAP1
(134)

Colorectal Gefitinib MET (124)
5-Fluorouracil TMYS (135)

CML Imatinib BCR-ABL (136)
Melanoma Vemurafinib BRAF (137, 138),

BCL2A1 (139)
Leukemia Methotrexate DHFR (140, 141)
a We apologize for not being able to cite or include all studies related to gene
amplification and drug resistance.
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synthesis of thymidine. They found that the drug-resistant cells
had around 155 times the level of DHFR. They also found that the
drug-resistant phenotype was unstable in murine sarcoma 180
cells, which coincided with the reduced DHFR enzymatic activity.
Schimke’s laboratory further characterized the mechanistic basis
for the increased DHFR levels (149). It was shown that the cells
developed resistance to MTX by overproduction of DHFR protein
as a result of selective gene amplification (150). It was from the
work of the Biedler and Spengler (151, 152) and Schimke (150,
153) laboratories in the 1970s that the presence of cytogenetic
structures associated with MTX-resistant cells was demonstrated.
They found that gene amplification accounts for the overproduc-
tion of DHFR in stable and unstable drug-resistant cells (Fig. 3A).

Gene amplification forms two common structures: extrachro-
mosomal double minutes (DMs) and intrachromosomal homog-
enously staining regions (HSRs). DMs were first observed in lung
cancer cells in 1962 (154). They are defined as chromatin bodies
that lack centromeres and telomeres that are not transmitted to
100% of daughter cells during mitosis (155) (Fig. 1D). HSRs are
chromosomal structures containing permanently integrated
genes (Fig. 1D). These were first described by Biedler and Spengler
in 1976 (152) in drug-resistant cells. DHFR was found to reside on
HSRs in highly methotrexate-resistant CHO cells (156) and mu-
rine leukemia cells (157). Kauffmann et al. further showed that the

amplified DHFR genes were associated with DMs in unstable
MTX-resistant cells (158).

A large body of work has contributed to our understanding of
the generation of DMs and HSRs (159–162). For example, Stor-
lazzi et al. investigated the structures of MYCN amplifications by
using eight neuroblastoma and two small cell carcinoma cell lines
(162). The study provided evidence of generation of HSRs from
DMs by an episome model wherein DNA segments were excised
from a chromosome and then circularized and amplified to form
DMs and chromosomally integrated to form HSRs. DMs are un-
stable and can be eliminated after drug treatment (163, 164); how-
ever, HSRs are more stable (165) (Fig. 1D and 3A). Amplified
genes present on extrachromosomal DNA have been frequently
observed in different tumor types (159, 166–168). The reversion
of a malignant phenotype and cellular differentiation by the elim-
ination of DMs has been shown extensively in a variety of tumors
and cancer cell lines (167, 169, 170). Taken together, these obser-
vations demonstrate that transient gene amplifications can be an
effective strategy for quick adaptation to selective pressures in
tumor cells (Fig. 3A).

In a recent study by Nathanson et al., another example of drug-
induced transient gene selection was demonstrated (Fig. 3B). In
that study, oncogenes maintained on extrachromosomal DNA
were transiently gained/lost in response to drug treatment (171).
Glioblastoma patients harbor a constitutively active oncogenic
variant of epidermal growth factor receptor (EGFR-vIII) that is
formed by the in-frame deletion of exons 2 to 7 in the EGFR gene
and found on extrachromosomal DNA (171, 172). The presence
of EGFR-vIII makes tumor cells more sensitive to EGFR tyrosine
kinase inhibitors (TKIs) (173). The continued treatment with
EGFR TKIs (e.g., erlotinib) resulted in a loss of extrachromosomal
EGFR-vIII, thus conferring resistance to the TKI. When the drug
was withdrawn for a short period of time, there was an increase in
EGFR-vIII on extrachromosomal DNA and, in turn, the cells were
resensitized to erlotinib treatment (Fig. 3B). These data reiterate
the reversibility of copy number gains and how transient copy
number changes could impact chemotherapeutic response.

Furthermore, Nathanson and colleagues have suggested that
instead of a continuous therapeutic regimen, a drug holiday dur-
ing therapy might be a more effective mechanism to restore the
sensitivity of tumor cells to drugs (171). These studies raise the
possibility that chemotherapy could result in the selection of cells
with gene amplifications, which allow them to survive under this
drug-induced stress (Fig. 3). Therefore, understanding the mech-
anisms that result in transient or nonpermanent amplifications of
DHFR, EGFR, and alike in cancer (Table 1) will have a profound
impact on how we view copy number control as well as how we
identify novel biomarkers and therapeutic targets for treating
drug-resistant cancers.

TSSGs, TUMOR HETEROGENEITY, AND CANCER EVOLUTION

There are frequent gains/amplifications observed across cancer
genomes, which are often thought to be permanent events (33,
160). However, a recent discovery from our laboratory (174, 175)
suggested a possible mechanism for the intratumoral heterogene-
ity of copy number alterations observed in tumors. This recent
discovery could also provide a molecular basis for the emergence
of amplified drug resistance genes and enhanced cancer cell sur-
vival.

Chromatin modulation plays an important role in replication

FIG 3 Permanent and transient adaptive changes under different cellular con-
ditions. (A) Methotrexate treatment results in the amplification of the DHFR
gene (shown in red). DHFR can persist either as a stable structure, such as an
HSR, or as an unstable DM that is lost upon subsequent cell division. (B)
Continued treatment of glioblastoma cells with a tyrosine kinase inhibitor
such as erlotinib results in the loss of EGFR vIII-positive extrachromosomal
DNA (red) and its reemergence upon drug removal. (C) Hypoxia or overex-
pression of histone demethylase KDM4A results in site-specific genome am-
plification (purple), which is generated every S phase. The amplification is
reversible after KDM4 inhibitor treatment or with increased succinate dose.
Studies related to these data are discussed in the text.
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fidelity (176, 177). A recent study demonstrated that alterations in
chromatin states could modulate copy number gains at distinct
regions in the genome (175). KDM4A/JMJD2A demethylates
trimethylated histone H3 lysines 9 and 36 (H3K9/36me3) to a
dimethylated state (K3K9/36me2) (178–182). KDM4A overex-
pression promoted faster S-phase progression and altered replica-
tion timing at specific regions in the genome in a catalytically
dependent manner (175, 183). The regulation of S phase and rep-
lication timing were conserved from Caenorhabditis elegans to hu-
man cells and were the result of dysregulating specific HP1 mem-
bers in the genome (HPL-2 in C. elegans and HP1� in human cells)
(183).

Even though the S phase was faster in mammalian cells, the rate
of cell proliferation was the same, which was consistent with the
observed slowing into the G2/M phase. This delayed G2/M was not
associated with major genome instability. However, KDM4A
overexpression directly generated site-specific copy gains of re-
gions affiliated with drug resistance (e.g., chr 1q21-22) by altering
methylation states and heterochromatin association. KDM4A
was enriched at these sites and promoted their rereplication.
Furthermore, direct H3K9/36me3 interference promoted site-
specific copy number gain events. This study demonstrated for
the first time that an enzyme has the ability to directly regulate
copy number gain at specific regions in the genome and that the
chromatin/methylation states play an essential role in the pro-
cess (175) (Fig. 3C).

Since the copy number gain regions are not permanent and are
only generated and present during S phase, they have been termed
transient site-specific copy gains (174, 175, 184). Currently, we do
not know the exact sizes of the rereplicated fragments and whether
there are cellular checkpoints/machinery involved in their clear-
ance. In fact, different cells in a population have differentially
amplified regions, and certain regions are mutually exclusive. Fur-
thermore, the rate that these fragments are removed as cells move
through S phase is different (174). It is important to determine the
molecular features (e.g., presence of repetitive elements, insula-
tors, and other regulatory machinery) at and surrounding the re-
replicated and regions that gain copies. These molecular details
will help establish whether unique sequence features or chromatin
states have a predilection for rereplication and whether site-spe-
cific copy gains can be integrated in the genome.

Stabilization of KDM4A as a result of exposure to cellular trig-
gers such as hypoxia also resulted in TSSGs in cell lines, tumors,
and normal primary cells (Fig. 2, T cells) (174). In fact, these copy
number gains were found to be conserved at a syntenic region in
zebrafish cells subjected to hypoxia. The return of cells to nor-
moxia resulted in the reversion of copy number gains to the base-
line levels (Fig. 3C). Hence, generation of transient copy number
gains could be an adaptive cellular response of cells to external
stresses or stimuli. These data provide a mechanism for heteroge-
neity within a cell population even though the same genetic event
occurred in the population.

The stabilization of KDM4A upon hypoxic exposure or inhi-
bition or loss of microRNAs regulating KDM4A promoted copy
number gains of the drug resistance oncogene CKS1B (111, 112,
121, 185), which had a concomitant increase in transcripts (174,
191). When cells were returned to normoxic conditions, both
copy number and transcripts of CKS1B returned to normal levels.
Finally, we demonstrated that succinate (a natural inhibitor for
the KDM4 class of demethylases [186]), chemical inhibition or

microRNA-targeted depletion of KDM4A blocked the copy num-
ber gains upon hypoxic exposure (174, 191). These data empha-
size the impact that metabolites could have on copy number gain,
but most importantly, they identify a mechanism for blocking
their generation (Fig. 3C). Since drug resistance oncogenes were
increased, the inhibition of KDM4A may provide a novel mecha-
nism for modulating TSSGs and provide a method for reducing
1q21 drug resistance-associated cancers.

The fact that transient exposure to elevated KDM4A can pro-
mote copy number gain that is only present during S phase sug-
gests that other mechanisms must be present to remove the
TSSGs. Similar mechanisms may be involved in the removal of
extrachomosomal DHFR and EGFR amplifications. The TSSG
data support the notion that chromosomal regions with specific
genes that confer a survival advantage are amplified to protect the
cell. Selectively amplifying genes that confer distinct advantages
related either to cell survival, metabolism of drugs, mounting re-
sponses to counteract drug sensitivity, or features promoting tu-
morigenesis could aid in the evolution/adaptation of cancer cells.
The question remains as to whether the classical oncogenes (e.g.,
EGFR, MYC, ERBB2, etc.) (Table 1) are subjected to site-specific
copy gains in tumors and subsequent retention upon genetic, in-
trinsic, or extrinsic exposure. Some extrinsic cues could be thera-
peutic or metabolic challenge, stress conditions (such as hypoxia,
nutrient deprivation), and vasculature and extracellular matrix
plasticity. Future studies investigating their impact on TSSGs and
gene amplification will be critical.

Tumor heterogeneity. Tumor heterogeneity presents a major
diagnostic and therapeutic challenge in the treatment of cancer.
Indeed, recent sequencing efforts with next-generation sequenc-
ing helped in the tracing of clonal lineages in tumors (187, 188).
Focal gains or losses of chromosomes can result in diversity
among cells in a tumor population (intratumoral heterogeneity
[189]) as well as between tumors (intertumoral heterogeneity
[189]). For example, next-generation sequencing of five bladder
tumors from patients with transitional cell carcinoma of the uri-
nary bladder showed genomic rearrangements and mutational
heterogeneity within tumors (188). Whole-exome sequencing of
samples from 18 patients with chronic lymphocytic leukemia
(CLL) revealed the emergence of subclones within selected popu-
lations of cells treated with chemotherapy (190). These popula-
tions of cells might be more fit than their pretreatment counter-
parts and could contribute to relapse after therapy. Thus, identifying
the mutational landscape before and after chemotherapy could
not only identify mechanisms of tumor relapse but also help to
design effective therapeutic options for the elimination of domi-
nant subclones arising after chemotherapeutic selection pres-
sures.

Another mechanism contributing to intratumoral heterogene-
ity could be the regulation of TSSGs from KDM4A levels, oxygen
concentrations, cell division rates, metabolites, and KDM4A inhi-
bition. Cells could be cycling at different rates in a tumor popula-
tion, thereby affecting the rate at which rereplicated fragments are
generated (Fig. 3C). Differential levels of KDM4A expression,
hypoxia levels, or metabolic status in cells within a tumor popu-
lation could also generate copy number gains at different rates,
thereby affecting heterogeneity. We hypothesize that the site-spe-
cific rereplication events could be one of the characteristics ac-
quired in specific population of cells during subclonal divergence.
Specific environmental, metabolic, or therapeutic stress condi-
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tions can produce site-specific chromosomal alterations in the
subclonal populations, which could either be transient, persisting
only when the signal is there, or could eventually become inte-
grated elsewhere in the genome upon subsequent genetic/epige-
netic changes. TSSGs within specific cell populations could either
influence the emergence of the dominant subclone or could go
hand in hand with the germ line mutations occurring during tu-
mor evolution. Whether these events result in the emergence of
the fittest clone that promotes survival and if these sets of “fit” cells
clonally expand after a therapeutic challenge is a hypothesis that
needs to be investigated.

CONCLUSIONS

CNVs influence the ability of normal cells to respond to physio-
logical triggers and can serve as an adaptive strategy for a variety of
responses, such as hypoxia, nutrient deprivation, toxic challenges,
or cell survival and proliferation. Alterations in copy number of-
ten lead to diseases such as cancer, where the tumor cells can also
coopt these aberrations as an adaptive response to amplify genes
involved in chemotherapeutic resistance. It is important to deter-
mine whether the processes of generating copy number alterations
under normal physiological, developmental, or pathological con-
ditions are based on an active cell-directed and regulated mecha-
nism or are the result of random aberrations that have occurred
during cell division. Whether random or directed, it is important
to understand that copy number changes are not always perma-
nent. The recent discovery of a specific chromatin regulator con-
trolling rereplication and site-specific copy number changes sug-
gests that copy number changes can be regulated and are
reversible. These transient site-specific copy gains may generate
intratumoral heterogeneity that could have important conse-
quences in chemotherapeutic sensitivity and patient outcome.
Hence, identifying regulators of CNVs and delineating processes
affected by CNVs will be important therapeutically.
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